Signaling Protocols - 3 cu

Lecturer: professor Raimo Kantola
raimo.kantola@hut.fi, SE 323 ke 10-12
Assistant: Zhou Yi (zhouyi@netlab.hut.fi)

Information: http://www.tct.hut.fi/opetus/s38115

Contents and goal of the course

- Introduction
- Signaling in PSTN and ISDN
- Signaling in GSM
- Signaling over IP in wireline networks
- Signaling in 3G networks (Rel 5…)
- Inter-working of signaling systems

Goal of the course: To understand signaling systems used in different networks.
- to understand how networks interwork.
- to understand the technology trend in signaling and call/session control
- to understand how switching system functionality is inherited into a packet network environment
Why is signaling needed?

- To negotiate parameters of a session between two or more parties for a voice or voice+video call
 - to locate the other parties (one is the initiator)
 - to figure out whether the other party wishes to communicate
 - technical parameters for communication
- In circuit networks to reserve, to keep track of all circuit resources for the call and to release the resources after the call
- In packet networks to reserve, keep track and release logical and physical resources for the session
 - Ports, holes in Firewalls, media processors, processes
 - To manage QoS

Networking technology studies on 38.xxx courses

Core course in major

115

188, 115

122, 165, traffic theory, 188

NB: signaling is necessary, even if calls are carried over the Internet!
Course Requirements

✓ These lecture notes
✓ RFCs, a few Internet drafts and www.3gpp.org (for 3GPP specs)
✓ Lectures are the best source for: VoIP, TCAP, SCCP, MTP, V5, MAP ...
 ° Do not make the mistake of thinking that you can pass the exam just by scanning through these slides! These slides have been produced to accompany oral lectures. After the lecture – these slides give you a hint of what is covered in this course. You are expected to dig more information on the subject from other sources, in particular RFCs, 3GPP specs ...

✓ Exercises
 ° LME study package on signaling - exercise hours, SIP exercise sessions
 ° A bit of calculus

✓ Recommended additional reading:
 ° Richard Manterfield: Telecommunication Signalling;
 ° Henry Sinnreich & Alan B Johnson: Internet Communications Using SIP;

✓ Grading
 ° Exercises max + 2 … +4 points
 ° No calculus (must earn at least 2p) => No admittance to Examination!!
 ° Examination 30 points

Telecommunication networks - Introduction

✓ Types of telecom networks
✓ Equipment types in telecom networks
✓ Hierarchy in telecom networks
✓ Switching Systems
✓ 3G network
Communication networks can be divided into

- Switched Telephone Networks (PSTN, ISDN, GSM …)
- Computer (data) networks (x.25, Internet)
- Specialized or Professional Networks (PMR, Tetra …)
 - PMR - professional mobile radio
- This course concentrates on telephony in circuit and packet networks.

Signaling is processed by Exchanges in circuit networks and by Signaling Servers in packet networks.

Exchanges or Switching Systems are used in
- Public Switched Telephone Networks,
- Integrated Services Digital Networks,
- Cellular Networks and
- Specialized Networks

Telephone Networks

- Telephone networks can be divided into:
 - Fixed Networks (wireline networks)
 - Mobile networks (cellular networks)
 - Public vs private (owned and operated by a corporation)

- Growth of subscriber base takes place in cellular networks. In Fixed networks we see very little new deployment while total nrof subscriptions is declining.

Cost of deployment/subscriber

![Cost of deployment/subscriber graph]

Radio networks

Wireline

City area

Rural areas

Subscriber Distance from exchange

© Rka –S-2003

Signaling Protocols

1 - 7

Page 4
World GSM subscriptions (millions)

- Total mobile: Oct-02: ≈1100m subs!

World Mobile Subscribers

GSM share grows from 57% to 69% (apr 00 till Oct 2002) CDMA is rather stable: 11…12%
The rest are absolutely or relatively declining.

NB:
- Total mobile:
- Oct-02: ≈1100m subs!
Computer (data) networks

- A data network is any type of overlay network built for data traffic.
- Data networks are built using both permanent and switched connections.
- Protocols in Data Networks include X.25 ja Frame Relay (FR) and the Internet protocol.

![Diagram of networks](image)

Capacity requirements for Telephony

- **Case Finland:** Nrof users: 4 million.
 Nrof simultaneous users(?): 400 000
 Each call uses 64 kbit/s.

Assume all calls are carried on one link: Capacity requirement is:

\[
400 \ 000 \times 64 \text{kbit/s two ways} = 25.6 \text{ Gbit/s}.
\]

In practise 70% of calls are local. It follows that largest needed link capacities are < 10 Gbit/s (two ways).

