11. Simulation

Announcement

• Aim of the lecture
 – To present simulation as one of the tools used in teletraffic theory
 – To give a brief overview of the different issues in simulation

• The advanced studies module on Teletraffic theory has also a specialized course on simulation
 – S-38.3148 Simulation of data networks
 – Mandatory course in the Teletraffic theory advanced studies module
 – Pre-requisite info: S-38.1145 and programming skills (C/C++)
 – Lectured only every other year (take this into consideration when planning your studies!)
 – Lectured next time in fall 2008

Contents

• Introduction
• Generation of traffic process realizations
• Generation of random variable realizations
• Collection of data
• Statistical analysis

What is simulation?

• Simulation is (at least from the teletraffic point of view) a statistical method to estimate the performance (or some other important characteristic) of the system under consideration.

• It typically consists of the following four phases:
 – Modelling of the system (real or imaginary) as a dynamic stochastic process
 – Generation of the realizations of this stochastic process ("observations")
 • Such realizations are called simulation runs
 – Collection of data ("measurements")
 – Statistical analysis of the gathered data, and drawing conclusions
In previous lectures, we have looked at an alternative way to determine the performance: **mathematical analysis**

- We considered the following two phases:
 - Modelling of the system as a stochastic process. (In this course, we have restricted ourselves to birth-death processes.)
 - Solving of the model by means of mathematical analysis
- The modelling phase is common to both of them
- However, the accuracy (faithfulness) of the model that these methods allow can be very different
 - unlike simulation, mathematical analysis typically requires (heavily) restrictive assumptions to be made

Analysis vs. simulation (1)

- **Pros** of analysis
 - Results produced rapidly (after the analysis is made)
 - Exact (accurate) results (for the model)
 - Gives insight
 - Optimization possible (but typically hard)
- **Cons** of analysis
 - Requires restrictive assumptions
 - the resulting model is typically too simple
 - (e.g. only stationary behavior)
 - performance analysis of complicated systems impossible
 - Even under these assumptions, the analysis itself may be (extremely) hard

Analysis vs. simulation (2)

- **Pros** of simulation
 - No restrictive assumptions needed (in principle)
 - performance analysis of complicated systems possible
 - Modelling straightforward
- **Cons** of simulation
 - Production of results time-consuming
 - (simulation programs being typically processor intensive)
 - Results inaccurate (however, they can be made as accurate as required by increasing the number of simulation runs, but this takes even more time)
 - Does not necessarily offer a general insight
 - Optimization possible only between very few alternatives (parameter combinations or controls)
Steps in simulating a stochastic process

- Modelling of the system as a stochastic process
 - This has already been discussed in this course.
 - In the sequel, we will take the model (that is: the stochastic process) for granted.
 - In addition, we will restrict ourselves to simple teletraffic models.
- Generation of the realizations of this stochastic process
 - Generation of random numbers
 - Construction of the realization of the process from event to event (discrete event simulation)
 - Often this step is understood as THE simulation, however this is not generally the case
- Collection of data
 - Transient phase vs. steady state (stationarity, equilibrium)
- Statistical analysis and conclusions
 - Point estimators
 - Confidence intervals

Implementation

- Simulation is typically implemented as a computer program
- Simulation program generally comprises the following phases (excluding modelling and conclusions)
 - Generation of the realizations of the stochastic process
 - Collection of data
 - Statistical analysis of the gathered data
- Simulation program can be implemented by
 - a general-purpose programming language
 - e.g. C or C++
 - most flexible, but tedious and prone to programming errors
 - utilizing simulation-specific program libraries
 - e.g. CNCL
 - utilizing simulation-specific software
 - e.g. OPNET, BONEs, NS (in part based on p-libraries)
 - most rapid and reliable (depending on the s/w), but rigid

Other simulation types

- What we have described above, is a **discrete event simulation**
 - the simulation is **discrete** (event-based), **dynamic** (evolving in time) and **stochastic** (including random components)
 - i.e. how to simulate the time evolvement of the mathematical model of the system under consideration, when the aim is to gather information on the system behavior
 - We consider only this type of simulation in this lecture
- Other types:
 - **continuous** simulation: state and parameter spaces of the process are continuous; description of the system typically by differential equations, e.g. simulation of the trajectory of an aircraft
 - **static** simulation: time plays no role as there is no process that produces the events, e.g. numerical integration of a multi-dimensional integral by Monte Carlo method
 - **deterministic** simulation: no random components, e.g. the first example above

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis
11. Simulation

Generation of traffic process realizations

- Assume that we have modelled as a stochastic process the evolution of the system.
- Next step is to generate realizations of this process.
 - For this, we have to:
 - Generate a realization (value) for all the random variables affecting the evolution of the process (taking properly into account all the (statistical) dependencies between these variables).
 - Construct a realization of the process (using the generated values).
 - These two parts are overlapping, they are not done separately.
 - Realizations for random variables are generated by utilizing (pseudo) random number generators.
 - The realization of the process is constructed from event to event (discrete event simulation).

