11. Simulation
11. Simulation

Announcement

- **Aim of the lecture**
 - To present simulation as one of the tools used in teletraffic theory
 - To give a brief overview of the different issues in simulation

- **The advanced studies module on Teletraffic theory has also a specialized course on simulation**
 - S-38.3148 Simulation of data networks
 - Mandatory course in the Teletraffic theory advanced studies module
 - Pre-requisite info: S-38.1145 and programming skills (C/C++)
 - Lectured **only** every other year (take this into consideration when planning your studies!)
 - Lectured next time in fall 2008
Contents

- Introduction
 - Generation of traffic process realizations
 - Generation of random variable realizations
 - Collection of data
 - Statistical analysis
What is simulation?

- **Simulation** is (at least from the teletraffic point of view) a statistical method to estimate the performance (or some other important characteristic) of the system under consideration.

- It typically consists of the following four phases:
 - Modelling of the system (real or imaginary) as a dynamic stochastic process
 - Generation of the realizations of this stochastic process (“observations”)
 - Such realizations are called **simulation runs**
 - Collection of data (“measurements”)
 - Statistical analysis of the gathered data, and drawing conclusions
Alternative to what?

• In previous lectures, we have looked at an alternative way to determine the performance: **mathematical analysis**

• We considered the following two phases:
 – Modelling of the system as a stochastic process. (In this course, we have restricted ourselves to birth-death processes.)
 – Solving of the model by means of mathematical analysis

• The modelling phase is common to both of them

• However, the accuracy (faithfulness) of the model that these methods allow can be very different
 – unlike simulation, mathematical analysis typically requires (heavily) restrictive assumptions to be made
Performance analysis of a teletraffic system

Real/imaginary system

modelling

Mathematical model
(as a stochastic process)

validation of the model

Performance analysis

Mathematical analysis

Simulation
11. Simulation

Analysis vs. simulation (1)

- **Pros** of analysis
 - Results produced rapidly (after the analysis is made)
 - Exact (accurate) results (for the model)
 - Gives insight
 - Optimization possible (but typically hard)

- **Cons** of analysis
 - Requires restrictive assumptions
 - ⇒ the resulting model is typically too simple
 (e.g. only stationary behavior)
 - ⇒ performance analysis of complicated systems impossible
 - Even under these assumptions, the analysis itself may be (extremely) hard
11. Simulation

Analysis vs. simulation (2)

- **Pros** of simulation
 - No restrictive assumptions needed (in principle)
 - ⇒ performance analysis of complicated systems possible
 - Modelling straightforward
- **Cons** of simulation
 - Production of results time-consuming
 (simulation programs being typically processor intensive)
 - Results inaccurate (however, they can be made as accurate as required by increasing the number of simulation runs, but this takes even more time)
 - Does not necessarily offer a general insight
 - Optimization possible only between very few alternatives (parameter combinations or controls)
Steps in simulating a stochastic process

• Modelling of the system as a stochastic process
 – This has already been discussed in this course.
 – In the sequel, we will take the model (that is: the stochastic process) for granted.
 – In addition, we will restrict ourselves to simple teletraffic models.

• Generation of the realizations of this stochastic process
 – Generation of random numbers
 – Construction of the realization of the process from event to event (discrete event simulation)
 – Often this step is understood as THE simulation, however this is not generally the case

• Collection of data
 – Transient phase vs. steady state (stationarity, equilibrium)

• Statistical analysis and conclusions
 – Point estimators
 – Confidence intervals
10. Simulation

Implementation

- Simulation is typically implemented as a computer program
- Simulation program generally comprises the following phases (excluding modelling and conclusions)
 - Generation of the realizations of the stochastic process
 - Collection of data
 - Statistical analysis of the gathered data
- Simulation program can be implemented by
 - a general-purpose programming language
 - e.g. C or C++
 - most flexible, but tedious and prone to programming errors
 - utilizing simulation-specific program libraries
 - e.g. CNCL
 - utilizing simulation-specific software
 - e.g. OPNET, BONeS, NS (in part based on p-libraries)
 - most rapid and reliable (depending on the s/w), but rigid
11. Simulation