IP network capacities:
- Current FUNET backbone links are 2.5 Gbit/s
- Next FUNET upgrade (2004): 10...40 Gbit/s links!
- FUNET is supposed to serve only University people (300 000+)
Specialized networks

✓ Specialized (professional) networks include:
 ◦ Military networks
 ◦ Emergency services networks
 ◦ Police networks
 ◦ Company / Utilities communication networks (Railways, Gas and Electricity companies)

✓ Widely varied technologies are used, some networks are overlay networks making use of PSTN resources, some are built using dedicated resources only.

✓ In Finland digital VIRVE, based on TETRA standard, is being built.

✓ Many types of (trunking) analogue radio networks exist (PMR - professional mobile radio).

Equipment types in telecommunication networks

✓ Based on type of usage, the equipment can be categorized into:
 ◦ Terminal equipment or CPE - customer premises equipment
 ◦ Exchanges (Switching Systems, Central Office in US)
 ◦ Call Processing Servers (e.g. 3G Multimedia System)
 ◦ Network Service Nodes (Value added Services, IN Services)
 ◦ Cross-connect Equipment
 ◦ Transmission Systems

In terms of end-to-end service Cross-Connect and transmission equipment work on OSI layers 1 and 2. Nevertheless, they contain (management) software which can be on any OSI layer. In this course we just assume that these provide the necessary bitpipes.
Key issues on each layer in the telecom network include

<table>
<thead>
<tr>
<th>OSI</th>
<th>Service Nodes</th>
<th>Intelligent Network Nodes, Voice Mail, ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Switching Systems</td>
<td>Exchanges, Concentrators, PBXs, Call Processing Servers</td>
</tr>
<tr>
<td>3</td>
<td>Transmission Systems</td>
<td>PDH, SDH, WDM, xDSL, BSS/GSM, Radio links, Cross-connects ...</td>
</tr>
<tr>
<td>2</td>
<td>Circuit connections</td>
<td>Copper cable, coax, fiber, radio path, ...</td>
</tr>
</tbody>
</table>

Terminal Equipment

- Terminal Equipment are owned and managed by the subscriber. They are used to communicate with another similar device across the network or with a Service Node in the network.

- Examples of terminal equipment types:
 - Phones, mobile phones, SIP phones, Office phones
 - Private (Automatic) Branch Exchange (PBX or PABX)
 - Modems
 - Router, bridge, LAN-switch, hub
 - Telemetric equipment

- A key assumption from the network point of view is whether TEs are Intelligent or not! This has a big impact on the choice of solutions on the switching or session layer in the network.

- Are connected to public networks using so called subscriber criteria.

- PABXs can form corporate networks. Use their own signaling methods such as QSIG, DPNSS (UK), also many proprietary signaling systems...
Exchanges implement switched services

- Carriers of network intelligence.
- Routeing of calls.
- Responsible for service level (grade of service)
- Giants of processor capacity and software ~ computers with many external connections and a lot of real-time parallel activity.
- Maintain signaling connections with subscribers, PABXs and with other public exchanges

When calls move to IP networks

- Connectivity and Session layers are separated
 - On connectivity layer we have transmission and packet routing
 - On Session layer we have signaling and session control including routing of sessions
 - Call control and signaling server can reside anywhere in the IP network in relation to the caller and callee!
- Call Processing Servers inherit most of the Exchange functionality of Circuit networks
 - Session control (former call control)
 - Signaling
 - Charging (caller authentication etc)
- Switching functionality of Exchanges is replaced by the packet routing infrastructure
Service Nodes are computers connected to the edge of the telecom network

- Intelligent Network SCP - Service Control Point
- Voice mail systems
- Intelligent announcement device (intelligent peripheral or SRP - special resource point)
- Voice response system

By using Service Nodes operators aim to differentiate their service and thus compete not only on price. Operators are looking for implementations that are switching system independent and have open software environment. Service Nodes may also control the set-up of calls.

The purpose of Digital Cross-Connects is rearrangement of circuit connections

- Work on OSI Layer 1 in the end-to-end view.
- Use cases: management of leased circuits, grooming of PCM connections (from partially filled PCMs to fully filled PCMs).
- A Digital Cross-Connect has a switching matrix and a lightweight control part that implements commands issued by a management system.
- The network management system is responsible for managing end-to-end circuit connections. The network management system issues commands to the cross connects to set up and tear down connections. The Cross connect may try to recover existing connections also in case of partial failures.
Transmission systems are used to optimize the use of physical circuits and to build coverage

- Carry large bit streams across any distances.
- Are on OSI layer 1 in end-to-end view.
- Use optical or electronic components.
- E.g. PDH-systems ja SDH -systems
- An SDH-system needs more than one million source lines of software code ==> is a software product!
- Cost of transmitting a bit/km is declining fast.
- Trend is from synchronous to asynchronous and optical (SDH -> 10G Ethernet + Optical)
- Exchanges and transmission systems need to be compatible: they need a common specification on what does a bit and a frame look like on a circuit connection. They need a common understanding on time (bit time, frame time).

