TCAP - Transaction Capabilities

Application Part is used by

- Mobile services (roaming and mobility management)
- Intelligent Network services
- Services that are independent of voice circuits (look-ahead …)
- O&M applications
- etc

TCAP provides generic services supporting the execution of distributed transactions.

Parties in the transactions can be exchanges, service nodes, data bases etc.

TCAP offers a way to implement services that are independent of network resources.

Summary of course scope

![Diagram showing various protocols and their interactions](image)

- H.323 or SIP
- ISDN
- CAS, R2
- IP
- PABX
- AN
- Control Part of an Exchange or Call Processing Server
- HLR/HSS
- MAP
- ISUP
- INAP
- CCS7
- Diameter
- Megaco/MGCP/
- Media Gateway or Switching Fabric
- SCP
- SIP or ISUP
- circuit packets

© Rka -S-2005

Signaling Protocols 8a - 1

© Rka -S-2005

Signaling Protocols 8a - 2
TCAP has two sub-layers

TCAP has two sub-layers:
- **Component sub-layer**: data units of the application protocol, requests and responses, dialogues: application context.
- **Transaction sub-layer**: message exchange between parties, optionally dialogues between parties.

TCAP has a lot of similarity with ROSE (Remote Operation Service Element) and ACSE (Association Control Service Element). ROSE ja ACSE are OSI layer 7 services.

A TCAP use case

TCAP A

```
BEGIN (OTID = x)
CONTINUE (OTID = y, DTID = x)
CONTINUE (OTID = y, DTID = x)
CONTINUE (OTID = y, DTID = x)
END (OTID = y)
```

Begin begins a dialogue.
During the dialogue Continue -messages are sent in both directions.
End-message closes the dialogue.
OTID -identifies the dialogue/ for the sender of the transaction.
DTID -identifies dialogue/ for the object of the transaction.

TCAP B
TCAP supports four operation types

- Class 1 - Both success and failure are reported
- Class 2 - Only failures are reported.
- Class 3 - Only success is reported.
- Class 4 - Nothing is reported

An operation is identified by the Invoke-Id - identifier.

Indication (ind) is associated with the request (req) based on the Invoke-id.

A user may have many ongoing active operations simultaneously.

TCAP is a purely end-to-end function. There may be many intermediate nodes in the CCS7 network that do not touch TCAP.

Operations are identified and chained using the Invoke-Id

- Operation is identified by the Invoke-Id.
- Indication (ind) is associated with the request (req) based on the Invoke-id.
- The Response can be a new operation request that is chained to the previous operation request using a link-identifier.
- A user may have many simultaneous operations.
The result of an operation sent to a remote system can be

- Result: Operation succeeded.
 - The result can also be segmented (chained)
- Error: Operation failed.
- Reject: Execution of the operation is not possible.
- Before sending the result, the remote system can send an arbitrary number of linked operations.

Non-structured dialogue transfers one or more components

- TC-user can send many components in Class 4 operations by a UNIDIRECTIONAL message.
- Components with the same dialogue-id can be sent in one message.
- Control over sequencing of operations is left to the application.

Components are delivered in the same order they were submitted!
A Structured dialogue has a beginning, information transfer, ending or abort

- Begin causes a transaction identifier to be reserved.
- The remote system can either continue the transaction or close it.
- Continue - messages are exchanged in a full-duplex mode.
- Closing options:
 - based on pre-arrangement independently
 - normally by the End-message or “abnormally” by an Abort message

The Component sub-layer is split into dialogue handling and component handling

Dialogue primitives:
- TC-Notice (ind)
- TC-UNI (ind, req)
- TC-Begin (ind, req)
- TC-Continue (ind, req)
- TC-End (ind, req)
- TC-U-Abort (ind, req)
- TC-P-Abort (ind)

Component primitives:
- TC-Invoke (ind, req)
- TC-Result-L (ind, req)
- TC-Result-NL (ind, req)
- TC-U-Abort (ind, req)
- TC-L-Cancel (ind)
- TC-U-Cancel (req)
- TC-R-Reject (ind)
- TC-L-Reject (ind)
- TC-U-Reject (ind, req)
Component handling primitives are

TC_INVOKE - Invocation of an operation which may be linked to another operation

TC_RESULT_L - Only result or last part of segmented result of a successful operation

TC_RESULT_NL - non-last part of segmented result

TC_U_ERROR - reply to a previously invoked op that failed

TC_L_CANCEL - informs user of local timeout

TC_U_CANCEL - Causes local termination of op on TC_user request

TC_L_REJECT - local reject by Component sub-layer to TC_user

TC_R_REJECT - remote reject by remote component sub-layer

TC_U_REJECT - Rejection by TC_user indicating malformation

Transaction sub-layer handles the interfacing to the network layer

TCAP can use all address mechanisms supported by SCCP.

To the peer entity

UNIDIRECTIONAL
BEGIN
CONTINUE
END
ABORT

<table>
<thead>
<tr>
<th>Transaction Coordinator</th>
<th>Transaction State-Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-UNI (ind, req)</td>
<td>N-UNIDATA (ind, req)</td>
</tr>
<tr>
<td>TR-Begin (ind, req)</td>
<td>N-Notice(ind)</td>
</tr>
<tr>
<td>TR-Continue (ind, req)</td>
<td></td>
</tr>
<tr>
<td>TR-End (ind, req)</td>
<td></td>
</tr>
<tr>
<td>TR-U-Abort (ind, req)</td>
<td></td>
</tr>
<tr>
<td>TR-P-Abort (ind)</td>
<td></td>
</tr>
<tr>
<td>TR-Notice (ind)</td>
<td></td>
</tr>
</tbody>
</table>

Network layer (SCCP)
State transition Diagram for Class 1 Operations

- **Idle**
 - TC_INVOKE-req
 - TC_INVoke-cancel-req
 - Operation pending

- **Operation pending**
 - TC_Begin-req
 - TC_Continue-req
 - TC_Reject-cancel-req

- **Reject pending**
 - TC_U_Reject-req
 - TC_R_Reject-ind
 - TC_U_Reject-cancel-req
 - TC_L_Reject-ind

- **Wait for reject**
 - TC_U_Error-ind
 - TC_Result_L-ind

- **Operation sent**
 - TC_Result-NL-ind

Most important users of TCAP are..

<table>
<thead>
<tr>
<th>7 Application services</th>
<th>INAP</th>
<th>CAP</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>BSSAP</td>
<td>ISUP</td>
<td>TUP</td>
</tr>
<tr>
<td>SCCP</td>
<td>BSSMAP</td>
<td>MUP</td>
<td>HUP</td>
</tr>
</tbody>
</table>

- **ISDN**
- **PSTN**
- **NMT**

MTP levels
- Level 3 - Signaling network (MTP3)
- Level 2 - Signaling link (MTP2)
- Level 1 - data link (MTP1)
TCAP added value is

- Decoupling the actions and states of an application from communication states for managing the flow of information with the remote end
- Takes care of managing the communication with the peer – let’s the application concentrate on essential matters
 - four classes of service
 - report on success tells the application that the remote end has done its job for sure
 - report on failures speeds up recovery (but an application can not really rely on getting the report on every failure!)
 - or alternatively can let the application take care of all acknowledgements