Other simulation types

- What we have described above, is a **discrete event simulation**
 - the simulation is **discrete** (event-based), **dynamic** (evolving in time) and **stochastic** (including random components)
 - i.e. how to simulate the time evolvement of the mathematical model of the system under consideration, when the aim is to gather information on the system behavior
 - We consider only this type of simulation in this lecture

- Other types:
 - **continuous** simulation: state and parameter spaces of the process are continuous; description of the system typically by differential equations, e.g. simulation of the trajectory of an aircraft
 - **static** simulation: time plays no role as there is no process that produces the events, e.g. numerical integration of a multi-dimensional integral by Monte Carlo method
 - **deterministic** simulation: no random components, e.g. the first example above
11. Simulation

Contents

• Introduction
• Generation of traffic process realizations
• Generation of random variable realizations
• Collection of data
• Statistical analysis
11. Simulation

Generation of traffic process realizations

- Assume that we have modelled as a stochastic process the evolution of the system
- Next step is to generate realizations of this process.
 - For this, we have to:
 - Generate a realization (value) for all the random variables affecting the evolution of the process (taking properly into account all the (statistical) dependencies between these variables)
 - Construct a realization of the process (using the generated values)
 - These two parts are **overlapping**, they are not done separately
 - Realizations for random variables are generated by utilizing *(pseudo)* random number generators
 - The realization of the process is constructed from event to event *(discrete event simulation)*
11. Simulation

Discrete event simulation (1)

- Idea: simulation evolves **from event to event**
 - If nothing happens during an interval, we can just skip it!
- **Basic events** modify (somehow) the state of the system
 - e.g. arrivals and departures of customers in a simple teletraffic model
- **Extra events** related to the data collection
 - including the event for stopping the simulation run or collecting data
- Event identification:
 - **occurrence time** (when event is handled) and
 - **event type** (what and how event is handled)
Discrete event simulation (2)

- Events are organized as an **event list**
 - Events in this list are sorted in ascending order by the occurrence time
 - first: the event occurring next
 - Events are handled one-by-one (in this order) while, at the same time, generating new events to occur later
 - When the event has been processed, it is removed from the list
- **Simulation clock** tells the occurrence time of the next event
 - progressing by jumps
- **System state** tells the current state of the system
11. Simulation

Discrete event simulation (3)

• General algorithm for a single simulation run:
 1 Initialization
 • simulation clock = 0
 • system state = given initial value
 • for each event type, generate next event (whenever possible)
 • construct the event list from these events
 2 Event handling
 • simulation clock = occurrence time of the next event
 • handle the event including
 – generation of new events and their addition to the event list
 – updating of the system state
 • delete the event from the event list
 3 Stopping test
 • if positive, then stop the simulation run; otherwise return to 2
Example (1)

- **Task**: Simulate the M/M/1 queue (more precisely: the evolution of the queue length process) from time 0 to time T assuming that the queue is empty at time 0 and omitting any data collection
 - System state (at time t) = queue length X_t
 - initial value: $X_0 = 0$
 - Basic events:
 - customer arrivals
 - customer departures
 - Extra event:
 - stopping of the simulation run at time T
- **Note**: No collection of data in this example
Example (2)

- **Initialization:**
 - initialize the system state: $X_0 = 0$
 - generate the time till the first arrival from the $\text{Exp}(\lambda)$ distribution

- **Handling of an arrival event (occurring at some time t):**
 - update the system state: $X_t = X_t + 1$
 - if $X_t = 1$, then generate the time $(t + S)$ till the next departure, where S is from the $\text{Exp}(\mu)$ distribution
 - generate the time $(t + I)$ till the next arrival, where I is from the $\text{Exp}(\lambda)$ distribution

- **Handling of a departure event (occurring at some time t):**
 - update the system state: $X_t = X_t - 1$
 - if $X_t > 0$, then generate the time $(t + S)$ till the next departure, where S is from the $\text{Exp}(\mu)$ distribution

- **Stopping test:** $t > T$
Example (3)

- Generation of the events
- Arrival and departure times
- Queue length
Contents

• Introduction
• Generation of traffic process realizations
• Generation of random variable realizations
• Collection of data
• Statistical analysis
11. Simulation

