
S-38.121 / S-03 / RKa, NB RIP-1

Distance vector protocols

Distance Vector Routing Principles

Routing loops and countermeasures to loops

Bellman-Ford route calculations

RIP

S-38.121 / S-03 / RKa, NB RIP-2

Distance Vector Routing Principles

S-38.121 / S-03 / RKa, NB RIP-3

RIP – Routing Information Protocol

is a basic protocol for interior routing

• RIP is a distance vector protocol

– Based on the Bellman-Ford algorithm

• The routing table contains information about other
known nodes

– distance (cost) in hops

– link (interface) identifier

• The nodes periodically send distance vectors based on
the routing tables on all their links

• The nodes update their routing table with received
distance vectors

E to Link Distance

E - 0

B

A

4

4

1

2

D 6 1

C 5 1

S-38.121 / S-03 / RKa, NB RIP-4

Let us study the principles of DV protocols

Example network with nodes A, B, C, D, E

and links 1, 2, 3, 4, 5, 6.

Initial state: Nodes know their own addresses

and interfaces, nothing more.

Node A creates its routing table:

The corresponding distance vector (DV) is: A=0

A C

ED

B
1 2

3 4 5

6

From A to node Link Distance

A local 0

S-38.121 / S-03 / RKa, NB RIP-5

Let’s look at reception in Node B. First the table of B is:

1. B receives the distance vector A=0

2. B increments the DV with +1⇒ A=1

3. B looks for the result in its routing table, no match

4. B adds the result to its RT, the result is

5. B generates its distance vector B=0, A=1

Generation of routing tables starts when all

routers send their DVs on all interfaces

From node B to Link Distance

B local 0

A C

ED

B
1 2

3 4 5

6

A=0

From node B to Link Distance

B

A

local

1

0

1

A
=
0

S-38.121 / S-03 / RKa, NB RIP-6

B creates its own DV and

sends it to all neighbors

A C

ED

B1 2

3 4 5

6

B=0, A=1

A=2 > A=0

A to Link Distance

A

B

-

1

0

1

C to Link Distance

C

B

A

-

2

2

0

1

2

E to Link Distance

E - 0

B

A

4

4

1

2

S-38.121 / S-03 / RKa, NB RIP-7

D sends its distance vector to all neighbors

A C

ED

B1 2

3 4 5

6

D=0, A=1

A to Link Distance

A

B

D

-

1

3

0

1

1
E to Link Distance

E - 0

B

A

4

4

1

2

D 6 1

A=2 == A=2 ⇒ no change

C to Link Distance

C

B

A

-

2

2

0

1

2

S-38.121 / S-03 / RKa, NB RIP-8

The nodes whose RT changed create DVs and

send them to neighbors

A C

ED

B
1 2

3 4 5

6

A C

ED

B
1 2

3 4 5

6

A C

ED

B
1 2

3 4 5

6

A=0, B=1, D=1

B to Link Distance

B

A

-

1

0

1

D

C

E

1

2

4

2

1

1

C=0, B=1, A=2

E=0, B=1, A=2, D=1

D to Link Distance

D

A

-

3

0

1

B

E

3

6

2

1

E to Link Distance

E - 0

B

A

4

4

1

2

D 6 1

C 5 1

S-38.121 / S-03 / RKa, NB RIP-9

Again the changes are sent ...

A C

ED

B
1 2

3 4 5

6

A C

ED

B
1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

B=0, A=1, D=2, C=1, E=1

A to Link Distance

A

B

D

-

1

3

0

1

1

C

E

1

1

2

2

C to Link Distance

C

B

A

-

2

2

0

1

2

E

D

5

5

1

2

D=0,A=1,B=2,E=1

E=0,B=1,A=2, D=1,C=1

D to Link Distance

D

A

-

3

0

1

B

E

3

6

2

1

C 6 2

A, D, and C create new

DVs, send them, but

they have no impact.

