Introduction to routing in the Internet

Internet architecture
IPv4, ICMP, ARP
Addressing, routing principles

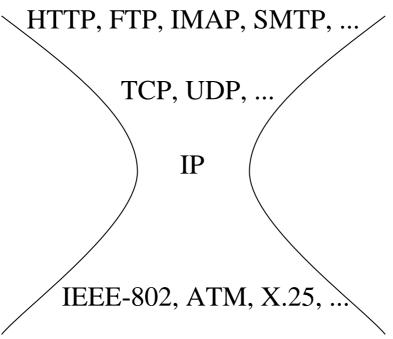
(Chapters 2–3 in Huitema)

S-38.121 / Fall-04 / RKa, NB Internet-1

Internet Architecture Principles End-to-end principle

by Dave Clark

- All control in end stations
 - e.g. error and flow control
- The network can not be trusted
- User must in any case check for errors
 - →network control redundant
- Error checking and flow control by TCP
- No state information/connection in the network
 - packets routed independently
 - if a link fails, another route is used
- Same principle as in distributed systems

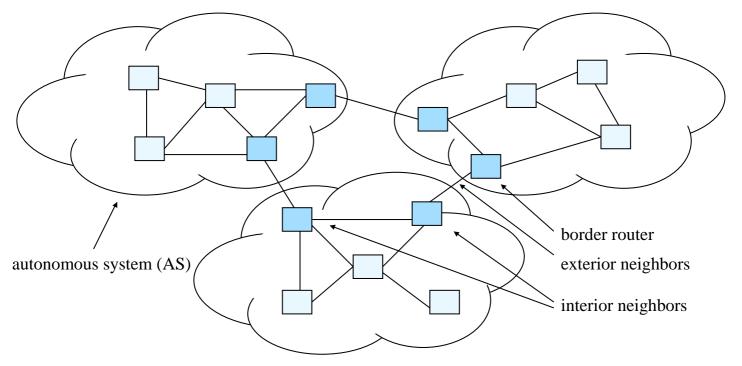

Internet Architecture Principles IP over everything

by Vinston Cerf

- Alternative: Interconnection based on translation
 - Never perfect
- IP: Interconnection based on *overlay* over all kinds of networks
 - simple to adapt to new technologies
 - Define framing or encapsulation
 - Define address resolution: IP-address → network address
 - unique IP-address
- Translation still needed in many cases
 - E.g. signaling interworking, IPv4 to IPv6 mapping

S-38.121 / Fall-04 / RKa, NB Internet-4

Internet Architecture Principles IP over everything



Internet Architecture Principles Connectivity is its own reward

- The value of a network increases in proportion to the square of the number of nodes on the network (Robert Metcalf's law)
- Be liberal with what you receive, conservative with what you send
 - try to make your best to understand what you receive
 - maximum adherance to standard when sending
- Snowballing effect keeps all interested in connectivity thus keeps adhering to standards

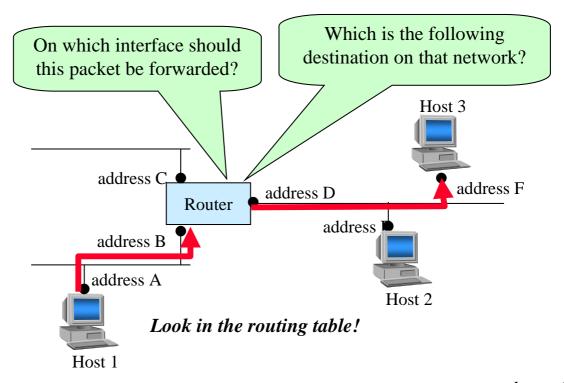
S-38.121 / Fall-04 / RKa, NB Internet-6

Routing is divided into interior and exterior

In this couse we only deal with interior routing

Routing is divided into interior and exterior

- Autonomous system, AS
 - Networks operated by a single organization and having a common routing strategy
- Border router
 - At least one neighbor belongs to another autonomous system