Generation of random variable realizations

- Based on (pseudo) random number generators
- First step:
 - generation of independent uniformly distributed random variables between 0 and 1 (i.e. from $U(0,1)$ distribution) by using random number generators
- Step from the $U(0,1)$ distribution to the desired distribution:
 - rescaling ($\Rightarrow U(a,b)$)
 - discretization (\Rightarrow Bernoulli(p), Bin(n,p), Poisson(a), Geom(p))
 - inverse transform (\Rightarrow Exp(λ))
 - other transforms (\Rightarrow N(0,1) \Rightarrow N(μ,σ^2))
 - acceptance-rejection method (for any continuous random variable defined in a finite interval whose density function is bounded)
 - two independent $U(0,1)$ distributed random variables needed
Random number generator

- **Random number generator** is an algorithm generating (pseudo) random integers Z_i in some interval $0, 1, \ldots, m - 1$
 - The sequence generated is **always** periodic (goal: this period should be as long as possible)
 - Strictly speaking, the numbers generated are not random at all, but totally predictable (thus: pseudo)
 - In practice, however, if the generator is well designed, the numbers “appear” to be IID with uniform distribution inside the set $\{0, 1, \ldots, m-1\}$
- Validation of a random number generator can be based on empirical (statistical) and theoretical tests:
 - uniformity of the generated empirical distribution
 - independence of the generated random numbers (no correlation)
Random number generator types

- **Linear congruential generator**
 - the simplest one
 - next random number is based on just the current one: \(Z_{i+1} = f(Z_i) \) ⇒ period at most \(m \)
- **Multiplicative congruential generator**
 - even simpler
 - a special case of the first type
- **Others:**
 - Additive congruential generators, shuffling, etc.
Linear congruential generator (LCG)

- **Linear congruentual generator** (LCG) uses the following algorithm to generate random numbers belonging to \(\{0, 1, \ldots, m-1\} \):

 \[
 Z_{i+1} = (aZ_i + c) \mod m
 \]

 - Here \(a, c \) and \(m \) are fixed non-negative integers \((a < m, c < m) \)
 - In addition, the starting value (seed) \(Z_0 < m \) should be specified

- **Remarks:**
 - Parameters \(a, c \) and \(m \) should be chosen with care, otherwise the result can be very poor
 - By a right choice of parameters, it is possible to achieve the full period \(m \)
 - e.g. \(m = 2^b \), \(c \) odd, \(a = 4k + 1 \) \((b \) often 48)
Multiplicative congruential generator (MCG)

- **Multiplicative congruential generator** (MCG) uses the following algorithm to generate random numbers belonging to \(\{0,1,\ldots, m-1\}\):

\[
Z_{i+1} = (aZ_i) \mod m
\]

- Here \(a\) and \(m\) are fixed non-negative integers \((a < m)\)
- In addition, the starting value (seed) \(Z_0 < m\) should be specified

- **Remarks:**
 - MCG is clearly a special case of LCG: \(c = 0\)
 - Parameters \(a\) and \(m\) should (still) be chosen with care
 - In this case, it is not possible to achieve the full period \(m\)
 - e.g. if \(m = 2^b\), then the maximum period is \(2^{b-2}\)
 - However, for \(m\) prime, period \(m-1\) is possible (by a proper choice of \(a\))
 - PMMLCG = prime modulus multiplicative LCG
 - e.g. \(m = 2^{31} - 1\) and \(a = 16,807\) (or 630,360,016)
11. Simulation

U(0,1) distribution

- Let Z denote a (pseudo) random number belonging to \(\{0, 1, \ldots, m-1\} \)
- Then (approximately)

\[
U = \frac{Z}{m} \approx U(0,1)
\]
11. Simulation

U(a,b) distribution

- Let $U \sim U(0,1)$
- Then

$$X = a + (b - a)U \sim U(a, b)$$

- This is called the **rescaling** method
Discretization method

- Let $U \sim U(0,1)$
- Assume that Y is a discrete random variable
 - with value set $S = \{0,1,\ldots,n\}$ or $S = \{0,1,2,\ldots\}$
- Denote: $F(x) = P\{Y \leq x\}$, then

$$X = \min\{x \in S \mid F(x) \geq U\} \sim Y$$

- This is called the discretization method
 - a special case of the inverse transform method
- **Example**: Bernoulli(p) distribution

$$X = \begin{cases} 0, & \text{if } U \leq 1 - p \\ 1, & \text{if } U > 1 - p \end{cases} \sim \text{Bernoulli}(p)$$
11. Simulation

