Introduction to IPv6

(Chapter 4 in Huitema)

S-38.121 / Fall-04 / N Beijar IPv6,Mobility-1

IPv6 addresses

- 128 bits long
- Written as eight 16-bit integers separated with colons
 - E.g. 1080:0000:0000:0000:0000:0008:200C:417A
 - = 1080::8:800:200C:417A
- Types
 - Unicast
 - Defines one interface within their scope of validity
 - Multicast
 - Delivers packets to all members of a group
 - Anycast
 - Delivers packets to the *nearest* member of a group

Special IPv6 addresses

- Unspecified = 0:0:0:0:0:0:0:0:0 = ::
 - Only as source address
- Loopback = 0:0:0:0:0:0:0:1 = ::1
 - For sending datagrams to itself
- IPv4 addresses prepended with zeroes
 - -0:0:0:0:0:0:0:AABB:CCDD = ::a.b.c.d
- Site-local addresses
 - FEC0:0000:0000:subnet:station
- Link-local addresses
 - FEB0:0000:0000:0000:station

S-38.121 / Fall-04 / N Beijar IPv6, Mobility-3

IPv6 header

Version=6 (4)	Traffic class (8)	Flow label (24)			
F	ayload length (16	5)	Next header type (8) Hop limit (8		
Source address (128)					
Destination address (128)					

- Differences between v4 and v6
 - No checksum (performed at lower layers)
 - No fragmentation (path MTU discovery instead, min. 1280)
 - No options (linked extension headers instead)
- Extension headers replace options

IPv6 header NH Extension NH Extension NH Payload (TO
--

IPv6 supports strict or loose source routing

Routing header

Hext header	Header ext. length	Routing type $= 0$	Segments left				
	Reserved						
	IPv6 address 1						
IPv6 address 2							
IPv6 address N							

- Only the router whose address is destination address in IPv6 header examines this extension ⇒ better performance
- Forwarder
 - Moves the next address to the IPv6 header
 - Decrements the number of segments left

S-38.121 / Fall-04 / N Beijar IPv6, Mobility-5

Fragmentation is performed by the sender

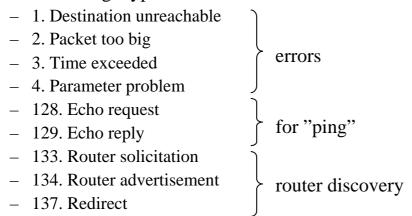
- Packets larger than the next hop's MTU are rejected
- Large packets must be fragmented by the sender
- Fragment header:

Hext header	Reserved	Fragment offset	Reserved	M		
Identification						

- Offset: Least significant 132 bits of 16-bit word
- M: More fragments

Other extensions

- Authentication Header (AH)
- Encrypted Security Payload (ESP)
- Destination options header
 - Only examined by the destination
 - Contains one or several parameters
 - Also defines handling for unrecognized parameters
- Hop-by-hop options header
 - Examined by each router
 - Similar format and coding as destination options header
 - E.g. jumbo payload
- Processing order is important
 - IPv6 → Hop-by-hop → Destination options (for tunneling) → Routing → Fragment → Authentication → Destination options → Upper layers (TCP/UDP)


S-38.121 / Fall-04 / N Beijar IPv6,Mobility-7

Internet Control Message Protocol Version 6

ICMPv6 header

Type	Code	Checksum			
ICMP body					

- Also includes the functionality of IGMP
- ICMP message types:

Router discovery

For building a local list of routers on the same network

Type = 134	Code = 0		Checksum		
Cur. hop limit	M O Res.		Router lifetime		
Reachable time					
Retransmission timer					
Options					

- Curr.hop limit: Suggestion for initial hop limit value
- Router lifetime: Seconds for holding in router list
- Reachable time: Expected time neighbors remain reachable after advertising the media address (in milliseconds)
- Reachable retransmission timer: Interval between successive solicitations of a neighbor that is not returning solicited neighbor advertisements (ms).
- + Source Link Layer option: contains media address of router