In business terms Communication Services can be broken down to Roles and Stakeholders

- Service Provider, SP
 Falvelun tarjoaja
 + Service Nodes
- Subscriber
 + terminal equipment
 + PBXs,
- Network Provider/ NP
 verkko-operaattori:
 + transmission, cross-connects
 + exchanges

• This course analyses signaling which is the language used on the interfaces in the above figure.
• We will show that the real world signaling systems do not ideally match this business model.
• This has a significant impact on business boundaries: although NP business is considered dull and boring, NP is still the king! - I hope you will be able to argue on these matters after this course!
ITU-T has specified a world wide hierarchy for the telecom network.
- An end-to-end connection can have max 12 circuit connections out of which 4 can be international.
- Addressing is hierarchical

Exchange types
- local exchange (Class 5 Switch in US)
- originating/terminating exchange
- transit exchange
- long distance exchange
- international exchange

Traffic categories in exchanges
- upstream, downstream
- incoming, outgoing, internal, terminating, originating, transit

Categories of traffic and exchanges
Upstream traffic goes up in the hierarchy.
Downstream traffic goes down in the hierarchy.

In Addition: outgoing traffic, incoming traffic (from the point of view of an exchange
Internal traffic: from one subscriber connection to another in a local exchange,
terminating traffic: traffic that is terminated to subscribers at a terminating exchange,
transit traffic = from one network connection to another.
Service Paradigm in a Circuit Switched Network

- A permanent capacity circuit is set up on demand and sold to the customer. The network guarantees the quality of the circuit.
 - After set-up customers can not disturb each other.
- The customer can use the transfer capacity as best he/she can or as poorly as he/she can.
- The customer pays based on used network resources (usage based charging).

Still: have look at your regular phone bill:
- there are lot of flat rate monthly charges!

In the Connection Oriented Model connections are set up, and in the process the network translates global addresses to local

SETUP Message [global address of B]

ANSWER/CONNECT [local identity of connection]

A - subscriber
E.164 address

B - subscriber
E.164 address

End-to-end connection state

In PSTN the transfer of control information for the purpose of setting up, tearing down and maintaining of calls is called signalling (UK) or signaling (US).

Without switching, a physical connection is needed from every user to every other user.
IP network is connectionless: Caller and Callee must agree on parameters. Routing infra takes care of connectivity

- **SETUP Message**: [global address of B, ports]
- **ANSWER/CONNECT**: [ports, coders]

Big issues are end-to-end delay and Reliability (99.5% instead of 99.999% of circuit networks!)

Connections can be set up also using network management commands

- The PSTN can be used also for providing leased connections
- An alternative technology for leased connections e.g. for LAN-interconnection is Frame Relay which transfers variable length frames or packets. A frame carries a local address.
- Also ATM - Asynchronous Transfer Mode can be used for setting up semi-permanent virtual connections

In this model, network nodes do not need to support any form of signaling.
Life cycles of Product Generations

- SPC, analogue switch
- Digital Exchange
- Broadband switch?
- Optical Switch?
- IP + servers?
- Service Elements
- Connectivity layer “bit pipes”
- Crossbar switch
- Direct control...

Road map of Networking technology in Finland

- Circuit switching
- Packet switching
- GSM
- NMT-900
- NMT-450
- WWW
- Arpanet --- Internet technology
- Data networks
- ISDN
- Digitalization of Exchanges
- Digital transmission
- Automation of long distance telephony

Arpanet --- Internet technology
Summary of course scope (1)

H.323 or SIP
IP
CAS, R2
ISDN
V5
PABX
AN

Control Part of an Exchange
Or Call Processing Server

SIP or ISUP
IP
MG
SIP
INAP
MAP
CCS7
GGSN
HSC
V5

Media Gateway
or Switching Fabric

Simplified!

Summery of Course scope (2): 3G

Home Subscriber Server

Simplified!
Impact of IP Voice and IP Telephony

- New signaling systems are needed but most of ISDN signaling properties will be reused or inherited.
- Exchanges turn into “Call Processing Servers”.
 - These will not have a switching fabric for voice signals.
 - The Switching Fabric is replaced by the router network.
 - In Peta- Giga- and Terabit routers a packet switching fabric is needed.
- Control plane (session layer) and the transport plane (connectivity layer) will be clearly separated:
 - Calls are first set up as logical sessions and only when it is known that the parties involved can and wish to communicate the transfer of voice packets starts.
 - Voice packets and signaling typically take quite different paths.
- Hybrid networks CS+PS with gateways.
 - Gateway can be in the phone, intranet, Internet.