Discrete event simulation (1)

- Idea: simulation evolves from event to event.
 - If nothing happens during an interval, we can just skip it!
- **Basic events** modify (somehow) the state of the system.
 - e.g. arrivals and departures of customers in a simple teletraffic model.
- **Extra events** related to the data collection.
 - including the event for stopping the simulation run or collecting data.
- Event identification:
 - **occurrence time** (when event is handled) and
 - **event type** (what and how event is handled).

Discrete event simulation (2)

- Events are organized as an **event list**.
 - Events in this list are sorted in ascending order by the occurrence time.
 - first: the event occurring next..
 - Events are handled one-by-one (in this order) while, at the same time, generating new events to occur later.
 - When the event has been processed, it is removed from the list.
- **Simulation clock** tells the occurrence time of the next event.
 - progressing by jumps.
- **System state** tells the current state of the system.

Discrete event simulation (3)

- General algorithm for a single **simulation run**:
 1. **Initialization**
 - simulation clock = 0
 - system state = given initial value
 - for each event type, generate next event (whenever possible)
 - construct the event list from these events.
 2. **Event handling**
 - simulation clock = occurrence time of the next event.
 - handle the event including
 - generation of new events and their addition to the event list.
 - updating of the system state.
 - delete the event from the event list.
 3. **Stopping test**
 - if positive, then stop the simulation run; otherwise return to 2.
Example (1)

- **Task**: Simulate the M/M/1 queue (more precisely: the evolution of the queue length process) from time 0 to time T assuming that the queue is empty at time 0 and omitting any data collection
 - System state (at time t) = queue length X_t
 - initial value: $X_0 = 0$
 - Basic events:
 - customer arrivals
 - customer departures
 - Extra event:
 - stopping of the simulation run at time T
- **Note**: No collection of data in this example

Example (2)

- **Initialization**:
 - initialize the system state: $X_0 = 0$
 - generate the time till the first arrival from the $\text{Exp}(\lambda)$ distribution
- **Handling of an arrival event (occurring at some time t)**:
 - update the system state: $X_t = X_t + 1$
 - if $X_t = 1$, then generate the time $(t + S)$ till the next departure, where S is from the $\text{Exp}(\mu)$ distribution
 - generate the time $(t + I)$ till the next arrival, where I is from the $\text{Exp}(\lambda)$ distribution
- **Handling of a departure event (occurring at some time t)**:
 - update the system state: $X_t = X_t - 1$
 - if $X_t > 0$, then generate the time $(t + S)$ till the next departure, where S is from the $\text{Exp}(\mu)$ distribution
- **Stopping test**: $t > T$

Example (3)

- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
- Statistical analysis
11. Simulation

Generation of random variable realizations

- Based on (pseudo) random number generators
- First step:
 - generation of independent uniformly distributed random variables between 0 and 1 (i.e. from \(U(0,1) \) distribution) by using random number generators
- Step from the \(U(0,1) \) distribution to the desired distribution:
 - rescaling (\(\Rightarrow U(a,b) \))
 - discretization (\(\Rightarrow \text{Bernoulli}(p), \text{Bin}(n,p), \text{Poisson}(a), \text{Geom}(p) \))
 - inverse transform (\(\Rightarrow \text{Exp}(\lambda) \))
 - other transforms (\(\Rightarrow \text{N}(0,1) \Rightarrow \text{N}(\mu,\sigma^2) \))
 - acceptance-rejection method (for any continuous random variable defined in a finite interval whose density function is bounded)
 - two independent \(U(0,1) \) distributed random variables needed

Random number generator

- Random number generator is an algorithm generating (pseudo) random integers \(Z_i \) in some interval \(0,1,\ldots,m−1 \)
 - The sequence generated is always periodic (goal: this period should be as long as possible)
 - Strictly speaking, the numbers generated are not random at all, but totally predictable (thus: pseudo)
 - In practice, however, if the generator is well designed, the numbers “appear” to be IID with uniform distribution inside the set \(\{0,1,\ldots,m−1\} \)
- Validation of a random number generator can be based on empirical (statistical) and theoretical tests:
 - uniformity of the generated empirical distribution
 - independence of the generated random numbers (no correlation)

Random number generator types

- Linear congruential generator
 - the simplest one
 - next random number is based on just the current one: \(Z_{i+1} = f(Z_i) \) (\(\Rightarrow \) period at most \(m \))
- Multiplicative congruential generator
 - even simpler
 - a special case of the first type
- Others:
 - Additive congruential generators, shuffling, etc.