S-38.121 / Fall-04 / N Beijar IPv6, Mobility-9

Neighbor discovery in IPv6 replaces ARP

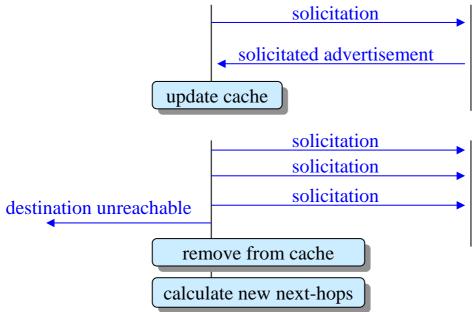
• If there is no MAC address entry for the next hop, a *neighbor solicitation* message (comp. ARP-request) is sent:

Type = 135 Code = 0		Code = 0	Checksum			
R S O Reserved						
	Solicited address					
	Options					

- TTL=1, own MAC address in source link-level address option
- The message is sent to a *solicited node multicast address* derived from the address of the next-hop
- MAC address for the message derived from this address
- The host recognizing its address, replies with a *neighbor advertisement* message (comp. ARP-reply)
 - Format similar, but Type=136
 - MAC address in *link layer address* option
 - R=address is router, S=reply to solicitation, O=overides previous cache entry

Redirect works like in IPv4 but may include the media address of the next hop

• Redirect message:


Type = 137	Code = 0	Checksum			
Reserved					
Target address					
Destination address					
Options					

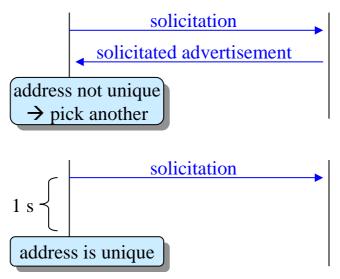
- Target address contains the better next hop for the destination
- The media address of the next hop may be included in a *target link layer address* option.


S-38.121 / Fall-04 / N Beijar IPv6,Mobility-11

The sender needs feedback from the destiation so that it is not sending to a "black hole"

• If the sender does not get feedback (within 30 seconds), it checks the existence of the receiver with a solicitation message

Autoconfiguration can be stateful or stateless


Stateless autoconfiguration

Type = 134	Code = 0		e = 0	Checksum
Hop.limit	nit MO Res.			Router lifetime
Reachable time				
Retransmission timer				
Options (prefix information option)				

- Prefix information option contains list of prefixes with parameters
 - on-link bit \rightarrow the prefix is specific to the local link
 - autonomous-bit → host can construct address by replacing the last bits of the prefix with EUI-64 identifier
- Stateless autoconfiguration properties
 - simple, no servers required
 - inefficient: 64 bits used for one local network
 - no access control

When a host generates an address with autoconfiguration, it must check that it is unique

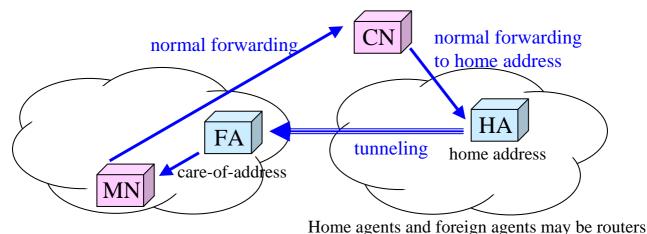
• In principle, addresses generated with the EUI-64 identifier should be unique, but...