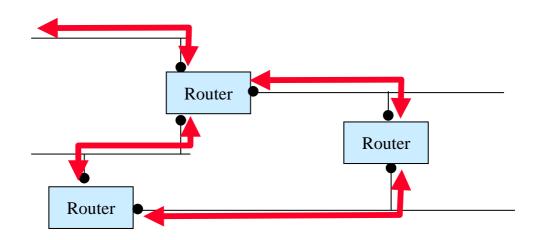

S-38.121 / Fall-04 / RKa, NB Internet-9

Routing is divided into interior and exterior

- Interior routing protocols
 - Routing Information Protocol (RIP), RIP-2
 - Open Shortest Path First (OSPF)
 - Interior Gateway Routing Protocol (IGRP), EIGRP
 - Intermediate System-to-Intermediate System (IS-IS)
- Exterior routing protocols
 - External Gateway Protocol (EGP)
 - Border Gateway Protocol version 4 (BGP-4)

Two functions of a router:

1. Packet forwarding



S-38.121 / Fall-04 / RKa, NB Internet-12

Two functions of a router:

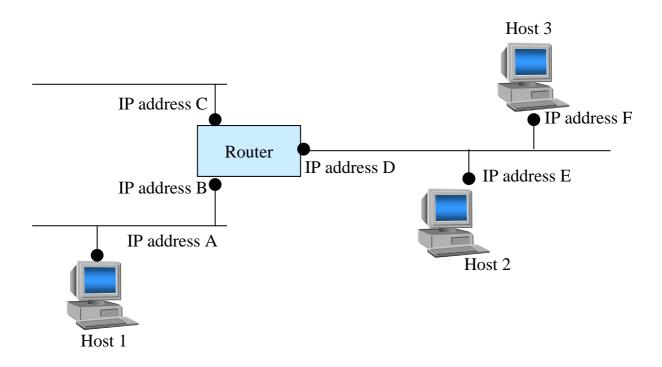
2. Construction and maintenance of the routing table

• Routers exchange routing information with routing protocols (e.g. RIP, OSPF, BGP)

Internet routing is based on routing protocols, which collect information

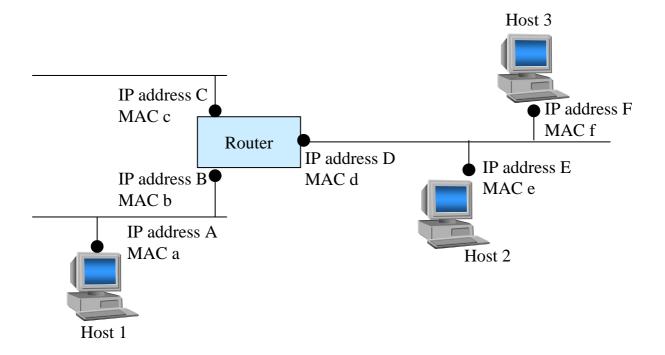
- Routing is completely automatic
- No offline route planning
- Only dimensioning is made offline
- The routers communicate with a routing protocol
- The routing algorithm finds the shortest (cheapest) route to every destination

S-38.121 / Fall-04 / RKa, NB Internet-14

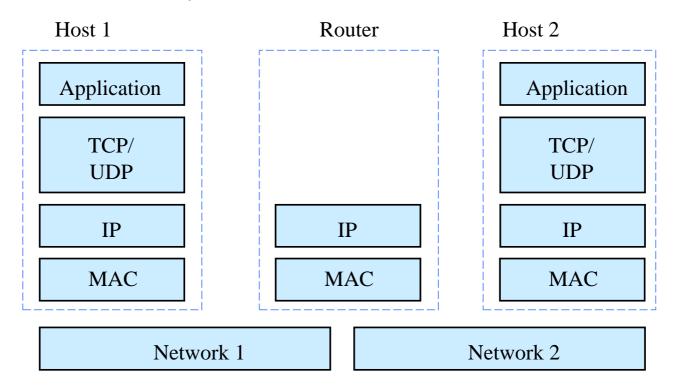

Routing in the Internet is generally dynamic, but static routing is used in some cases

- Dynamic routing is based on routing protocols which create and maintain the routing tables automatically
 - examples of routing protocols are RIP, OSPF, BGP...
 - E.g. to connect an organization with multiple links to the Internet
- Static routing is based on manually configured routing tables.
 - Static routing is used when e.g. two peer providers do not trust each other
 - To connect an organization to a service provider with a single connection

