Introduction to routing in the Internet

IPv4, ICMP, ARP addressing, routing principles

(Chapters 2–3 in Huitema)

S-38.121 / S-03 / RKa, NB Internet-1

Levels of analysis – we deal with principles, protocols and specifications

Products Markets

Specifications, RFCs, draft specs

Protocols

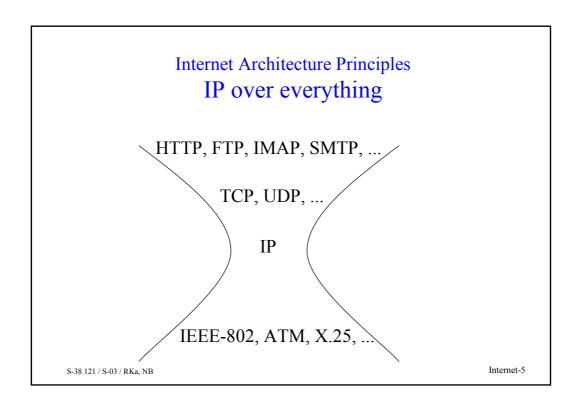
Principles, Requirements

Internet Architecture Principles End-to-end principle

• All control in end stations

by Dave Clark

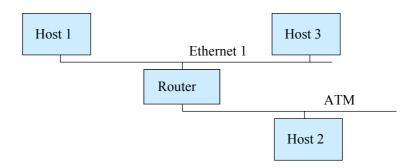
- e.g. error and flow control
- The network can not be trusted
- User must in any case check for errors
 - → network control redundant
- · Error checking and flow control by TCP
- No state information/connection in the network
 - packets routed independently
 - if a link fails, another route is used
- Same principle as in distributed systems


S-38.121 / S-03 / RKa, NB Internet-3

Internet Architecture Principles IP over everything

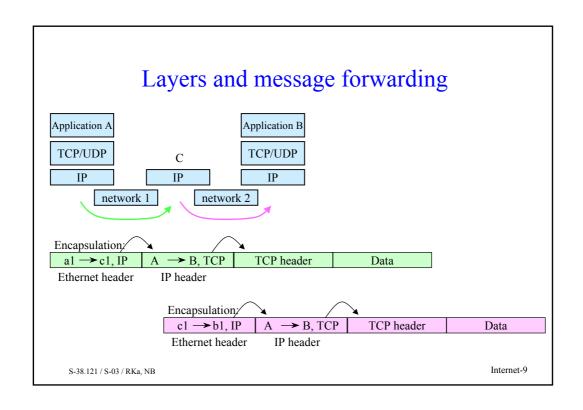
- Interconnection based on IP overlay over all kinds of networks:
 - framing or encapsulation

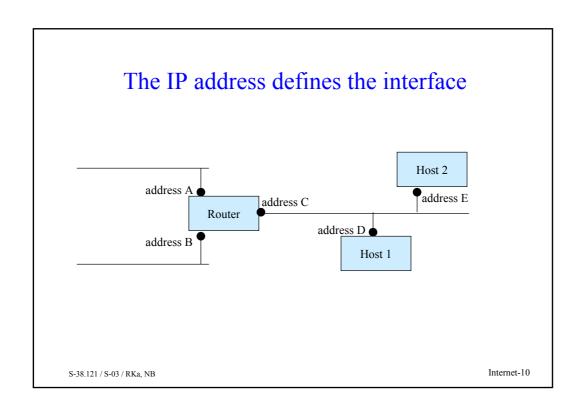
by Vinston Cerf


- address resolution
 - · IP-address to network address for each transport technology
- unique IP-address
- simple to adapt to new technologies
- Interconnection based on translation:
 - e.g. signaling interworking imperfect mapping
 - IPv4 to IPv6 mapping!