Linear congruential generator (LCG)

- Linear congruential generator (LCG) uses the following algorithm to generate random numbers belonging to \(\{0,1,\ldots,m−1\} \):
 \[
 Z_{i+1} = (aZ_i + c) \mod m
 \]
 - Here \(a, c \) and \(m \) are fixed non-negative integers \((a < m, c < m) \)
 - In addition, the starting value (seed) \(Z_0 < m \) should be specified
- Remarks:
 - Parameters \(a, c \) and \(m \) should be chosen with care, otherwise the result can be very poor
 - By a right choice of parameters, it is possible to achieve the full period \(m \)
 - e.g. \(m = 2^b \), \(c \) odd, \(a = 4k + 1 \) (\(b \) often 48)
###_multiplicative congruential generator (MCG)_

- **Multiplicative congruential generator (MCG)** uses the following algorithm to generate random numbers belonging to \{0, 1, …, m-1\}:

\[
Z_{i+1} = (aZ_i) \mod m
\]

- Here \(a\) and \(m\) are fixed non-negative integers \((a < m)\)
- In addition, the starting value (seed) \(Z_0 < m\) should be specified
- **Remarks:**
 - MCG is clearly a special case of LCG: \(c = 0\)
 - Parameters \(a\) and \(m\) should (still) be chosen with care
 - In this case, it is not possible to achieve the full period \(m\)
 - \(\text{e.g. if } m = 2^h, \text{ then the maximum period is } 2^{h-2}\)
 - However, for \(m\) prime, period \(m-1\) is possible (by a proper choice of \(a\))
 - \(\text{e.g. } m = 2^{31} - 1 \text{ and } a = 16,807 \text{ (or 630,360,016)}\)

U(0,1) distribution

- Let \(Z\) denote a (pseudo) random number belonging to \(\{0, 1, \ldots, m-1\}\)
- Then (approximately)

\[
U = \frac{Z}{m} \sim U(0,1)
\]

U(a,b) distribution

- Let \(U \sim U(0,1)\)
- Then

\[
X = a + (b - a)U \sim U(a, b)
\]

- This is called the **rescaling** method

Discretization method

- Let \(U \sim U(0,1)\)
- Assume that \(Y\) is a **discrete** random variable
 - with value set \(S = \{0, 1, \ldots, n\}\) or \(S = \{0, 1, 2, \ldots\}\)
- Denote: \(F(x) = P\{Y \leq x\}\), then

\[
X = \min\{x \in S \mid F(x) \geq U\} \sim Y
\]

- This is called the **discretization** method
 - a special case of the inverse transform method
- **Example:** \(\text{Bernoulli}(p)\) distribution

\[
X = \begin{cases}
0, & \text{if } U \leq 1 - p \\
1, & \text{if } U > 1 - p
\end{cases} \sim \text{Bernoulli}(p)
\]
11. Simulation

Inverse transform method

- Let $U \sim U(0,1)$
- Assume that Y is a continuous random variable
- Assume further that $F(x) = P\{Y \leq x\}$ is strictly increasing
- Let $F^{-1}(y)$ denote the inverse of the function $F(x)$, then

$$X = F^{-1}(U) \sim Y$$

- This is called the inverse transform method
- Proof: Since $P\{U \leq u\} = u$ for all $u \in (0,1)$, we have

$$P\{X \leq x\} = P\{F^{-1}(U) \leq x\} = P\{U \leq F(x)\} = F(x)$$

Exp(λ) distribution

- Let $U \sim U(0,1)$
 - Then also $1-U \sim U(0,1)$
- Let $Y \sim \text{Exp}(\lambda)$
 - $F(x) = P\{Y \leq x\} = 1 - e^{-\lambda x}$ is strictly increasing
 - The inverse transform is $F^{-1}(y) = -(1/\lambda) \log(1-y)$
- Thus, by the inverse transform method,

$$X = F^{-1}(1-U) = -\frac{1}{\lambda} \log(U) \sim \text{Exp}(\lambda)$$

N(0,1) distribution

- Let $U_1 \sim U(0,1)$ and $U_2 \sim U(0,1)$ be independent
- Then, by so called Box-Müller method, the following two (transformed) random variables are independent and identically distributed obeying the N(0,1) distribution:

$$X_1 = \sqrt{-2 \log(U_1)} \sin(2\pi U_2) \sim N(0,1)$$
$$X_2 = \sqrt{-2 \log(U_1)} \cos(2\pi U_2) \sim N(0,1)$$