S-38.121 / S-03 / RKa, NB RIP-10

Processing of Received Distance Vectors

D = destination, d = distance + 1

L = link of reception

D = destination, d = distance + 1

L = link of reception

D ⊂ RTD ⊂ RT

Legend:

RT Routing Table

RT(dest) RT-entry

RT(Dest, x) Field x of the entry

Legend:

RT Routing Table

RT(dest) RT-entry

RT(Dest, x) Field x of the entry

Add (D,L,d) to RT Add (D,L,d) to RT
L=RT(D,l)L=RT(D,l)

No

Yes

Accept d as RT(D,d)Accept d as RT(D,d)

Yes

Update (D,L,d) to RT(D,l,d)Update (D,L,d) to RT(D,l,d)

Yes

No

d < RT(D,d)d < RT(D,d)

Note: this is simplified, shows only the principle!

S-38.121 / S-03 / RKa, NB RIP-11

A link breaks...

S-38.121 / S-03 / RKa, NB RIP-12

A round of updates starts on link failure

1 2

A to Link Distance

A - 0

B 1 inf.

D 3 1

C

E

1

1

inf.

inf.

A=0,B=inf,D=1,C=inf,E=inf

B to Link Distance

B - 0

A

D

1

1

inf.

inf.

C

E

2

4

1

1

B=0,A=inf,D=inf,C=1,E=1

A C

ED

B

3 4 5

6

A gives an infinite

distance to the nodes

reached through link 1

S-38.121 / S-03 / RKa, NB RIP-13

D, E and C update their routing tables

A C

ED

B
1 2

3 4 5

6

A=0,B=inf,D=1,C=inf,E=inf

A=1,B=inf,D=2,C=inf,E=inf

D to Link Distance

D

A

-

3

0

1

B 3 inf

E

C

6

6

1

2

B=0,A=inf,D=inf,C=1,E=1

C to Link Distance

C

B

-

2

0

1

A 2 inf

E

D

5

5

1

2

E to Link Distance

E

B

-

4

0

1

A 4 inf

D 6 1

C 5 1

+1

S-38.121 / S-03 / RKa, NB RIP-14

D, C, E generate their distance vectors...

A C

ED

B
1 2

3 4 5

6D=0,A=1,B=inf,E=1,C=2

A to Link Distance

A - 0

B 1 inf.

D 3 1

C

E

3

3

3

2. C=0,B=1,A=inf,E=1,D=2

B to Link Distance

B

A

-

1

0

inf

D 4 2

C

E

2

4

1

1

E=0,B=1,A=inf,D=1,C=1

D to Link Distance

D

A

-

3

0

1

B 6 2

E

C

6

6

1

2

E to Link Distance

E

B

-

4

0

1

A 6 2

D 6 1

C 5 1

S-38.121 / S-03 / RKa, NB RIP-15

A, B, D, E generate their distance vectors

A C

ED

B
1 2

3 4 5

6

A=0,B=inf,D=1,C=3,E=2

B=0,A=inf,D=2,C=1,E=1

D=0,A=1,B=2,E=1,C=2

A to Link Distance

A - 0

B 3 3

D 3 1

C

E

3

3

3

2.

E=0,B=1,A=2,D=1,C=1

B to Link Distance

B - 0

A 4 3

D

C

E

4

2

4

2

1

1

C to Link Distance

C

B

-

2

0

1

A 5 3

E

D

5

5

1

2

The result is that all nodes are able to communicate with all other nodes again.

S-38.121 / S-03 / RKa, NB RIP-16

Routing loops

S-38.121 / S-03 / RKa, NB RIP-17

The DV-protocol may create a transient

routing loop

A C

ED

B
1 2

3 4 5

6

Let’s assume that cost of link 5 is 8.

A stable initial state for routes to C

would be:

x to

C

Link

from x

Distance

A->C

B->C

1

2

2

1

C->C - 0

D->C

E->C

3

4

3

2Let’s just look at the first

link of each route.

S-38.121 / S-03 / RKa, NB RIP-18

Link 2 fails

A C

ED

B1 2

3 4 5

6

x to

C

Link

from x

Distance

A->C

B->C

1

2

2

inf

C->C - 0

D->C

E->C

3

4

3

2
A=0,B=1,D=1,C=2,E=2

DV f
rom A to

 B ar
rives

 first Intermediate

state

All packets to C are sent to B.

B sends them to A. A sends them

back to B… until TTL=0.

