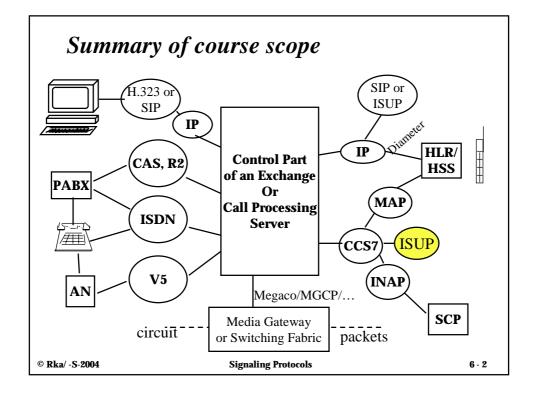
ISDN User Part - ISUP

- ✓ ISUP ISDN User Part
 - > ISUP/TUP brief comparison
 - > ISUP additional features
- ✓ Interworking of signaling systems

ISUP is an international and national network signaling system for


- · call setup,
- · supervision and
- · release.

In addition it supports a wide range of ISDN supplementary services. Used also in GSM and 3G.

Separate versions for

- International ISUP
- National ISUP in many countries (carry some legacy of older systems)

© Rka/ -S-2004 Signaling Protocols 6 - 1

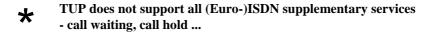
ISUP - ISDN User Part milestones

- TUP was specified before DSS1 ISDN user signaling during 1980's.
- ISUP2 specification was released after DSS 1.
- ISUP2 deployment in Finland started 1994.
- Core Network development path is CAS -> TUP ->ISUP.
- If TUP is already deployed, changing to ISUP is relatively easy by a software upgrade in exchanges, because MTP-infra is already in place.
- Recent development in ISUP:
 - ETSI additions of charging information messages into ISUP.
 - IETF (SIGTRAN) is specifying ISUP over IP

© Rka/-S-2004 Signaling Protocols 6 - 3

Why does the ISDN need ISUP instead of TUP?

Limitations of TUP compared to ISUP:



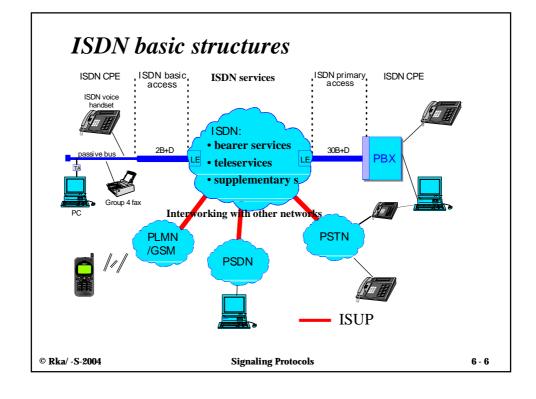
DSS 1 terminal compatibility information can not be transported in TUP,

User-to-User information is not specified in TUP signaling messages

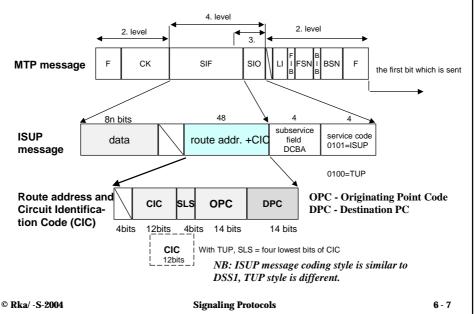
→ ISDN Suspend/Resume is not supported in TUP,

★ In TUP release is non-symmetric / in ISDN it is symmetric

Bearer services supported by ISUP are

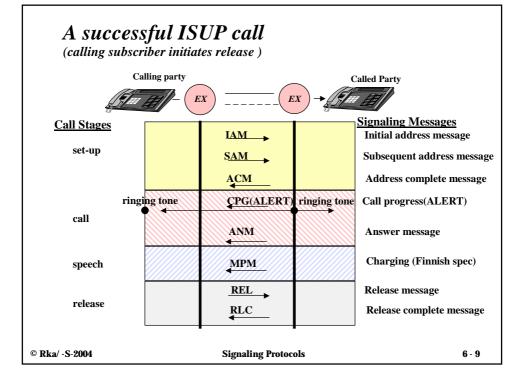

- ✓ speech
- √ 64 kbit/s unrestricted (= transparent 64kbit/s)
- \checkmark 3.1 and 7 kHz audio
- ✓ alternate speech / 64 kbit/s unrestricted
- ✓ alternate 64 kbit/s unrestricted / speech
- □ 2 x 64 kbit/s unrestricted
- □ 384 kbit/s unrestricted
- □ 1536 kbit/s unrestricted
- □ 1920 kbit/s unrestricted

ISUP offers extensions compared to TUP, but CSN is not able to compete with packet switching (the Internet) in the long run!


