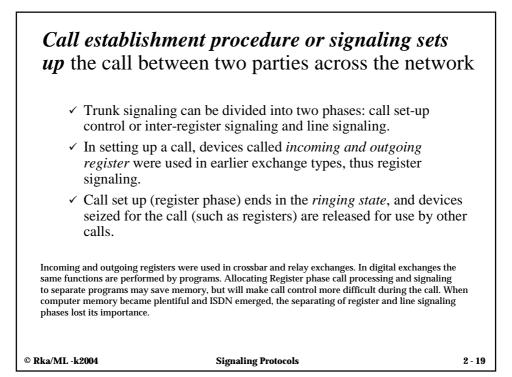
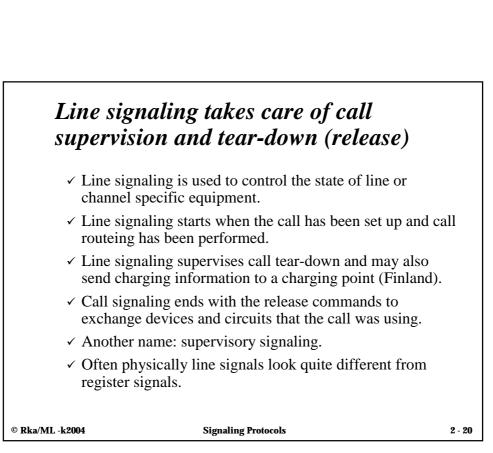
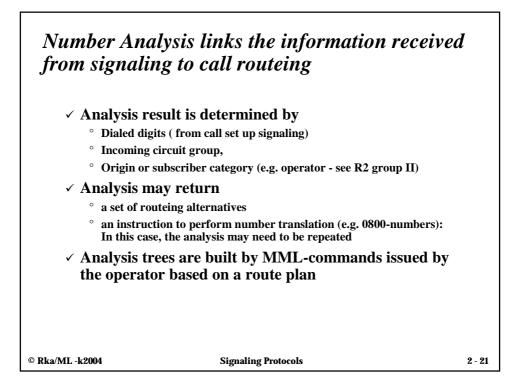
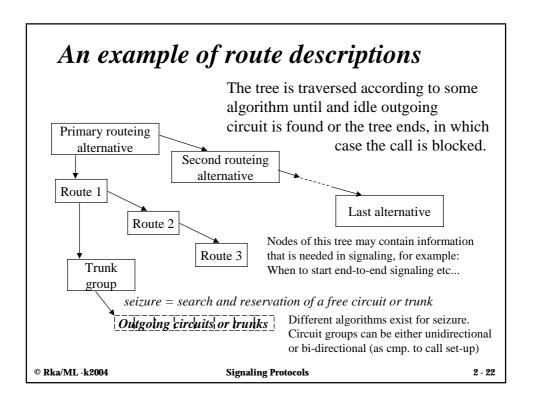

				7			
Current State		Next State					
	Incoming signal						
	i_0	i_1					
<i>S</i> ₀	<i>S</i> ₁	<i>s</i> ₀	So				
<i>S</i> 1	<i>S</i> 1	S 2	<i>S</i> 1				
\$2							

Signaling the call i	g is used to allocate network resources f n a CSN	or
an	gnaling carries control information from the end user and other exchange. The info implies that certain circuits and evices in the exchange need to change state.	
ca pr	all state includes records on all resources allocated for the ll (time slots, signal receivers and senders, memory, ocesses, records etc). It is vital that all resources are released hen the call is released.	1
	gnals can be decadic impulses, voice band tones or binary gnals or messages transported in a packet network.	
	gnals transferred on a local loop between a terminal and the cal exchange form <i>subscriber signaling</i> .	
trı	Then two exchanges send and receive signals we talk about <i>unk signaling</i> (inter-exchange signaling, inter-carrier gnaling etc).	
© Rka/ML -k2004	Signaling Protocols	2 - 13

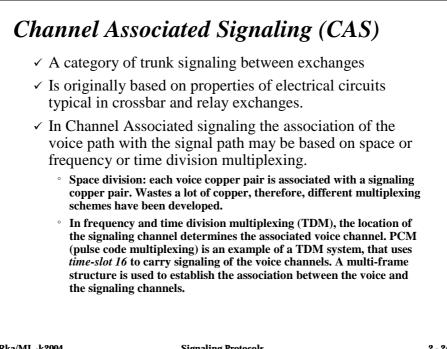

✓ One of	aling system is a given $< s_0$, and the key structural propertion is, how signaling information at h.	ies of a signaling
	PSTN, depending on penetrages, the following types of s	6
Network	Loop signaling	Trunk signaling
Network Analogue	Loop signaling Pulse- and multi-frequency	Trunk signaling Channel Associated
Analogue	Pulse- and multi-frequency	Channel Associated