(Bouncing effect)

B=0,A=1,D=2,C=3,E=1

x to

C

Link

from x

Distance

A->C

B->C

1

1

4

3

C->C - 0

D->C

E->C

3

4

3

4

S-38.121 / S-03 / RKa, NB RIP-19

A and E send their distance vectors

A C

ED

B1 2

3 4 5

6

A=0,B=1,D=1,C=4,E=2

x to

C

Link

rom x

Distance

A->C

B->C

1

1

4

5

C->C - 0

D->C

E->C

3

4

5

4

1

2

B generates a new DV:

B=0,A=1,D=2,C=5,E=1

⇒ Distance seen by A to C grows to 6

Distance vectors sent by C do not

change anything because of high link cost

S-38.121 / S-03 / RKa, NB RIP-20

A sends a new distance vector

A C

ED

B1 2

3 4 5

6

A=0,B=1,D=1,C=6,E=2

x to

C

Link

from x

Distance

A->C

B->C

1

1

6

7

C->C - 0

D->C

E->C

3

4

7

6
2

1

B generates a new DV

B=0,A=1,D=2,C=7,E=1

⇒ Distance seen by A to C grows to 8

S-38.121 / S-03 / RKa, NB RIP-21

A sends a new distance vector

A C

ED

B1 2

3 4 5

6

A=0,B=1,D=1,C=8,E=2

A->C

B->C

1

1

8

9

C->C - 0

D->C

E->C

3

4

9

8
2

1

B generates a new DV

B=0,A=1,D=2,C=9,E=1

⇒ Distance seen by A to C grows to 10

x to

C

Link

from x

Distance

S-38.121 / S-03 / RKa, NB RIP-22

A sends a new distance vector

A C

ED

B1 2

3 4 5

6

A=0,B=1,D=1,C=10,E=2

A->C

B->C

1

1

10

11

C->C - 0

D->C

E->C

3

5

11

8
2

1

B generates a new DV

B=0,A=1,D=2,C=11,E=1

E generates a new DV

E=0,B=1,A=2,D=1,C=8

x to

C

Link

from x

Distance

S-38.121 / S-03 / RKa, NB RIP-23

E sends a new distance vector

A C

ED

B1 2

3 4 5

6

E=0,B=1,A=2,D=1,C=8

A->C

B->C

1

4

10

9

C->C - 0

D->C

E->C

6

5

9

8

x to

C

Link

from x

Distance

S-38.121 / S-03 / RKa, NB RIP-24

B send its DV but the tables are already OK

A C

ED

B1 2

3 4 5

6

B=0,A=1,D=2,C=9,E=1

A->C

B->C

1

4

10

9

C->C - 0

D->C

E->C

6

5

9

8
• Each update round improved the costs by 2

• The process progresses in a random order, because it is

genuinely parallel in nature.

• During the process, the state of the network is bad. DV-

packets may be lost due to the overload created by bouncing

user messages

x to

C

Link

from x

Distance

S-38.121 / S-03 / RKa, NB RIP-25

Counting to infinity occurs when failures

break the network to isolated islands (1)

• Linkki 1 is broken,

and the network has

recovered.

• All link costs = 1

A C

ED

B
1 2

3 4 5

6

D to Link Distance

D

A

-

3

0

1

B 6 2

E

C

6

6

1

2

A to Link Distance

D

A

3

-

1

0

B 3 3

E

C

3

3

2

3

S-38.121 / S-03 / RKa, NB RIP-26

Counting to infinity occurs when failures

break the network to isolated islands (2)

• Also link 6 breaks.

• D has not yet sent

its distance vector.
A C

ED

B
1 2

3 4 5

6

D to Link Distance

D

A

-

3

0

1

B 6 inf

E

C

6

6

inf

inf

A to Link Distance

D

A

3

-

1

0

B 3 3

E

C

3

3

2

3

S-38.121 / S-03 / RKa, NB RIP-27

Counting to infinity occurs when failures

break the network to isolated islands (3)

• A sends its distance

vector first.

A=0,B=3,D=1,C=3,E=2

• D adds the

information sent by

A into its routing

table.

A C

ED

B
1 2

3 4 5

6

D to Link Distance

D

A

-

3

0

1

B 3 4

E

C

3

3

3

4

A to Link Distance

D

A

3

-

1

0

B 3 3

E

C

3

3

2

3

S-38.121 / S-03 / RKa, NB RIP-28

Counting to infinity occurs when failures

break the network to isolated islands (4)

• The result is a loop.