© Rka/ -S-2004

Signaling Protocols

6 - 5



Call identification is based on a compulsory CIC and an optional (logical) call reference

- ✓ Call reference is recommended only for national use.
- ✓ n x 64kbit/s connections are always built using consecutive timeslots, thus one CIC is enough.
 - \times n x 64kbit/s -connection is identified using the smallest CIC among the time-slots.
- ✓ CIC binds the user information channel (voice or data) and signaling together. One can not exist without the other
 - > --> one result is that in IN a special standardised Basic Call State Model is needed. The BCSM is used to track the state of the resources in an SSP (service switching point) while an SCP (service control point) processes additional features.
 - > Binding to CIC is also an issue when Interworking with IP Telephony systems because in IP telephony willingness to participate is established prior to any voice path activity.

Sample ISUP messages

- ✓ IAM: will carry bearer service identification, all digits if dialling sequence is like in GSM, may carry some leading digits in case of PSTN like dialling sequence.
- ✓ SAM: sending of SAMs is dependent whether dialing plan has a fixed nrof digits for the leading digits sent in IAM (or that generated the IAM) or the dialing plan allows variable nrof digit per destination. Variable length numbers go hand in hand with DDI (direct dialling in for PABXs). Routing files may have instructions when to send SAMs and what kind
- ✓ ACM tells that no more digits are needed nor will be processed
- ✓ ANM tells that B-party has answered and charging can begin.
- ✓ Tariff information can be carried in Charging messages. Eases tariff maintenance and supports a more dynamic market place with competition between providers.

ISUP circuit supervision messages --> circuits and 2M connections can be taken into use and from use in a managed way.

RSC Reset circuit

BLO Blocking

BLA Blocking acknowledgement

UBL Unblocking

UBA Unblocking acknowledgement

EHL End-of-hold (*)

EHA End-of-hold acknowledgement (*)

OLM Overload (*)

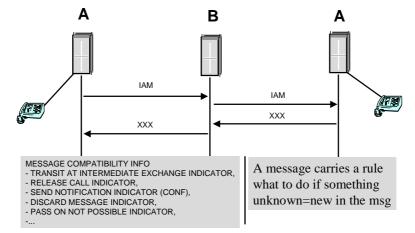
UCIC Unequipped circuit identification code (*)

(*) For national use

BLO

BLA

X


X

Can not place calls

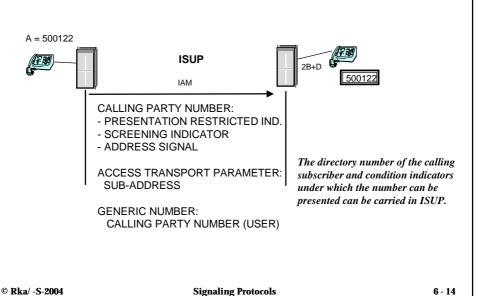
on cic def in BLO

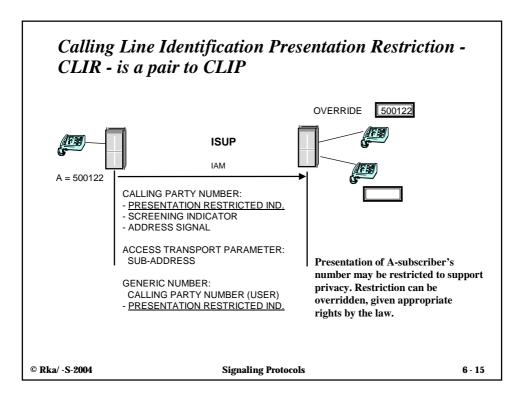
© Rka/-S-2004 Signaling Protocols 6 - 11

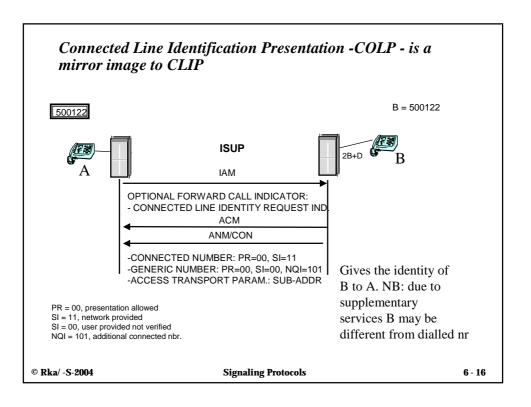
Forward COMPATIBILITY is ensured from the 1992 release onwards