N(μ,σ^2) distribution

- Let $X \sim N(0,1)$
- Then, by the rescaling method,

$$Y = \mu + \sigma X \sim N(\mu,\sigma^2)$$
Contents

• Introduction
• Generation of traffic process realizations
• Generation of random variable realizations
• Collection of data
• Statistical analysis

Collection of data

• Our starting point was that simulation is needed to estimate the value, say α, of some performance parameter
 – This parameter may be related to the transient or the steady-state behaviour of the system.
 – Examples 1 & 2 (transient phase characteristics)
 • average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 • average queue length in an M/M/1 queue during the interval $[0, T]$ assuming that the system is empty in the beginning
 – Example 3 (steady-state characteristics)
 • the average waiting time in an M/M/1 queue in equilibrium
 • For drawing statistically reliable conclusions, multiple samples, X_1, \ldots, X_n, are needed (preferably IID)

Transient phase characteristics (1)

• Example 1:
 – Consider e.g. the average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 – Each simulation run can be stopped when the ith customer enters the service
 – The sample X based on a single simulation run is in this case:

\[
X = \frac{1}{k} \sum_{i=1}^{k} W_i
\]

 • Here W_i = waiting time of the ith customer in this simulation run
 • Multiple IID samples, X_1, \ldots, X_n, can be generated by the method of independent replications:
 • multiple independent simulation runs (using independent random numbers)

Transient phase characteristics (2)

• Example 2:
 – Consider e.g. the average queue length in an M/M/1 queue during the interval $[0, T]$ assuming that the system is empty in the beginning
 – Each simulation run can be stopped at time T (that is: simulation clock = T)
 – The sample X based on a single simulation run is in this case:

\[
X = \frac{1}{T} \int_{0}^{T} \bar{Q}(t) dt
\]

 • Here $\bar{Q}(t) = \text{queue length at time } t \text{ in this simulation run}$
 • Note that this integral is easy to calculate, since $\bar{Q}(t)$ is piecewise constant
 • Multiple IID samples, X_1, \ldots, X_n, can again be generated by the method of independent replications
Steady-state characteristics (1)

- Collection of data in a single simulation run is in principle similar to that of transient phase simulations.
- Collection of data in a single simulation run can **typically** (but not always) be done only after a **warm-up** phase (hiding the transient characteristics) resulting in:
 - overhead = “extra simulation”
 - bias in estimation
 - need for determination of a **sufficiently long** warm-up phase
- Multiple samples, X_1, \ldots, X_n, may be generated by the following three methods:
 - independent replications
 - batch means

Steady-state characteristics (2)

- **Method of independent replications:**
 - multiple independent simulation runs of the same system (using independent random numbers)
 - each simulation run includes the warm-up phase \Rightarrow inefficiency
 - samples IID \Rightarrow accuracy
- **Method of batch means:**
 - one (very) long simulation run divided (artificially) into one warm-up phase and n equal length periods (each of which represents a single simulation run)
 - only one warm-up phase \Rightarrow efficiency
 - samples only approximately IID \Rightarrow inaccuracy,
 - choice of n, the larger the better

Contents

- Introduction
- Generation of traffic process realizations
- Generation of random variable realizations
- Collection of data
 - Statistical analysis

Parameter estimation

- As mentioned, our starting point was that simulation is needed to estimate the value, say α, of some performance parameter.
- Each simulation run yields a (random) sample, say X_i, describing somehow the parameter under consideration.
 - Sample X_i is called **unbiased** if $E[X_i] = \alpha$
- Assuming that the samples X_i are IID with mean α and variance σ^2
 - Then the sample average $\overline{X}_n := \frac{1}{n} \sum_{i=1}^{n} X_i$
 - is **unbiased** and **consistent** estimator of α, since

$$E[\overline{X}_n] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \alpha$$

$$D^2[\overline{X}_n] = \frac{1}{n^2} \sum_{i=1}^{n} D^2[X_i] = \frac{1}{n} \sigma^2 \to 0 \quad (\text{as } n \to \infty)$$
Example

- Consider the average waiting time of the first 25 customers in an M/M/1 queue with load $\rho = 0.9$ assuming that the system is empty in the beginning
 - Theoretical value: $\alpha = 2.12$ (non-trivial)
 - Samples X_i from ten simulation runs ($n = 10$):
 1. 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 - Sample average (point estimate for α):
 $$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{10} (1.05 + 6.44 + \ldots + 1.31) = 1.98$$