Static routing is difficult to maintain

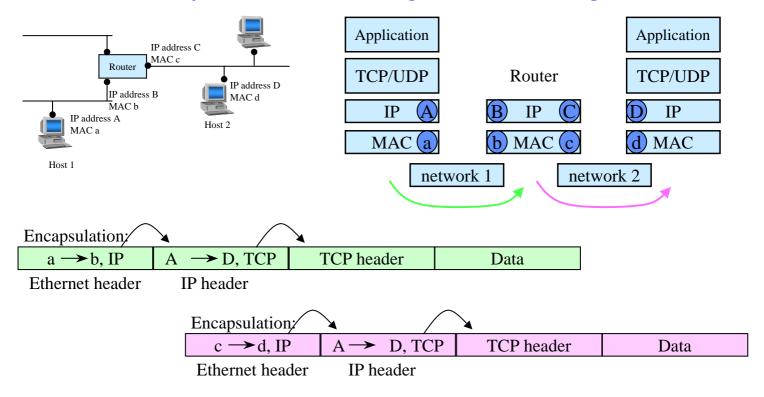

The IP address defines the interface

(not the host)

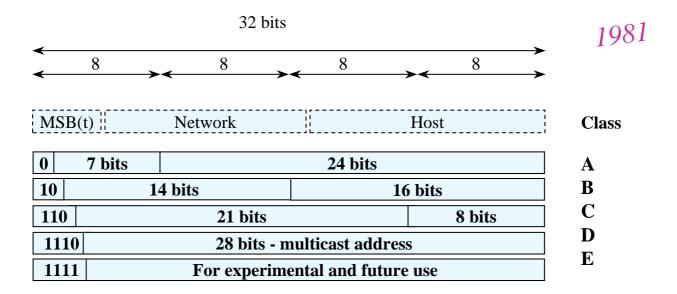


S-38.121 / Fall-04 / RKa, NB Internet-16

Every interface also has a media specific MAC address



Internet layer model – hosts and routers


S-38.121 / Fall-04 / RKa, NB Internet-18

Layers and message forwarding

IPv4 address formats

• Originally a two-level (network, host) hierarchy

S-38.121 / Fall-04 / RKa, NB Internet-20

IPv4 address formats

1984

• A new level for easier network administration

**		1 1
Natrion	Carless	1 0 04
Nelwork	. Siinnei	HUGI
1 1CtW OIK	Bublict	11031

• Examples:

Mask	IP address	Network	Subnet	Host
0xFFFF0000	10.27.32.100	A: 10	27	32.100
0xFFFFFE00	136.27.33.100	B: 136.27	16 (32)	1.100
	136.27.34.141	136.27	17 (34)	0.141
0xFFFFFFC0	193.27.32.197	C: 193.27.32	3 (192)	5
	/		<u> </u>	

High order bits:

 $0 \dots 0 - 127. \rightarrow A$ -class

10.... 128. - 191. → B-class

110...192. - 223. → C-class

Without right zeroes (and with right zeroes)

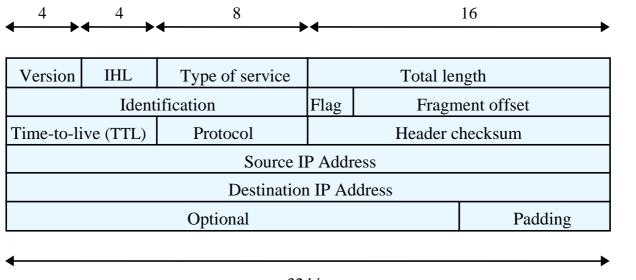
Later updated by CIDR (discussed later)

IPv4 address formats

Example:		Network	Subnet	Host	
Example.			I		
Address:	10.38.154.117	00001010	001001	10 10011010 01110101	
Mask:	255.255.192.0	111111111	111111	00 00000000 00000000	
Network:	first bit "0"	00001010			= 10
Subnet:	address* AND mask		001001		= 9 (36)
Host:	address AND NOT m			10 10011010 01110101	= 2.154.117