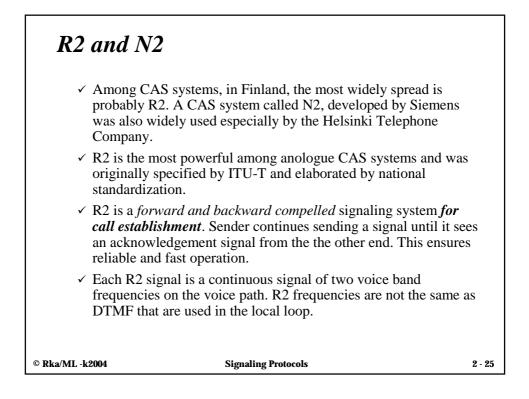


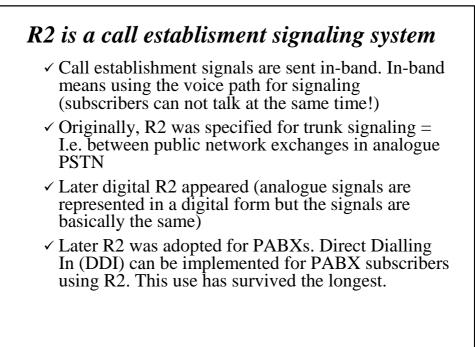


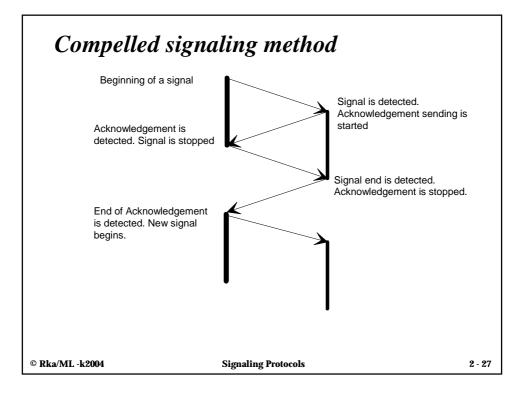


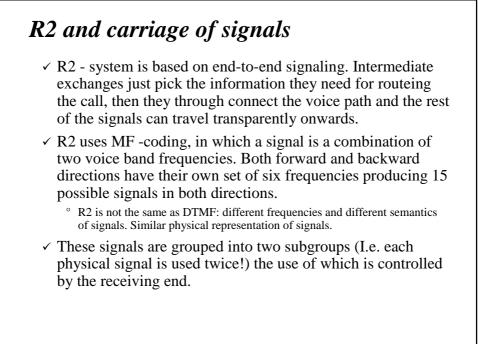
Terminal rec to the signals		ng indications as response
Semantics	Frequency	Timing
Dial tone	425 Hz	continuous
Ringing tone	425 Hz	1s on, 4s silence
Engaged/Busy	425 Hz	300 ms on, 300 ms off
Queueing	950 Hz	650 ms
	950 Hz	325 ms
	1400 Hz	1300 ms on, 2600 ms of
wever, tones are	0 0 0	flow, tones are like signals e voice band and intermed