Costs are

incremented by 2

on each round.

• An agreement is

needed: Cost

greater than any

route cost is = inf.

A C

ED

B
1 2

3 4 5

6

D to Link Distance

D

A

-

3

0

1

B 3 4

E

C

3

3

3

4

A to Link Distance

D

A

3

-

1

0

B 3 5

E

C

3

3

4

5

S-38.121 / S-03 / RKa, NB RIP-29

The first method to avoid loops is to

send less information

The split horizon rule:

If node A sends to node X through node B, it does not make sense

for B to try to reach X through A

⇒ A should not advertise to B its short distance to X

Implementation choices:

1. Split horizon
• A does not advertise its distance to X towards B at all

⇒ the loop of previous example can not occur

2. Split horizon with poisonous reverse
• A advertises to B: X=inf.

⇒ Ftwo node loops are killed immediately

S-38.121 / S-03 / RKa, NB RIP-30

Three node loops are still possible (1)

• Linkki 1 is broken,

and the network has

recovered.

• All link costs = 1

A C

ED

B
1 2

3 4 5

6

x to

D

Link

from x

Distance

B→D 4 2

C→D 5 2

E→D 6 1

S-38.121 / S-03 / RKa, NB RIP-31

Three node loops are still possible (2)

• Also link 6 fails.

• E sends its distance

vector to B and C

E=0,B=1,A=inf,D=inf,C=1

A C

ED

B
1 2

3 4 5

6

x to

D

Link Distance

B→D 4 2

C→D 5 2

E→D 6 inf

E=0,B=1,A=inf,D=inf,C=1

S-38.121 / S-03 / RKa, NB RIP-32

Three node loops are still possible (3)

• Also link 6 fails.

• E sends its distance

vector to B and C

E=0,B=1,A=inf,D=inf,C=1

• ... But the DV sent to C

is lost

C

E

B
1 2

4 5

6

x to

D

Link

from x

Distance

B→D 4 inf

C→D 5 2

E→D 6 inf

E=0,B=1,A=inf,D=inf,C=1

X

A

D

3

S-38.121 / S-03 / RKa, NB RIP-33

Three node loops are still possible (4)

• Now C sends its

poisoned DV
C

E

B
1 2

4 5

6

B to Link Distance

B - 0

A

D

2

2

4

3

C

E

2

4

1

1

E to Link Distance

B 4 1

A

D

6

6

inf

inf

C

E

5

-

1

0

C=0,B=inf,A=3,E=1,D=2

C=0,B=1,A=inf,E=inf,D=inf

A

D

3

S-38.121 / S-03 / RKa, NB RIP-34

Three node loops are still possible (5)

• B generates its poisoned
distance vectors

• The three node loop is
ready

• Routes to D do not
change except that the
costs keep growing,
nodes count to
infinity.This finally
breaks the loop: on link
5 cost=4 is advertised.
C’s knowledge about
the distance to D
grows ...

C

E

B
1 2

3 4 5

6

x to

D

Link

from x

Distance

B→D 2 3

C→D 5 2

E→D 4 4

B=0,A=inf,D=inf,C=inf,E=1

A

D

3
B=0,A=4,D=3,C=1,E=inf

S-38.121 / S-03 / RKa, NB RIP-35

When should a DV-protocol advertise

Time of advertisement is a compromise:

• immediate delivery of change info

recovery from packet loss

need to monitor the neighbors

sending all changes at the same time

traffic load created by the protocol

+ = Faster

- = Slower

+

+

-

-

+

-

+

S-38.121 / S-03 / RKa, NB RIP-36

The second method to avoid loops is

to use triggered updates

• Entries in the routing tables have refresh and

obsolescence timeouts.

• RIP advertises when the refresh timer expires and when a

change occurs in an entry (=triggered update).

• Triggered updates reduce the probability of loops

• Loops are still possible, e.g. because of packet loss

• Triggered updates speed up counting to infinity

S-38.121 / S-03 / RKa, NB RIP-37

The Bellman-Ford algorithm

S-38.121 / S-03 / RKa, NB RIP-38

Bellman-Ford algorithm (1)

• DV-protocols are based on the Bellman-Ford algorithm

• Centralized version:
1. Let N be the number of nodes and M the number of links.