• Lost messages ⇒ retry several times

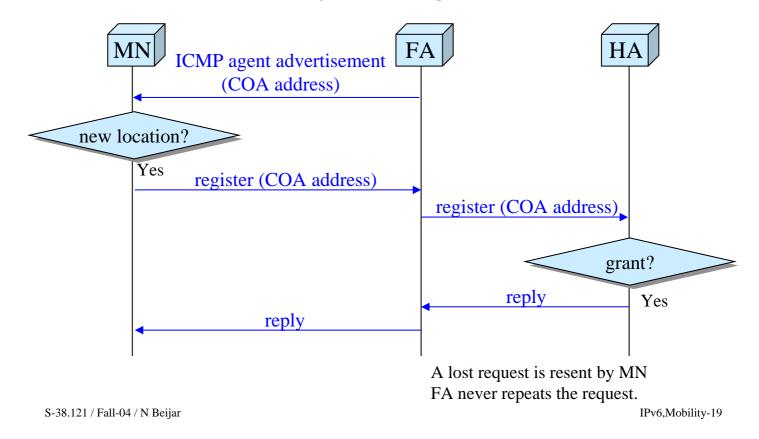
S-38.121 / Fall-04 / N Beijar IPv6,Mobility-15

Mobile IP

(Chapter 13 in Huitema)

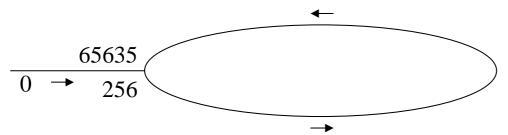

Different types of mobility

- Computers transported and connected from different locations
 - Dynamic configuration ⇒ new IP address
 - Access through modem/ISDN
 - ⇒ new IP address
 - \Rightarrow TCP connection cut off
- Mobile computers, which stay connected during movements
 - Radio, infrared
 - ⇒ same IP address
- Mobile networks, e.g. in cars, planes, trains, ships
 - Recursive mobility (mobile host in mobile network)


S-38.121 / Fall-04 / N Beijar IPv6,Mobility-17

The traffic to a mobile node is tunneled from the home agent to the foreign agent

- *Mobile Node* (*MN*) Node, who has a *home address* in the home network, and obtains a *care-of-address* (COA) in the visited foreign network
- Home Agent (HA) Belongs to the home network and serves the home address
- *Foreign Agent* (*FA*) Serves the visiting mobile node
- Corresponding Node (CN) A node exchanging data with the mobile node


Discovery and registration

Discovery of a Home Agent or Foreign Agent using periodical ICMP messages

- Agent advertisements are extensions to ICMP router advertisements
- The agent advertisements contain
 - Sequence number
 - Life-time of registration
 - Flags
 - Registration required
 - Foreign agent or home agent
 - Minimal encapsulation (RFC-2003)
 - Generic Routing Encapsulation (GRE) (RFC-1701)
 - Header compression used
 - List of care-of-addresses
 - Length of prefixes

The sequence numbers in the agent adverstisement are similar to "lollipop" sequence numbers in OSPF

- If one of the number is < 256
 - The higher number is "higher"
- If both numbers are ≥ 256
 - If (b-a) < (65635-256)/2 then b is "higher"
- If the received is "lower" than the previous, then the server has been restarted
 - ⇒ Register again

S-38.121 / Fall-04 / N Beijar IPv6,Mobility-21

Alternative discovery mechanisms

- Periodic broadcast of ICMP messages wastes transmission capacity, especially on wireless LANs
- The MN can detect changed location through media-level information
 - e.g. analyzing power of different basestations
- Instead of waiting, the MN can solicit the information
 - Similar to ICMP router solicitation
 - -TTL = 1
 - Agent replies with agent advertisement

Registration request

- Registration request message contains
 - Message type = 1
 - Flags
 - FA co-located with MN
 - preferred encapsulation
 - Requested lifetime
 - 0 =cancellation of previous
 - Home address of MN
 - HA address
 - COA address
 - Request identification
 - Extensions
 - E.g. authentication

S-38.121 / Fall-04 / N Beijar IPv6,Mobility-23

Registration reply

- Registration reply message contains
 - Message type = 3
 - Reply code (granted or denied)
 - Who denied (FA or HA)
 - Why denied
 - Accepted lifetime
 - Same or smaller than requested lifetime
 - Home address of MN
 - HA address
 - Request identification
 - Same as in request
 - Extensions
 - E.g. authentication

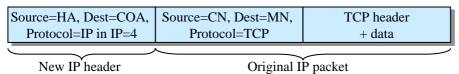
Security issues (1)