Inverse transform method

- Let $U \sim U(0,1)$
- Assume that Y is a **continuous** random variable
- Assume further that $F(x) = P\{Y \leq x\}$ is strictly increasing
- Let $F^{-1}(y)$ denote the inverse of the function $F(x)$, then

\[
X = F^{-1}(U) \sim Y
\]

- This is called the **inverse transform** method
- Proof: Since $P\{U \leq u\} = u$ for all $u \in (0,1)$, we have

\[
P\{X \leq x\} = P\{F^{-1}(U) \leq x\} = P\{U \leq F(x)\} = F(x)
\]
11. Simulation

Exp(λ) distribution

- Let $U \sim U(0,1)$
 - Then also $1-U \sim U(0,1)$
- Let $Y \sim \text{Exp}(\lambda)$
 - $F(x) = P\{Y \leq x\} = 1 - e^{-\lambda x}$ is strictly increasing
 - The inverse transform is $F^{-1}(y) = -(1/\lambda) \log(1-y)$
- Thus, by the inverse transform method,

 $$X = F^{-1}(1-U) = -\frac{1}{\lambda} \log(U) \sim \text{Exp}(\lambda)$$
11. Simulation

N(0,1) distribution

- Let $U_1 \sim U(0,1)$ and $U_2 \sim U(0,1)$ be **independent**
- Then, by so called Box-Müller method, the following two (transformed) random variables are **independent** and identically distributed obeying the $N(0,1)$ distribution:

\[
X_1 = \sqrt{-2 \log(U_1)} \sin(2\pi U_2) \sim N(0,1) \\
X_2 = \sqrt{-2 \log(U_1)} \cos(2\pi U_2) \sim N(0,1)
\]
11. Simulation

\[
N(\mu, \sigma^2) \text{ distribution}
\]

- Let \(X \sim N(0, 1) \)
- Then, by the rescaling method,

\[
Y = \mu + \sigma X \sim N(\mu, \sigma^2)
\]
11. Simulation

Contents

• Introduction
• Generation of traffic process realizations
• Generation of random variable realizations
• Collection of data
• Statistical analysis
Our starting point was that simulation is needed to estimate the value, say α, of some performance parameter

- This parameter may be related to the transient or the steady-state behaviour of the system.

- Examples 1 & 2 (transient phase characteristics)
 - average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 - average queue length in an M/M/1 queue during the interval $[0, T]$ assuming that the system is empty in the beginning

- Example 3 (steady-state characteristics)
 - the average waiting time in an M/M/1 queue in equilibrium

Each simulation run yields one sample, say X, describing somehow the parameter under consideration

For drawing statistically reliable conclusions, multiple samples, $X_1, ..., X_n$, are needed (preferably IID)
11. Simulation

Transient phase characteristics (1)

• Example 1:
 – Consider e.g. the average waiting time of the first k customers in an M/M/1 queue assuming that the system is empty in the beginning
 – Each simulation run can be stopped when the kth customer enters the service
 – The sample X based on a single simulation run is in this case:

$$X = \frac{1}{k} \sum_{i=1}^{k} W_i$$

• Here W_i = waiting time of the ith customer in this simulation run

• Multiple IID samples, X_1, \ldots, X_n, can be generated by the method of independent replications:
 – multiple independent simulation runs (using independent random numbers)
11. Simulation

Transient phase characteristics (2)

- **Example 2:**
 - Consider e.g. the average queue length in an M/M/1 queue during the interval \([0, T]\) assuming that the system is empty in the beginning.
 - Each simulation run can be stopped at time \(T\) (that is: simulation clock = \(T\)).
 - The sample \(X\) based on a single simulation run is in this case:

\[
X = \frac{1}{T} \int_{0}^{T} Q(t) \, dt
\]

- Here \(Q(t)\) = queue length at time \(t\) in this simulation run.
- Note that this integral is easy to calculate, since \(Q(t)\) is piecewise constant.
- Multiple IID samples, \(X_1, ..., X_n\), can again be generated by the method of independent replications.
11. Simulation

Steady-state characteristics (1)