Internet Architecture Principles Connectivity is its own reward

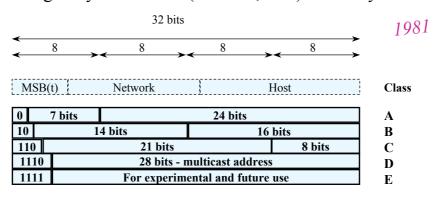
- The value of a network increases in proportion to the square of the number of nodes on the network (Robert Metcalf's law)
- Be liberal with what you receive, conservative with what you send
 - try to make your best to understand what you receive
 - maximum adherance to standard when sending
- Snowballing effect keeps all interested in connectivity thus keeps adhering to standards


By connecting Ethernet segments with routers the traffic of the segments can be separated



Host 2 does not receive packets sent by Host 1 to other hosts on Ethernet 1

S-38.121 / S-03 / RKa, NB Internet-7


Internet layer model - hosts and routers Host 1 Host 2 Router Application Application TCP/ TCP/ **UDP UDP** IP IP IP Network 1 Network 2 Internet-8 S-38.121 / S-03 / RKa, NB

IPv4 address formats

• Originally a two-level (network, host) hierarchy

S-38.121 / S-03 / RKa, NB Internet-11

IPv4 address formats

1984

• A new level for easier network administration

Network	Subnet	Host

• Examples:

Mask	IP address	Network	Subnet	Host
0xFFFF0000	10.27.32.100	A: 10	27	32.100
0xFFFFFE00	136.27.33.100	B: 136.27	16 (32)	1.100
	136.27.34.141	136.27	17 (34)	0.141
0xFFFFFFC0	193.27.32.197	C: 193.27.32	3 (192)	5
	/ *		<u> </u>	

High order bits:

 $0 \dots 0 - 127. \rightarrow A-class$

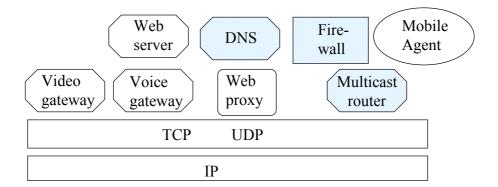
10.... 128. - 191. → B-class

110...192. - 223. → C-class

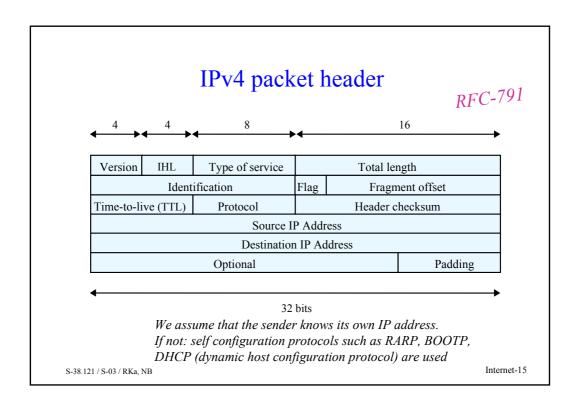
Without right zeroes (and with right zeroes)

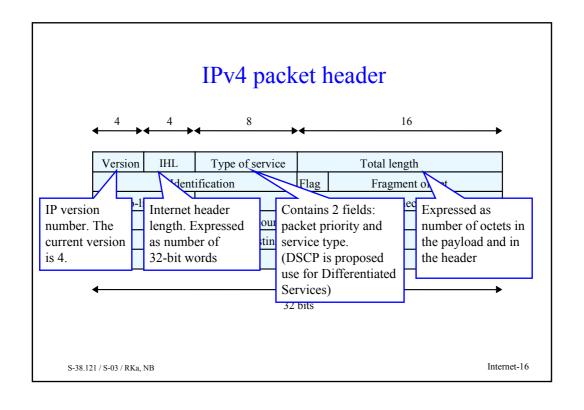
Later updated by CIDR (discussed later)