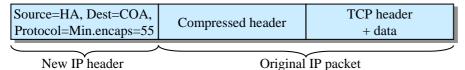
- Attack types
 - Attacker pretends to be a FA to capture traffic

- Attacker replays old registration messages
- Authentication extension proves the origin of the message and that the contents has not been changed
 - Security parameter index (SPI) together with HA, COA, or NM identifies security context
 - Shared secret, signature algorithm (e.g. keyed MD5) parameters of security context
 - Data and secret key → authentication field
 - MN to HA authentication mandatory
 - FA to HA and MN to FA authentications optional

S-38.121 / Fall-04 / N Beijar IPv6, Mobility-25

Security issues (2)


- Attack types
 - Attacker pretends to be a FA to capture traffic
 - Attacker replays old registration messages


- Two requests must not contain the same identification
 - NTP timestamps (64-bit)
 - Only requests with higher timestamps are accepted
 - The timestamps must be close to the current time
 - Random numbers used only once (nonce)

Encapsulation

Basic encapsulation, RFC-2003

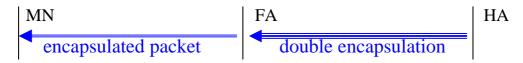
Minimal encapsulation, RFC-2004

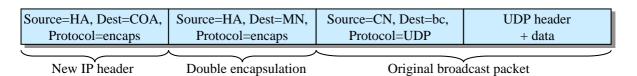
Compressed header: Protocol type of encaps. packet (e.g. TCP), Destination address of encaps. packet, Optional source address of encaps. packet, Header checksum

Generic Routing Encapsulation (GRE), RFC-1701

Source=HA, Dest=COA, Protocol=GRE=24	Encapsulation parameters	Source=CN, Dest=MN, Protocol=TCP	TCP header + data
		~	
New IP header	GRE header	Original I	P nacket

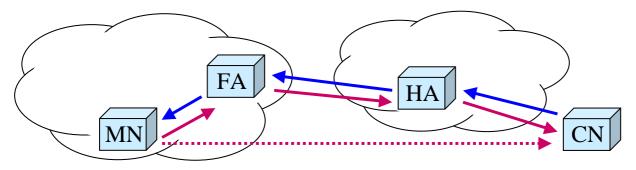
Parameters: Protocol type (similar to the one in Ethernet packet), optional checksum, optional sequence number, optional authentication key, (source) routing field


S-38.121 / Fall-04 / N Beijar IPv6,Mobility-27


Broadcast and multicast should only be received by the MN, not the network of MN

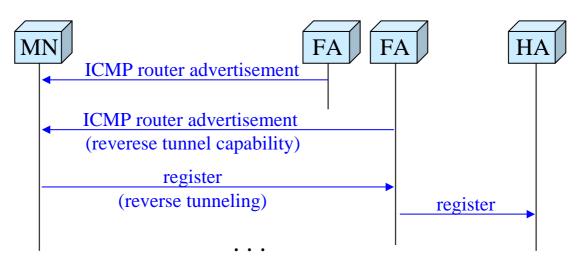
• Easy if FA is colocated with MN

Double encapsulation of broadcast/multicast traffic



- ICMP messages are encapsulated MN→HA
- Instead, MN can subscribe to groups on the foreign network

Source address filtering is a problem in Mobile IP (1)


- Why source address filtering?
 - Address spoofing hides identity of attacker, helps targeting third parties' replies, helps gaining privileges
- Source address filtering is performed in firewalls, between ISP and customer, at peering points between provides, etc.
- ⇒ Packets sent by MN must be tunneled through the HA

S-38.121 / Fall-04 / N Beijar IPv6,Mobility-30

Source address filtering is a problem in Mobile IP (2)

- FAs capable of tunneling packets back to HA, advertise it with a flag in agent advertisement message
- The MN requests reverse tunneling

Considerations

- Path MN→CN is shorter than the path CN→MN
 - Asymmetry
- If the MN moves relatively fast, it must choose a new FA often
 - ⇒ Many registration messages to HA