2. L is the link table with M rows, L[l].m - link cost

L[l].s - link source

L[l].d - link destination

3. D is N × N matrix, such that D[i,j] is the distance from i to j

4. H on N × N matrix, such that H[i,j] is the link i uses to send to j

D 1 .. i .. N
1
:

j
distance
from i
to j

:
N

Both directions are presented

separately in the Link table!

A column ≡ DV of the

corresponding node

S-38.121 / S-03 / RKa, NB RIP-39

• Initialized distance and link matrices

NB: Link vector has both directions of a link separately.

First in D-matrix appear one hop link distances, second two hop link distances etc.

D 1 N

1 0 ∞ ∞ ∞ ∞

: ∞ 0 ∞ ∞ ∞

∞ ∞ 0 ∞ ∞

: ∞ ∞ ∞ 0 ∞

N ∞ ∞ ∞ ∞ 0

H 1 N

1 -1 -1 -1 -1 -1

: -1 -1 -1 -1 -1

-1 -1 -1 -1 -1

: -1 -1 -1 -1 -1

N -1 -1 -1 -1 -1

Link matrix HDistance matrix D

Bellman-Ford algorithm (2)

i
i

jj

S-38.121 / S-03 / RKa, NB RIP-40

Bellman-Ford algorithm (3)

1. Initialization: If i=j, then D[i,j] = 0, else D[i,j] = inf.

Initialize ∀ H[i,j] = -1.

2. ∀ l and ∀ destinations k set i = L[l].s, j = L[l].d and
calculate d = L[l].m + D[j,k]

3. If d < D[i,k], set D[i,k] = d; H[i,k] = l.

4. If at least one D[i,k] changed, go to step 2, else stop.

(previous slide)

S-38.121 / S-03 / RKa, NB RIP-41

Bellman-Ford algorithm (4)

• Number of steps ≤ N

• Complexity O(M·N2)

S-38.121 / S-03 / RKa, NB RIP-42

RIP protocol

S-38.121 / S-03 / RKa, NB RIP-43

RIP-protocol properties (1)

• Simple protocol. Used before standardization.

• RIP version 1

– RFC 1058 in 1988

• RIP is used inside an autonomous system

• RIP works both on shared media (Ethernet) and in point-

to-point networks.

• RIP runs on top of UDP and IP.

S-38.121 / S-03 / RKa, NB RIP-44

RIP-protocol properties (2)

• An entry in the routing table represents a host, a network

or a sub-net

– <netid,subnetid,host> represents a host (used only in exceptional cases)

– <netid,subnetid,0> represents a sub-net

– <netid,0,0> represents a network

– <0.0.0.0> represents a route out from the autonomous system

• The mask must be manually configured.

• Information sent to the neighboring subnet is aggregated.

S-38.121 / S-03 / RKa, NB RIP-45

RIP-protocol properties (3)

• Distance = hop count = number of links on a path (route).

– No other metrics

• Distance 16 = infinite.

• RIP advertises once in 30s.

– If an entry is 180s old ⇒ distance is set to inf

– Advertisements must be randomized to avoid bursts of RIP

updates. 1-5 s.

• RIP also sends 1-5 s after an update (triggered updates).

• RIP uses poisoned vectors.

S-38.121 / S-03 / RKa, NB RIP-46

RIP message format

16 bits

32 bits

Must be zero

IP address

Version

8 bits8 bits

Command Must be zero

Address family identifier Must be zero

Must be zero

Metric

Command: 1 = Request , 2 = Reply

Version = 1

Metric: 0 … 16

IP=2

S-38.121 / S-03 / RKa, NB RIP-47

RIP routing table

A routing table entry contains

• Destination IP address

• Distance to destination

• Next hop IP address

• “Recently updated” flag

• Several timers (refresh, obsolescence...)