address* = address with network part zeroed

Also written as 10.38.154.117/14

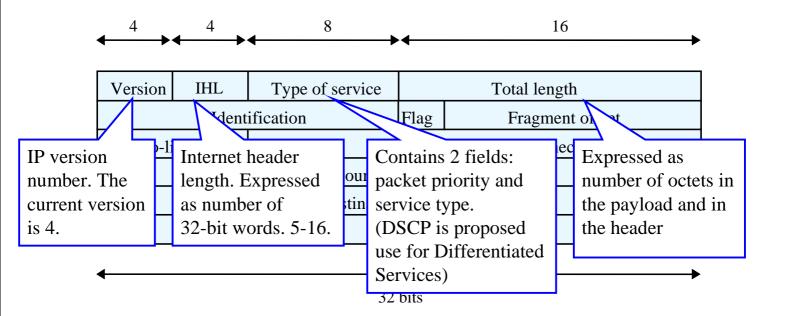

S-38.121 / Fall-04 / RKa, NB Internet-22

Special addresses

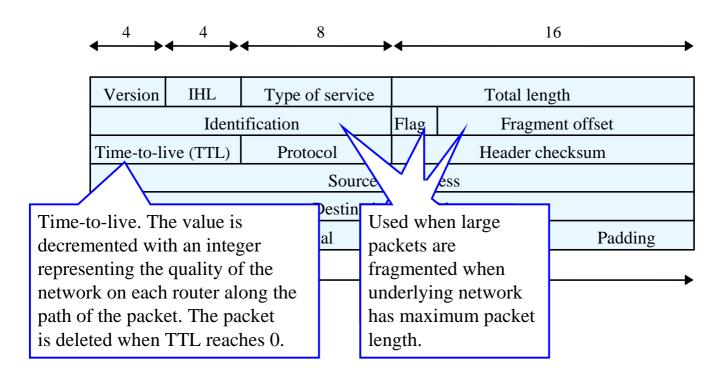
- An unknown network is replaced by 0
 - Only used as source address (e.g. a booting host)
 - -0.0.0.0 = "this host in this network"
 - 0.X.Y.Z = "host X.Y.Z in this network"
- Limited broadcast address 255.255.255.255
 - To all host in the local network
- Directed broadcast addresses A.255.255, B.B.255.255,
 C.C.C.255
 - To all hosts in a specified network
- Loopback-address 127.X.X.X (usually 127.0.0.1)
 - Internal in one host
- Multicast-addresses (e.g. 224.0.0.2 = all routers on this subnet)

IPv4 packet header

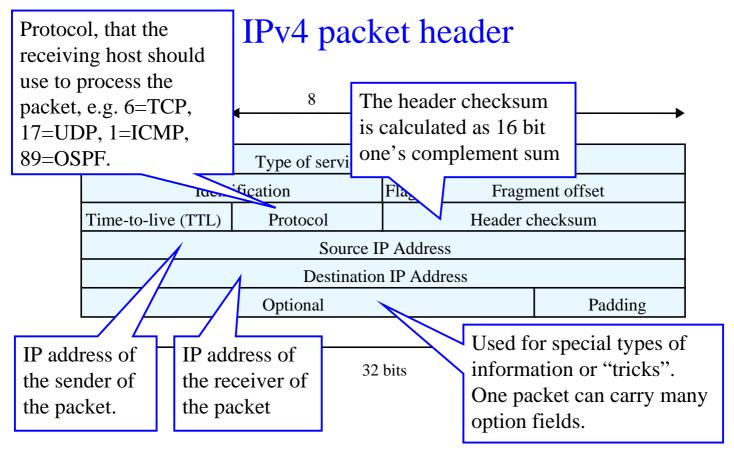
RFC-791



32 bits


We assume that the sender knows its own IP address. If not: self configuration protocols such as RARP, BOOTP, DHCP (dynamic host configuration protocol) are used

S-38.121 / Fall-04 / RKa, NB Internet-25


IPv4 packet header

IPv4 packet header

S-38.121 / Fall-04 / RKa, NB Internet-27

The most important fields in routing are the destination address and the time-to-live

Version	IHL	Type of service	Total length	
Identification		Flag	Fragment offset	
Time-to-liv	ve (TTL)	Protocol	Header checksum	
Source IP Address				
Destination IP Address				
Options Padding				Padding

- Every router decrements the TTL → must calculate new checksum
- Options (e.g. source routing, record route, timestamp)
 - rarely/never used in practice.