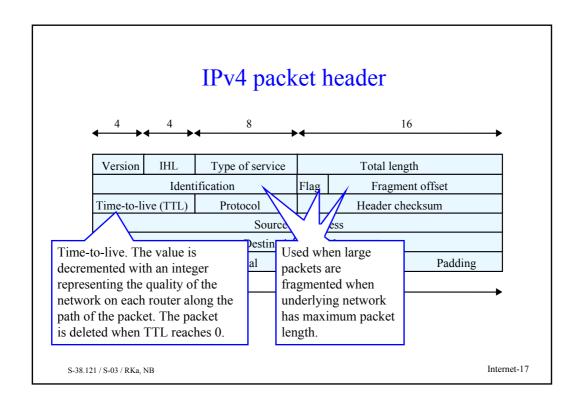
S-38.121 / S-03 / RKa, NB

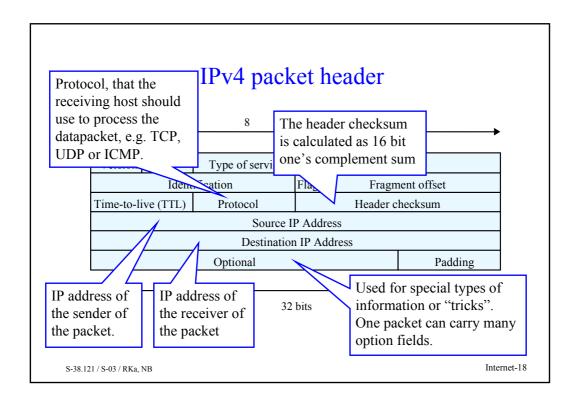

Internet-12

Special addresses


- An unknown network is replaced by 0
 - Only used as source address (e.g. a booting host)
 - -0.0.0.0 = "this host in this network"
 - 0.X.Y.Z = "host X.Y.Z in this network"
- Limited broadcast address 255.255.255.255
 - To all host in the local network
- Directed broadcast addresses A.255.255, B.B.255.255, C.C.C.255
 - To all hosts in a specified network
- Loopback-address 127.X.X.X (usually 127.0.0.1)
 - Internal in one host
- Multicast-addresses (e.g. 224.0.0.2 = all routers on this subnet)


S-38.121 / S-03 / RKa, NB Internet-13


Internet architecture includes a set of service level components on top of TCP/IP



In this course we may touch some of these but only in their relation to routing.

The most important fields in routing are the destination address and the time-to-live

Version	IHL	Type of service	Total length			
Identification		Flag	Fragment offset			
Time-to-li	ve (TTL)	Protocol	Header checksum			
Source IP Address						
Destination IP Address						
Options			Padding			

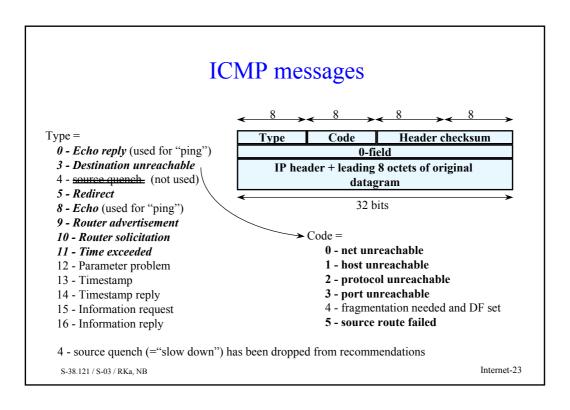
- TTL changes → calculate new checksum
- Options (e.g. source routing)
 - rarely used.

S-38.121 / S-03 / RKa, NB Internet-19

Type of service

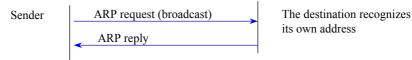
- Route selection criteria
 - D minimization of delay
 - T maximization of transmission capacity
 - R maximization of reliability
 - C minimization of cost
 - Only one can be selected.
- Precedence
 - The largest precedence packet is first taken from the queue to be routed.
- In practise, these are not used
- DiffServ uses the field in another way

Source routing



- Implemented with the "source routing" option
 - Loose source routing (type 131)
 - The packet is sent to the next address in the list using normal routing.
 - Strict source routing (type 137)
 - The packet is sent to the next address in the list. If there is no direct link to the address, the packet is destroyed.
- Rarely used
 - Can be replaced by encapsulation