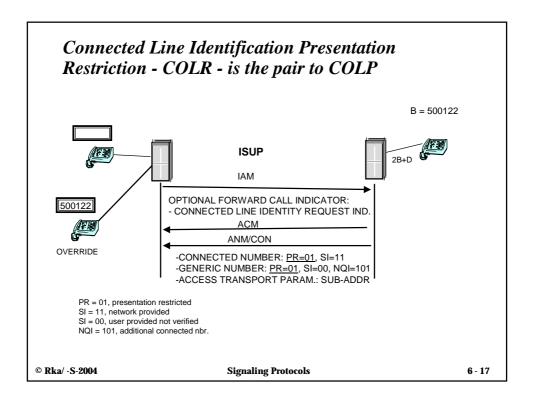
ISUP message coding supports ISUP software upgrades - old and new version can talk to each other!

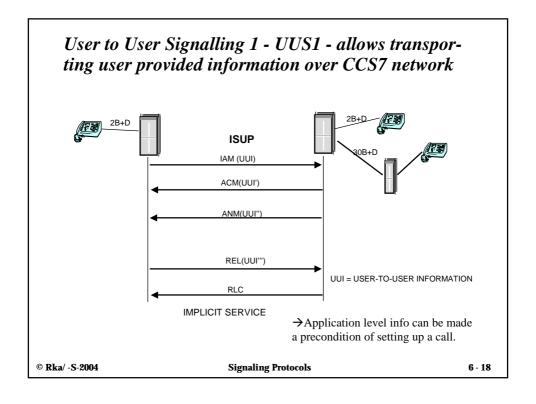
© Rka/-S-2004 Signaling Protocols 6 - 12

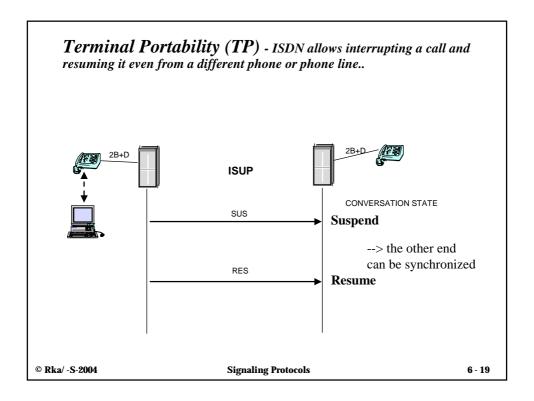

Version compatibility rules: the following should not be changed:

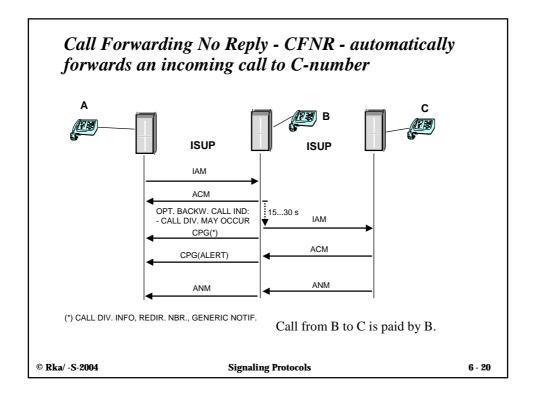

- ✓ Protocol procedures, messages, information elements, coding, except to correct an error in the protocol.
- ✓ Semantics of existing info elements.
- ✓ Formatting and coding rules
- ✓ Adding new parameters into mandatory part of Messages, Optional part can be extended.
- ✓ Order of information items in an Information Element of variable length, new items can be added to the end of the IE.
- ✓ Information item value ="all 0" == non-significant value.
- + Fall-back and other compatibility procedures.

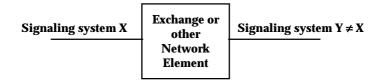

Rules apply from ISUP'92.


© Rka/-S-2004 Signaling Protocols 6 - 13

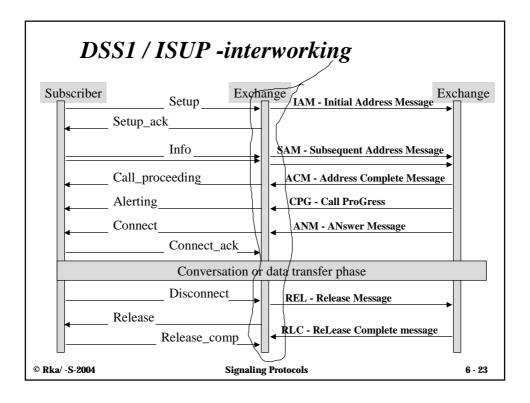

Calling Line Identification Presentation - CLIP - is a supplementary service supported by ISUP