S-38.121 / Fall-04 / RKa, NB Internet-29

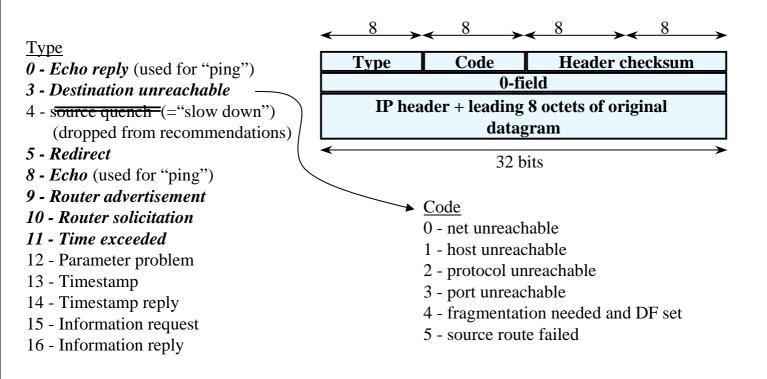
Type of service

- Route selection criteria
 - D minimization of delay
 - T maximization of transmission capacity
 - R maximization of reliability
 - C minimization of cost
 - Only one can be selected.
- Precedence
 - The largest precedence packet is first taken from the queue to be routed.
- In practise, these are not used
- DiffServ uses the field in another way

Source routing

- Implemented with the "source routing" option
 - Loose source routing (type 131, 10000011)
 - The packet is sent to the next address in the list using normal routing.
 - Strict source routing (type 137, 10001001)
 - The packet is sent to the next address in the list. If there is no direct link to the address, the packet is destroyed.
- Slow → Rarely used
 - Can be replaced by encapsulation:

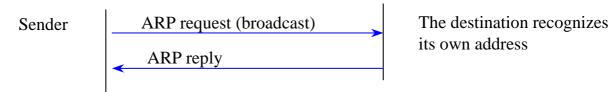
 $A \rightarrow C$, IP-IP $A \rightarrow B$, TCP TCP Data


S-38.121 / Fall-04 / RKa, NB Internet-31

ICMP – Internet Control Message Protocol

- Gives feedback about the network operation.
- ICMP packet is sent backwards if e.g.
 - The receiver is unreachable
 - The router deletes a packet
 - -TTL = 0.
- All hosts and routers must support ICMP.
- ICMP messages are transported in IP packets
- If ICMP message is dropped, a new one is not generated

- to avoid the "snowballing effect".


ICMP messages

S-38.121 / Fall-04 / RKa, NB Internet-33

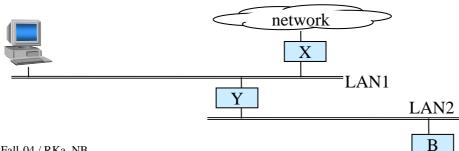
Packet sending – how to determine the next hop

- The sender checks if the destination address in the same subnetwork by comparing the masked values of the source and destination address.
 - If same, the destination is in the same subnet (next hop=destination).
 - Otherwise, the packet must be sent to a router (next hop=router).
- It then obtains the media address (MAC-address) of the destination (or router) using the ARP-protocol.

- The media address is stored in the cache.
 - Note: All hosts in the same subnet stores the address in their cache.

ARP – Address Resolution Protocol

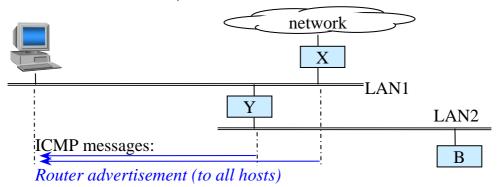
ARP maps IP to the underlying protocol


RFC-826

- IP-address → MAC-address
- Each network technology requires its own ARP adaptation.
 - Easy if the network supports broadcast or multicast.
 - E.g. Ethernet, Token Ring, FDDI
 - ATM requires a special ARP-server
 - Manually defined address for point-to-point links
 - E.g. X.25, ISDN, Frame-Relay
- Works on top of Ethernet (not on top of IP)