- Collection of data in a single simulation run is in principle similar to that of transient phase simulations.
- Collection of data in a single simulation run can typically (but not always) be done only after a **warm-up** phase (hiding the transient characteristics) resulting in
 - overhead = “extra simulation”
 - bias in estimation
 - need for determination of a **sufficiently long** warm-up phase
- Multiple samples, $X_1, ..., X_n$, may be generated by the following three methods:
 - independent replications
 - batch means
11. Simulation

Steady-state characteristics (2)

- Method of independent replications:
 - multiple independent simulation runs of the same system (using independent random numbers)
 - each simulation run includes the warm-up phase ⇒ inefficiency
 - samples IID ⇒ accuracy

- Method of batch means:
 - one (very) long simulation run divided (artificially) into one warm-up phase and n equal length periods (each of which represents a single simulation run)
 - only one warm-up phase ⇒ efficiency
 - samples only approximately IID ⇒ inaccuracy,
 - choice of n, the larger the better
11. Simulation

Contents

• Introduction
• Generation of traffic process realizations
• Generation of random variable realizations
• Collection of data
• Statistical analysis
Parameter estimation

• As mentioned, our starting point was that simulation is needed to estimate the value, say α, of some performance parameter.

• Each simulation run yields a (random) sample, say X_i, describing somehow the parameter under consideration.
 - Sample X_i is called unbiased if $E[X_i] = \alpha$.

• Assuming that the samples X_i are IID with mean α and variance σ^2.
 - Then the sample average
 \[
 \bar{X}_n := \frac{1}{n} \sum_{i=1}^{n} X_i
 \]
 is unbiased and consistent estimator of α, since
 \[
 E[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \alpha
 \]
 \[
 D^2[\bar{X}_n] = \frac{1}{n^2} \sum_{i=1}^{n} D^2[X_i] = \frac{1}{n} \sigma^2 \rightarrow 0 \text{ (as } n \rightarrow \infty) \]
Example

- Consider the average waiting time of the first 25 customers in an M/M/1 queue with load \(\rho = 0.9 \) assuming that the system is empty in the beginning
 - Theoretical value: \(\alpha = 2.12 \) (non-trivial)
 - Samples \(X_i \) from ten simulation runs \((n = 10) \):
 • 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 - Sample average (point estimate for \(\alpha \)):

\[
\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{10} (1.05 + 6.44 + \ldots + 1.31) = 1.98
\]
11. Simulation

Confidence interval (1)

- **Definition**: Interval \((\bar{X}_n - y, \bar{X}_n + y)\) is called the **confidence interval** for the sample average at **confidence level** \(1 - \beta\) if

\[
P\{ | \bar{X}_n - \alpha | \leq y \} = 1 - \beta
\]

- Idea: “with probability \(1 - \beta\), the parameter \(\alpha\) belongs to this interval”

- Assume then that samples \(X_i, i = 1, \ldots, n\), are IID with unknown mean \(\alpha\) but **known** variance \(\sigma^2\)

- By the Central Limit Theorem (see Lecture 5, Slide 48), for large \(n\),

\[
Z := \frac{\bar{X}_n - \alpha}{\sigma / \sqrt{n}} \approx \mathcal{N}(0,1)
\]
11. Simulation

Confidence interval(2)

- Let \(z_p \) denote the \(p \)-fractile of the \(\mathcal{N}(0,1) \) distribution
 - That is: \(P\{Z \leq z_p\} = p \), where \(Z \sim \mathcal{N}(0,1) \)
 - Example: for \(\beta = 5\% \) (1 − \(\beta = 95\% \)) ⇒ \(z_{1-(\beta/2)} = z_{0.975} \approx 1.96 \approx 2.0 \)

- **Proposition**: The confidence interval for the sample average at confidence level 1 − \(\beta \) is

\[
\bar{X}_n \pm z_{1-\beta/2} \cdot \frac{\sigma}{\sqrt{n}}
\]