S-38.121 / Fall-04 / N Beijar IPv6,Mobility-32

Mobile IPv6

(Chapter 13 in Huitema)

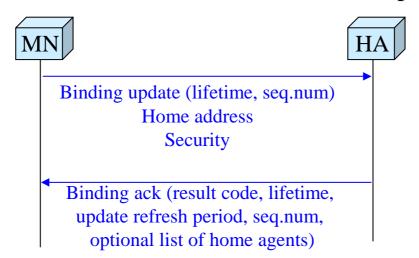
Mobility in IPv6

- Discovery performed with IPv6 neighbor discovery and address configuration mechanisms
- Security ⇒ MN can notify their COA to the CN in addition to the HA
- Efficient encapsulation with the source routing header

S-38.121 / Fall-04 / N Beijar IPv6,Mobility-34

Discovery

- The MN and FA are usually colocated ⇒ No separate FA
- Hosts listen to router advertisements to the learn prefixes of the link
 - Hosts can detect that they are visiting a foreign network
- COA obtained with address configuration procedures
- Routers willing to act as home agents indicate it in the router advertisement

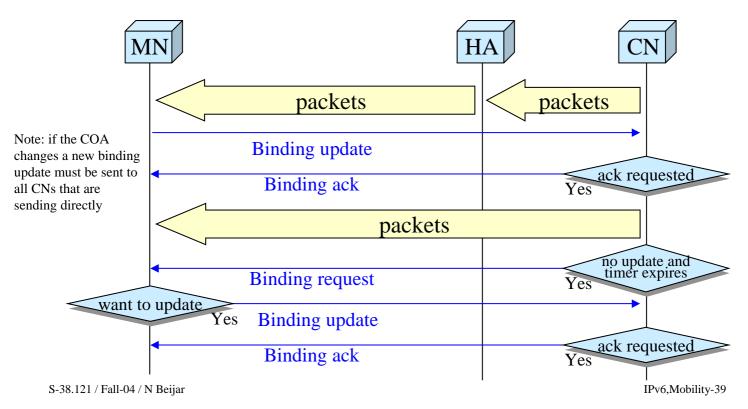

Binding updates (1)

- Binding performed using destination options
 - Binding update informs about the new COA
 - Binding ack acknowledges the COA
 - Binding request To request information about the current COA
 - Home address Identifies the home address of the MN
- Authentication with the security option

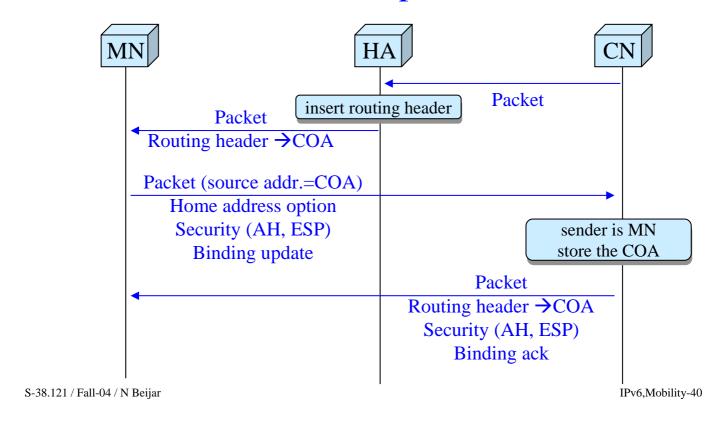
S-38.121 / Fall-04 / N Beijar IPv6,Mobility-36

Binding updates (2)

- COA transmitted in source address of IPv6 header
- Home address in the Home Address option



Source address filtering is not a problem in IPv6


- The mobile node does not put its home address in the IPv6 header. Instead, the home address is sent in the Home Address option. The IPv6 header contains the COA.
- Mandatory requirement.

S-38.121 / Fall-04 / N Beijar IPv6,Mobility-38

The MN can send a binding update to the CN to optimize the route

IPv6 uses the routing header instead of encapsulation