Internet-35 S-38.121 / Fall-04 / RKa, NB

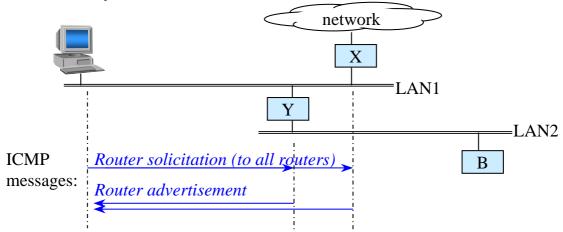
Router discovery


- How to know the address of the router?
 - Configure manually "default gateway"
 - Obtain with DHCP
 - Configured by administrator, still needs manual work
 - Listen to routing protocols
 - Uses resources of the host, too many routing protocols → not used today
 - Automatic router discovery with ICMP

Internet-36 S-38.121 / Fall-04 / RKa, NB

ICMP router discovery (1)

• The routers send *router advertisements* to all hosts periodically (e.g. in 7 minute intervals)

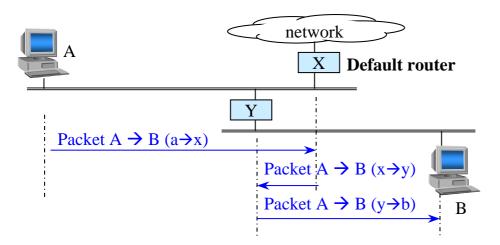


- The advertisement contains
 - a list of the router's addresses.
 - the preference of the addresses, which are used to identify the normal, reserve,
 etc. router or router address (the preference of the default router is highest)
 - lifetime of the information (e.g. 30 min)

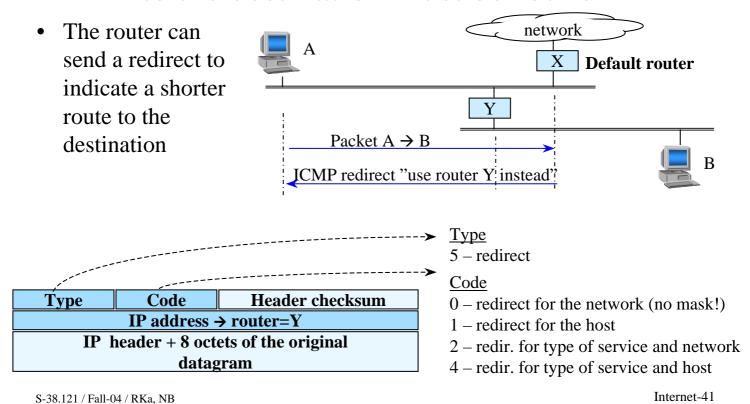
S-38.121 / Fall-04 / RKa, NB Internet-37

ICMP router discovery (2)

- The host would have to wait up to 7 minutes before it can send packets outside its sub-network.
- Using a *router solicitation*, the host gets the advertisement immediately


ICMP router discovery (3)

- The host discards advertisements from routers outside its subnetwork and chooses the router with the highest priority as its default router.
- All packets for destinations outside the sub-network are sent to the default router.


S-38.121 / Fall-04 / RKa, NB Internet-39

A network may have many routers, the closest to the destination must be found

• A packet sent through the default router reaches the destination, but may waste resources

A network may have many routers, the closest to the destination must be found

Host must have feedback from the first router to avoid sending to a "black hole"

Feedback may be

- TCP acknowledgements
- Router advertisements
- ARP-replies
- ICMP echo reply (ping)

Between routers, routing protocols provide similar feedback and help in detecting failed router neighbors.

DNS - Domain Name Service

- Host name → IP address
- Why DNS?
 - Easier to remember names than addresses
 - Allows address changes without changing the name
 - Several addresses per host
 - Extensions: service location, ENUM
- DNS does not affect routing, routers only deal with IP addresses

S-38.121 / Fall-04 / RKa, NB Internet-44

Routing algorithms

Routing algorithms

• Distance vector

- Distance vectors are sent, until the state of the network is stable
- The routers cooperate to generate the routes
- Example: RIP

Link state

- Topology descriptions are sent periodically and nodes generate a map over the network
- Every router generates the routes independently of the other routers
- Example: OSPF

S-38.121 / Fall-04 / RKa, NB Internet-46

Properties of the routing algorithms

Distance vector	Link state
Simple and lightweight	Complex and heavy
Slow convergence	Fast convergence
 Only one route per destination 	Several routes per destination
 Only one metric 	Supports different metrics