S-38.121 / S-03 / RKa, NB Internet-21


ICMP - Internet Control Message Protocol

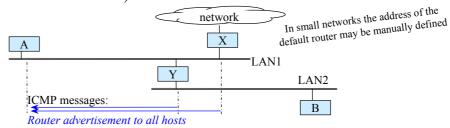
- Gives feedback about the network operation.
- All hosts and routers must support ICMP.
- ICMP messages are transported in IP packets
- ICMP packet is sent backwards if e.g.
 - The receiver is unreachable
 - The router deletes a packet
 - -TTL = 0.
- If ICMP message is deleted, a new one is not generated
 - to avoid the "snowballing effect".

Packet sending – how to determine the next hop

- The sender checks if the destination address in the same subnetwork by comparing the masked values of the source and destination address.
 - If same, the destination is in the same subnet (next hop=destination).
 - Otherwise, the packet must be sent to a router (next hop=router).
- It then obtains the media address (MAC-address) of the destination (or router) using the ARP-protocol.

- The media address is stored in the cache.
 - Note: All hosts in the same subnet stores the address in their cache.

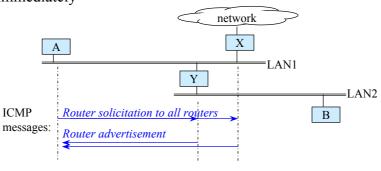
ARP - Address Resolution Protocol


RFC-826

- ARP maps IP to the underlying protocol
- IP-address → MAC-address
- Each network technology requires its own ARP adaptation.
 - Easy if the network supports broadcast or multicast.
 - Ehternet, Token Ring, FDDI
 - ATM requires a special ARP-server
 - Manually defined address for point-to-point links
 - X.25, ISDN, Frame-Relay
- Works on top of Ethernet (not on top of IP)

S-38.121 / S-03 / RKa, NB Internet-25

Router discovery


• The routers send *router advertisements* to all hosts periodically (e.g. in 7 minute intervals)

- · The advertisement contains
 - a list of the router's addresses.
 - the preference of the addresses, which are used to identify the normal, reserve, etc. router or router address (the preference of the default router is highest)
 - lifetime of the information (e.g. 30 min)

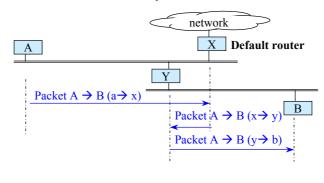
Router discovery

- The host would have to wait max. 7 minutes before it can send packets outside its sub-network.
- Using a *router solicitation*, the host gets the advertisement immediately

Router discovery

- The host discards advertisements from routers outside its subnetwork and chooses the router with the highest priority as its default router.
- All packets for destinations outside the sub-network are sent to the default router.

S-38.121 / S-03 / RKa, NB


S-38.121 / S-03 / RKa, NB

Internet-28

Internet-27

A network may have many routers, the closest to the destination must be found

• A packet sent through the default router reaches the destination, but may waste resources

S-38.121 / S-03 / RKa, NB Internet-29

A network may have many routers, the closest to the destination must be found

network • The router can send a redirect to X Default router indicate a shorter route to the Packet A → B destination ICMP redirect Type 5 – redirect Type 0 - redirect for the network IP address --> router=Y 1 – redirect for the host Internet header + 64 bits of the original 2 – redir. for type of service and network datagram 4 – redir. for type of service and host

Redirect is a slow mechanism. Hot-standby addressing is an improvement

- Virtual router redundancy protocol (RFC 2338 4/98)
 - a router may have a virtual IP address
 - a router can take the IP and MAC addresses of a failed router (in the same segment)
 - After recovery routers negotiate about address assignments
 - Clients are configured with a static (virtual) router address
 - Cisco and DEC have equivalent proprietary protocols
- · Host can listen to RIP or OSPF
 - not recommended but used sometimes anyway

S-38.121 / S-03 / RKa, NB Internet-31

Host must have feedback from the first router to avoid sending to a "black hole"

Feedback may be

- TCP acknowledgements
- Router advertisements
- ARP-replies
- ICMP echo reply (ping)

