# 1 Packet forwarding efficiency and protocol overhead

This exercise examines the overhead caused by packet headers and you will also see how header compression helps to resolve the situation.

### 1.1 Prerequisites

Before you start solving the exercises, please study the following subjects:

- 1. The header lengths of RTP, UDP and TCP -protocols and the effect of compression to the aforementioned header lengths(RFC 2508, http://www.ietf.org/)
- 2. The encoding speeds of the following voice codecs: G.711 (PCM) ja G.723.1 (ACELP)
  - http://standard.pictel.com/reference/summary\_itu\_codecs.htm
  - http://keskus.hut.fi/opetus/s38117/k2000/Aiheet/Esitelmat/5-sanna\_lahde.pdf
- 3. OSI -reference model
  - http://www.ictp.trieste.it/~ radionet/1998\_school/networking\_presentation/OSI-layers.html
  - http://www.geocities.com/SiliconValley/Monitor/3131/ne/osimodel.html

In packet networks all of the data is forwarded within packets. A packet usually consists of a header and the actual data. It is possible to send just the headers and no data. If the packet lengths are short the header forms a significant proportion of the packet length. Therefore, the overhead/data -ratio is smaller and, in a way, reduces the goodput (the relay of user data) in the network. To avoid this effect the header can be reduced in size, or compressed.

#### 1.2 Packet overhead

• What is the true use of bandwidth (coded speech rate + headers) on an VoIP-connection if you use G.711- ja G.723.1 -coding (ACELP) and the

packet length is 20, 40 and 80 ms with and without header compression. Your answer should contain 18 values per each codec.

• Determine also how many %:s the header is from the total use of the bandwidth.

Return your answers in the answer sheet available from the course web-pages. Remember to include all the calculations you used.

## 1.3 OSI-reference model and a VoIP-call in the Internet

A corpoation uses a VoIP-system to connect its branches located around Finland. The CEO in Helsinki wants to confer with a sales manager in Oulu via VoIP-conversation. Fill the Figure 1 and explain what layers in the OSImodel are used in different network elements along the VoIP-conversation. Name also all the protocols you know (or suspect) that participate in forming the call and explain also how the protocols effect the call.



Figure 1: OSI-reference model in VoIP-conversation

# 2 Statistical multiplexing in packet networks

An ATM device has six subscribers attached to it. The subsribers offer independent of each other variable rate traffic containing a video broadcast. The subscribers come in two different forms (and there are three of each in the network,  $n_a = n_b = 3$ ).

- 1. Source A sends at basic rate,  $\lambda_{Abasic} = 15$  Mbit/s, and for 10% of the time the send rate is  $\lambda_{Amax} = 30$  Mbit/s
- 2. Source B sends at basic rate,  $\lambda_{Bbasic} = 15$  Mbit/s, and for 30% of the time the send rate is  $\lambda_{Bmax} = 20$  Mbit/s

The maximum combined send rate available on the link for all of the traffic is  $\lambda_{link} = 148.75$  Mbit/s

- What is the average load of the link?
- What is the probability of link overload?
- How large a percentage of the traffic offered to the link is lost?
- How much of the traffic is lost by A and how much by B? We may assume that the dropped packets are picked randomly out of the traffic flow.

Determine the previous values also when there are 24 subscribers ( $n_a = n_b = 12$ ) and the basic rate for A is 3.75 Mbit/s and the maximum for 10% of the time is 7,5 Mbit/s; for B the basic rate is 3.75 Mbit/s and for 30 % of the time B sends at its maximum rate of 5 Mbit/s.

Compare your results? What can you observe?