S-38.121 / S-03 / RKa, NB RIP-48

Processing of Received Distance Vectors

D = Destination, d = distance + 1

L = link of reception

D = Destination, d = distance + 1

L = link of reception

D ⊂ RTD ⊂ RT

Legend:

RT Routing Table

RT(dest) RT-entry

RT(Dest, x) Field x of the entry

Legend:

RT Routing Table

RT(dest) RT-entry

RT(Dest, x) Field x of the entry

Add (D,L,d) to RT Add (D,L,d) to RT
L=RT(D,l)L=RT(D,l)

No

Yes

Accept d as RT(D,d)Accept d as RT(D,d)

Yes

Update (D,L,d) to RT(D,l,d)Update (D,L,d) to RT(D,l,d)

Yes

No

d< RT(D,d)d< RT(D,d)

Note: this is simplified, shows only the principle!

S-38.121 / S-03 / RKa, NB RIP-49

RIP response messages

• Distance vectors are sent in reply messages

• 30 seconds period

– All routing table entries

– Different DV on different links because of poisoned vectors

– More than 25 entries ⇒ several messages

• Triggered updates after changes

– Contains changed entries

– 1-5 seconds delay, so that the message contains all updates that
are related to the same change

• Destinations with infinite distance can be omitted if the
next hop is same as before.

S-38.121 / S-03 / RKa, NB RIP-50

RIP request messages

• The router can request routing tables from its neighbors

at startup

– Complete list

– Response similar to normal update (+ poisoned vectors)

• Partial routing table

– For debugging

– No poisoned vectors

S-38.121 / S-03 / RKa, NB RIP-51

Silent nodes

• When only RIP was used, hosts could listen to routing

traffic and maintain their own routing tables

– Which router is closest to the destination?

– Which link, if several available?

• These where ”silent nodes”, that only listened to routing

traffic without sending

• Nowadays there are too many routing protocols

– RIP-2, OSPF, IGRP, ...

Histor
ical

S-38.121 / S-03 / RKa, NB RIP-52

RIP version 2

• RFC-1388 (1387,1389)

• Why?

– Simple and lightweight alternative to OSPF and IS-IS

• RIP-2 is a partially interoperable update with v1

– RIP-1 router understand some of what a RIP-2 router is saying.

• Improvements

– Authentication

– Support for CIDR

– Next hop –field

– Subnet mask

– External routes

– Updates with multicast

S-38.121 / S-03 / RKa, NB RIP-53

RIP version 2 - messages

Subnet mask

IP address

VersionCommand Routing domain

Address family identifier Route tag

Next hop

Metric

Authentication

Many ASs on a single “wire”

External routes are tagged

CIDR

16 bits8 bits8 bits

S-38.121 / S-03 / RKa, NB RIP-54

Routing from one sub-net to another

• In RIP-1 the sub-net mask is not known outside the sub-net, only

netid is sent in an advertisement out from a sub-net

⇒ A host and a sub-net can not be distinguished

⇒ All sub-nets must be interconnected with all other sub-nets and exterior

traffic is received in the nearest router independent of the final destination

inside our AS

• RIP-2 corrects the situation by advertising both the sub-net and the

sub-net mask

– Masks of different length within a network

– CIDR

– RIP-1 does not understand

S-38.121 / S-03 / RKa, NB RIP-55

Routing domain and next hop

A CB

FED

AS X AS Y

Router with 2

Routing Tables X and Y.

Next hop ⇒ D advertises in X: the distance to F is

f and the next hop is E!

S-38.121 / S-03 / RKa, NB RIP-56

Multicast support

• RIP-1 broadcasts advertisements to all addresses on the

wire

– Hosts must examine all broadcast packets

• RIP-2 uses a multicast address for advertisements

– 244.0.0.9

– No real multicast support needed, since packets are only sent on

the local network

• Compatibility problems between RIP-1 and RIP-2

S-38.121 / S-03 / RKa, NB RIP-57

Observations about RIP

• Routers have a spontaneous tendency to synchronize their send

times. This increases the probability of losses in the net. Therefore,

send instants are randomized between 15s ... 45s.

– Reason: send interval = constant + time of message packing + processing

time of messages that are in the queue.

• When RIP is used on ISDN links a new call is established per 30s

⇒ Expensive.

• Slow network ⇒ queue length are restricted. RIP sends its DVs

25 entries/message in a row ⇒ RIP messages may be lost.

• A correction proposal: ack all DVs: no periodic updates

⇒ If there are no RIP message: assume that neighbor is alive and reachable

⇒ Info on all alternative routes is stored.