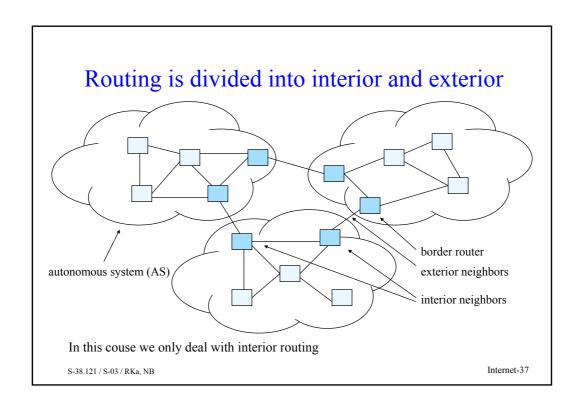
Between routers, routing protocols provide similar feedback and help in detecting failed router neighbors.

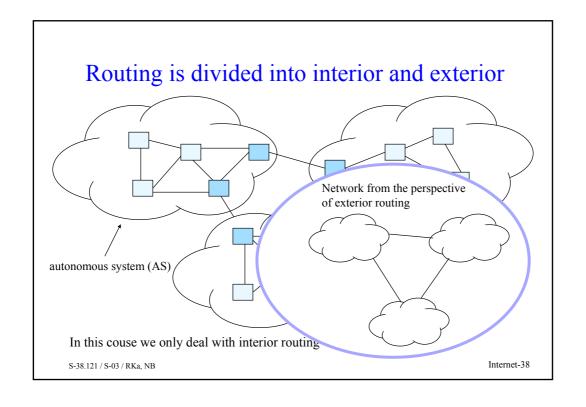
DNS - Domain Name Service

- Why DNS?
 - Easier to remember names than addresses
 - The address may change, the name is the same
 - Several addresses per host
- Name → address
- DNS does not affect routing

S-38.121 / S-03 / RKa, NB Internet-33

Routing in the Internet


Routing can be static or dynamic


- Static routing is based on manually configured routing tables.
 - Static routing is used when e.g. two peer providers do not trust each other or
 - To connect an organization to a Service Provider with a single connection
 - Static routing is difficult to maintain
- Dynamic routing is based on *routing protocols* which create and maintain the routing tables automatically
 - examples of routing protocols are RIP, OSPF, BGP...
 - E.g. to connect an organization with multiple links to the Internet

S-38.121 / S-03 / RKa, NB Internet-35

Internet routing is based on routing protocols, which collect information

- No off-line route planning
- Routing is completely automatic
- Only dimensioning is made off-line
- The routers communicate with a routing protocol
- The routing algorithm finds the shortest (cheapest) route to every destination

Routing is divided into interior and exterior

- Autonomous system, AS
 - Networks operated by a single organization and having a common routing strategy
- Border router
 - At least one neighbor belongs to another autonomous system

S-38.121 / S-03 / RKa, NB

Internet-39

Routing is divided into interior and exterior

- Interior routing protocols
 - Routing Information Protocol (RIP), RIP-2
 - Open Shortest Path First (OSPF)
 - Interior Gateway Routing Protocol (IGRP), EIGRP
 - Intermediate System-to-Intermediate System (IS-IS)
- Exterior routing protocols
 - External Gateway Protocol (EGP)
 - Border Gateway Protocol version 4 (BGP-4)

S-38.121 / S-03 / RKa, NB

Internet-40

Routing algorithms

- Distance vector
 - Distance vectors are sent, until the state of the network is stable
 - The routers cooperate to generate the routes
 - Example: RIP
- · Link state
 - Topology descriptions are sent periodically and nodes generate a map over the network
 - Every router generates the routes independently of the other routers
 - Example: OSPF

S-38.121 / S-03 / RKa, NB Internet-41

Properties of the routing algorithms

Distance vector - Simple and lightweight - Slow convergence - Only one route per destination - Only one metric - Link state - Complex and heavy - Fast convergence - Several routes per destination - Supports different metrics