About supplementary services

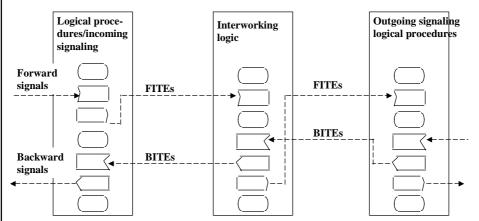

- Can be divided into A subscriber services and B subscriber services.
 - > service data and control reside either at A or B
 - > not all supplementary services require support from network signaling
 - > some services can be implemented in the terminal or in the network
- ✓ Other examples
 - > Call transfer
 - > Call completion to busy subscriber (call back when free)
 - > Call forwarding unconditional,
 - > Call forwarding on busy
 - > Many PABX -type services: call pick-up ...
- ✓ Business wise: how important are these supplementary services? (very important when buying decisions are made but not widely used by subscribers...)

© Rka/-S-2004 Signaling Protocols 6 - 21

Signaling interworking occurs in an exchange if two legs of the call are managed using different signaling systems

- ✓ Interworking of signaling systems
- ✓ Also we talk about signaling interworking if two peer exchanges are manufactured by different vendors (interworking of different implementations)
- √ cmp. compatibility

Each signaling system has its own set of signals of information elements -> in interworking almost always some info is lost.


- To ensure smooth interworking, functioning need to be carefully specified. If we have *n* signaling systems, there are n² interworking cases!
- Standardization bodies use two methods for the specification of interworking:
 - For Channel Associated signaling: event based FITE/BITE -method.
 - For message based signaling: layer oriented method.

Event based interworking specification method

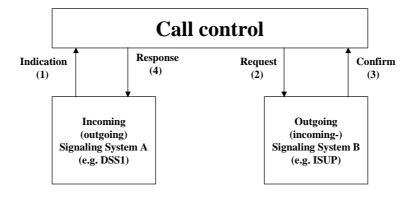
FITE - Forward Interworking Telephone Event
BITE - Backward Interworking Telephone Event

Between signaling systems.

SPITE - Switching Processing Interface Telephone Event - internal to an exchange.

Incoming and outgoing signaling systems are analyzed only to the extent necessary for the specification of interworking. Logic is given using SDL.

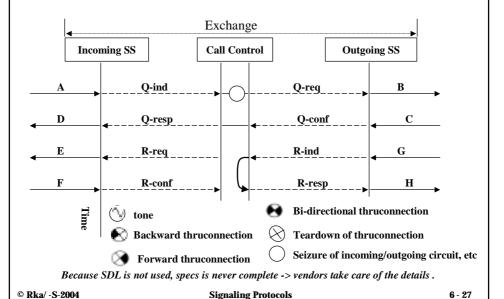
© Rka/ -S-2004


Signaling Protocols

6 - 25

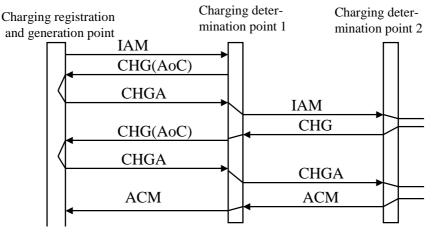
6 - 26

Layer oriented interworking specification


Primitives carry the information between layers

Numerot ilmaisevat primitiivien järjestystä

© Rka/-S-2004 Signaling Protocols



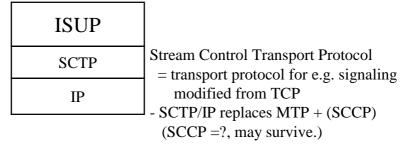
Latest development of ISUP

- 1. ISDN charging protocol to transport tariff and billing info
 - The Finnish network has traditionally carried charging messages. In most other countries the originating exchange needs to know all tariffs in the world.
 - Reflect the difference between monopoly and competitive markets
 - ETSI specifies messages between charging points to transport information about additional tariffs on a call by call basis:
 - Final tariff may be composed of many parts
 - tariff info is maintained by the party, who wants to earn the money.
 - Makes easier to apply dynamic tariffs.

ISUP2 carries charging info

In charging generation point, info can be processed into a new form, The registration point produces a CDR- call detail record

© Rka/ -S-2004


Signaling Protocols

6 - 29

ISUP - more ongoing development

2. ISUP-over-IP for IP-telephony networks

- e.g. In Finland in pilot use although the specs is not ready
- SIGTRAN group in IETF

We will talk about SIGTRAN later on this course.

© Rka/-S-2004 Signaling Protocols 6 - 30