- **Proof**: By definition, we have to show that

\[
P\{|\bar{X}_n - \alpha| \leq z_{1-\beta/2} \cdot \frac{\sigma}{\sqrt{n}}\} = 1 - \beta
\]
11. Simulation

\[P\{|\bar{X}_n - \alpha| \leq y\} = 1 - \beta \]

\[\iff P\{\frac{|\bar{X}_n - \alpha|}{\sigma / \sqrt{n}} \leq \frac{y}{\sigma / \sqrt{n}}\} = 1 - \beta \]

\[\iff P\{\frac{-y}{\sigma / \sqrt{n}} \leq \bar{X}_n - \alpha \leq \frac{y}{\sigma / \sqrt{n}}\} = 1 - \beta \]

\[\iff \Phi\left(\frac{y}{\sigma / \sqrt{n}}\right) - \Phi\left(\frac{-y}{\sigma / \sqrt{n}}\right) = 1 - \beta \quad [\Phi(x) := P\{Z \leq x\}] \]

\[\iff \Phi\left(\frac{y}{\sigma / \sqrt{n}}\right) - (1 - \Phi\left(\frac{y}{\sigma / \sqrt{n}}\right)) = 1 - \beta \quad [\Phi(-x) = 1 - \Phi(x)] \]

\[\iff \Phi\left(\frac{y}{\sigma / \sqrt{n}}\right) = 1 - \frac{\beta}{2} \]

\[\iff \frac{y}{\sigma / \sqrt{n}} = \frac{z}{1 - \frac{\beta}{2}} \]

\[\iff y = \frac{z}{1 - \frac{\beta}{2}} \cdot \frac{\sigma}{\sqrt{n}} \]
11. Simulation

Confidence interval (3)

- In general, however, the variance σ^2 is unknown (in addition to the mean α)
- It can be estimated by the sample variance:

$$S^2_n := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n-1} (\sum_{i=1}^{n} X_i^2 - n\bar{X}_n^2)$$

- It is possible to prove that the sample variance is an unbiased and consistent estimator of σ^2:

$$E[S^2_n] = \sigma^2$$

$$D^2[S^2_n] \rightarrow 0 \ (n \rightarrow \infty)$$
11. Simulation

Confidence interval (4)

- Assume that samples X_i are IID obeying the $N(\alpha, \sigma^2)$ distribution with unknown mean α and unknown variance σ^2
- Then it is possible to show that

$$T := \frac{\bar{X}_n - \alpha}{S_n / \sqrt{n}} \sim \text{Student}(n - 1)$$

- Let $t_{n-1,p}$ denote the p-fractile of the Student$(n - 1)$ distribution
 - That is: $P\{T \leq t_{n-1,p}\} = p$, where $T \sim \text{Student}(n - 1)$
 - Example 1: $n = 10$ and $\beta = 5\%$, $t_{n-1,1-\beta/2} = t_{9,0.975} \approx 2.26 \approx 2.3$
 - Example 2: $n = 100$ and $\beta = 5\%$, $t_{n-1,1-\beta/2} = t_{99,0.975} \approx 1.98 \approx 2.0$
- Thus, the conf. interval for the sample average at conf. level $1 - \beta$ is

$$\bar{X}_n \pm t_{n-1,1-\beta/2} \cdot \frac{S_n}{\sqrt{n}}$$
Example (continued)

- Consider the average waiting time of the first 25 customers in an M/M/1 queue with load $\rho = 0.9$ assuming that the system is empty in the beginning
 - Theoretical value: $\alpha = 2.12$
 - Samples X_i from ten simulation runs ($n = 10$):
 - 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31
 - Sample average = 1.98 and the square root of the sample variance:
 \[S_n = \sqrt{\frac{1}{9} \left((1.05 - 1.98)^2 + \ldots + (1.31 - 1.98)^2 \right)} = 1.78 \]
 - So, the confidence interval (that is: interval estimate for α) at confidence level 95% is
 \[\bar{X}_n \pm t_{n-1,1-\beta/2} \cdot \frac{S_n}{\sqrt{n}} = 1.98 \pm 2.26 \cdot \frac{1.78}{\sqrt{10}} = 1.98 \pm 1.27 = (0.71, 3.25) \]
Observations

• Simulation results become more accurate (that is: the interval estimate for α becomes narrower) when
 – the number n of simulation runs is increased, or
 – the variance σ^2 of each sample is reduced
 • by running longer individual simulation runs
 • variance reduction methods
• Given the desired accuracy for the simulation results, the number of required simulation runs can be determined dynamically
11. Simulation

Literature

- I. Mitrani (1982)
 - “Simulation techniques for discrete event systems”
 - Cambridge University Press, Cambridge
 - “Simulation modeling and analysis”
 - McGraw-Hill, New York
11. Simulation

THE END