Confidence interval (1)

- **Definition:** Interval $(\bar{X}_n - y, \bar{X}_n + y)$ is called the confidence interval for the sample average at confidence level $1 - \beta$ if
 $$P\{|X_n - \alpha| \leq y\} = 1 - \beta$$
 - Idea: “with probability $1 - \beta$, the parameter α belongs to this interval”
- Assume then that samples $X_i, i = 1, \ldots, n$, are IID with unknown mean α but known variance σ^2
- By the Central Limit Theorem (see Lecture 5, Slide 48), for large n,
 $$Z := \frac{X_n - \alpha}{\sigma / \sqrt{n}} \approx \mathcal{N}(0,1)$$

Confidence interval (2)

- Let z_β denote the p-fractile of the $\mathcal{N}(0,1)$ distribution
 - That is: $P(Z \leq z_\beta) = \beta$, where $Z \sim \mathcal{N}(0,1)$
 - Example: for $\beta = 5\%$ ($1 - \beta = 95\%$) $\Rightarrow z_{0.975} \approx 1.96 \approx 2.0$
- **Proposition:** The confidence interval for the sample average at confidence level $1 - \beta$ is
 $$\bar{X}_n \pm z_{\frac{\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$
- **Proof:** By definition, we have to show that
 $$P\{|X_n - \alpha| \leq \frac{y}{1 - \frac{\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}}\} = 1 - \beta$$
11. Simulation

Confidence interval (3)

- In general, however, the variance \(\sigma^2 \) is unknown (in addition to the mean \(\alpha \))
- It can be estimated by the sample variance:

\[
S_n^2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\bar{X}_n^2 \right)
\]

- It is possible to prove that the sample variance is an unbiased and consistent estimator of \(\sigma^2 \):

\[
E[S_n^2] = \sigma^2 \\
D^2[S_n^2] \to 0 \quad (n \to \infty)
\]

Confidence interval (4)

- Assume that samples \(X_i \) are IID obeying the \(N(\alpha, \sigma^2) \) distribution with unknown mean \(\alpha \) and unknown variance \(\sigma^2 \)
- Then it is possible to show that:

\[
T := \frac{\bar{X}_n - \alpha}{S_n / \sqrt{n}} \sim \text{Student}(n-1)
\]

- Let \(t_{n-1,\beta} \) denote the \(p \)-fractile of the Student\((n-1)\) distribution
 - That is: \(P\{T \leq t_{n-1,\beta}\} = \beta \), where \(T \sim \text{Student}(n-1) \)
 - Example 1: \(n = 10 \) and \(\beta = 5\% \), \(t_{9,0.975} \approx 2.26 \approx 2.3 \)
 - Example 2: \(n = 100 \) and \(\beta = 5\% \), \(t_{99,0.975} \approx 1.98 \approx 2.0 \)
 - Thus, the conf. interval for the sample average at conf. level \(1 - \beta \) is

\[
\bar{X}_n \pm t_{n-1,1-\beta} \cdot \frac{S_n}{\sqrt{n}}
\]

Example (continued)

- Consider the average waiting time of the first 25 customers in an \(M/M/1 \) queue with load \(\rho = 0.9 \) assuming that the system is empty in the beginning
 - Theoretical value: \(\alpha = 2.12 \)
 - Samples \(X_i \) from ten simulation runs (\(n = 10 \)):
 - 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 - Sample average = 1.98 and the square root of the sample variance:

\[
S_n = \sqrt{\frac{1}{9} \left((1.05 - 1.98)^2 + \ldots + (1.31 - 1.98)^2 \right)} = 1.78
\]

- So, the confidence interval (that is: interval estimate for \(\alpha \)) at confidence level 95\% is

\[
\bar{X}_n \pm t_{9,0.975} \cdot \frac{S_n}{\sqrt{n}} = 1.98 \pm 2.26 \cdot \frac{1.78}{\sqrt{10}} = 1.98 \pm 1.27 = (0.71, 3.25)
\]

Observations

- Simulation results become more accurate (that is: the interval estimate for \(\alpha \) becomes narrower) when
 - the number \(n \) of simulation runs is increased, or
 - the variance \(\sigma^2 \) of each sample is reduced
 - by running longer individual simulation runs
 - variance reduction methods
 - Given the desired accuracy for the simulation results, the number of required simulation runs can be determined dynamically
11. Simulation

Literature

- I. Mitrani (1982)
 - “Simulation techniques for discrete event systems”
 - Cambridge University Press, Cambridge
 - “Simulation modeling and analysis”
 - McGraw-Hill, New York

THE END