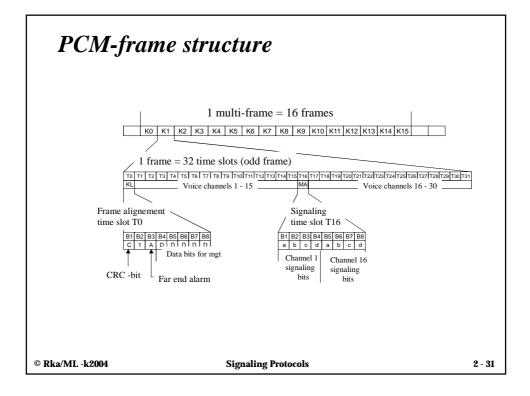


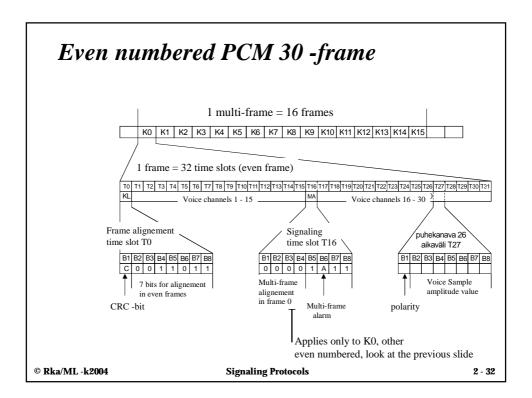





Some Signals used in trunk signaling

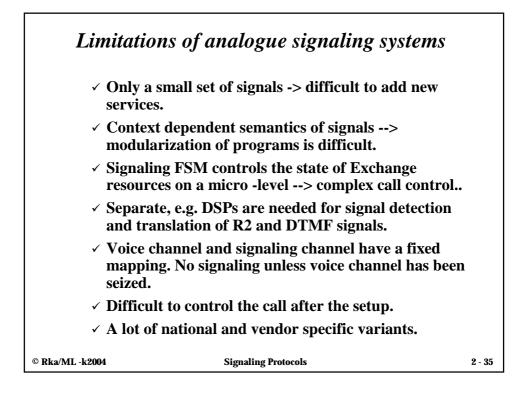

I	Line/Set-up	Signal	Direction	
	L	seizing signal	> (forward)	
	L	seizing-acknowledgement	< (backward)	
	S	request for an address signal	<	
	S	address signal	>	
	S	congestion signals	<	
	S	address complete signals	<	
	S	subscriber free (charge)	<	
	S	subscriber free (no charge)	<	
	S	subscriber line busy	<	
	L	answer signal	<	
	L	charging pulse	<	
	L	clear-back signal	<	
	L	release-guard signal	<	
	L	clear-forward	>	
	L	blocking	<	
	L	remove blocking	<	
© Rka/ML -k2004		Signaling Protocols		2 - 23




'Forwa	urd'-sign	nals		
	Signal	Group I	Group II	
	1	1	Ordinary subscriber	
	2	2	Subscriber with priority	
	3	3	Test call	
	4	4	Coin box	
	5	5	Operator	
	6	6	Data transmission call	
	7	7	Ordinary subscriber	
	8	8	Data transmission call	
	9	9	Priority extension	
	10	0	Operator	
	11	Special serv operator	Forwarded call	
	12	Negative ack	National signal	
	13	Test equipment	National signal	
	14	Network Operator specific	National signal	
	15	End of pulsing	National signal	
© Rka/ML -k2004		Signaling Protocols		2 - 29

'Backward	'-signals
-----------	-----------

Signal	Group A	Group B
1	Send next digit	subscriber line free
2	Repeat last but one address signal	Send special info tone
3	Hop to receiving Group B signals	subscriber line busy
4	Congestion in national network	Congestion
5	Send A-subscriber category	unallocated number
6	Connect to voice path	subscriber line free, charge
7	Repeat number n - 2	subscriber line free, no charge
8	Repeat number n - 3	subscriber line out of order
9	Send country code of A-subs	reroute to operator
10	Network Operator Specific	subscriber number changed


NB: Because of many variants, the exact signals may be different in different implementations. Naturally, both ends need to follow exactly the same implementation!

✓ There are a numb	er of variants of L ir	ne s	ion	aliı	nσ f	for	R) <u>A</u>	tvni	cal
	was (is) PCM -line									
	5 of the PCM -frame									
	me dedicated to the									
are used as follow				·r -		0				
	Signal	а	b	с	d	а	b	с	d	
	Idle	1	0	0	1	1	0	0	1	
	Seizure	0	0	0	1	1	0	0	1	
NB first abcd	Seizing ack	0	0	0	1	1	1	0	1	
are forward bits	B-answer	0	0	0	1	0	1	0	1	
second abcd are	Charging	0	0	0	1	1	0	0	1	
backward bits	B off-hook	0	0	0	1	1	1	0	1	
backward bits	Clear-back	0	0	0	1	0	0	0	1	
	Clear-forward	1	0	0	1	1	1	0	1	
	Clear forward	1	0	0	1	0	1	0	1	
	Clear forward	1	0	0	1	0	0	0	1	
	Blocking	1	0	0	1	1	1	0	1	
	forward-transfer	0	1	0	1	1	1	0	1	

Signaling after set-up of the call It is typical in CAS systems that after setting up the call, terminals can not control the network in any way except initiate release. This is due to closing the signaling "connection" between the phone and the local exchange. Workaround methods have been developed. An LE can supervise the voice channel traffic and possible DTMF signals on the voice path or the line card can detect "plarity reversal". Inust be possible to detect DTMF -signals among voice. Otarity reversal can cause seizure of a register during a call. The register can reserve other signaling resources as needed.

