10. Network models
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Circuit switched network modelled as a loss network
Packet switched network modelled as a queueing network

Teletraffic model of a circuit switched network (1)

Teletraffic model of a circuit switched network (2)

Consider a circuit switched
network
— e.g. a telephone network o
Traffic:
— telephone calls
— each (carried) call occupies one
channel on each link among its
route
System:
— telephone machines (terminals)
— exchanges (network nodes)

— access links (from terminals to
exchanges)

— trunks (between exchanges)

Quality of service:

— described by the end-to-end
call blocking probability
(prob. that a desired connection
cannot be set up due to
congestion along the route of
the connection)

In our model we assume that A

— the network nodes and the
whole access network are non-
blocking

Thus, a call is blocked

— if and only if all channels are
occupied in any trunk network
link along the route of that call




Links j = 1,...,J

Routes r=1,...,R

In our model,

— all links are two-way (why?)
We index the links in the trunk
network by

- j=1,...J

— example on the right: J=6
Let n; denote the number of
channels in link j (that is: the link
capacity)

- n=(n,....ny
Each link is modelled as a

— pure loss system

We define a route as a

— set of consecutive (two-way)
links connecting two network

nodes
We index the routes by
- r=1,...,R

In the example on the right:
- R=12+10+7+3=32
— there are three routes

between nodes a and b:
{1,2}, {6,3}, {5,4,3}

Let d,, = 1 if link / belongs to

route » (otherwise djr =0)

- D=(djr|j= 1,...;r=1,...,R)

Traffic classes

State space

Note:

— End-to-end call blocking prob. is
equal for all the connections
following the same route

Thus the traffic class of a
connection is determined by the
route  the connection follows

— Example on the right: connection
between A and B belongs to
class using route {6,3}

Let x,. denote the number of
active connections following
route r

- X=(X,....Xg)

Vector x is called the state of the
system

The number of active connections x,. for any traffic class r is limited by
the link capacities n; along the corresponding route r :

R
2.djx.<n; forall;j
r=1

The same in vector form:

D-x<n

Thus, the state space S (that is: the set of admissible states) is
S={x>0|D-x<n}

— Note that, due to finite link capacities, set S is finite




Example Set S, of non-blocking states for class r

« Consider

— an arriving call belonging to class r (that is: following route r)
« It will not be blocked by link j belonging to route r

— if there is at least one free channel on linkj:

« 3 links with capacities:
— link a-c: 3 channels
— link b-c: 3 channels
— link c-d: 4 channels
* 2routes:
— route a-c-d
— route b-c-d
— The other 4 routes (which?) are
ignored in this model
+ State space:
- §={(00),(0,1),(0,2),(03),
(1,0),(1,1),(1,2),(1,3),
(2,0),(2,1),(2,2),

R
2 djxp<n;—1 forall jer
r'=1

+ The same in vector form (e, being here the unit vector in direction r):

D-(x+e,)<n

+ The set S, of non-blocking states for class 7 is thus

(3.0.3,1)) S, ={x>0|D-(x+e,)<n}
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Set S, of blocking states for class r Loss network
e The set SrB of blocking states * Assume that
for class r is clearly: — new connection requests belonging to traffic class r arrive (independently)

B according to a Poisson process with intensity A,
5P =S\S,
e Summary:
— an arriving call of class r is
blocked (and lost)
if and only if the state x of the
system belongs to set 5,8
« Example (continued):
— The blocking states S, for
connections of class 1
(using route a-c-d) are
circulated in the figure

- 58={(1,3),(2,2),(3,0),(3,1)} 1 12

— call holding times independently and identically distributed with mean /%
* Denote
— a, =\ (traffic intensity for class r)




Equilibrium distribution (1)

Then it is possible to show that

— the stationary state probability (x) for any state x € S'is as follows:
R
7(0) =G T1 /i (x,)
r=1
where G is a normalizing constant:

R
G=2 [1/(x)

xeS r=1

and the functions f,(x,) are defined as follows:

Equilibrium distribution (2)

Probability m(x) is said to be of product-form
— However, the number of active connections of different classes are not
independent (since the normalizing constant G depends on each x,)
— Only if all the links had infinite capacities,
all the traffic classes would be independent of each other
— Thus, it is the limited resources shared by the traffic classes
that makes them dependent on each other

Xp
fr (xr )= i
X!
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PASTA End-to-end blocking: exact formula

Consider, for a while,

— any simple teletraffic model with Poisson arrivals
According to so called PASTA (Poisson Arrivals See Time Averages)
property,

— arriving calls (obeying a Poisson process) see the system in equilibrium
This is an important observation

— applicable in many problems
For example,

— it allows us to calculate the end-to-end blocking probabilities in our circuit
switched network model (since we assumed that new calls arrive according
to a Poisson process)

The probability that the system is in a state such that it cannot accept
any more connections of type r is clearly given by the sum

2 7(x)
xeSf

— Call this the end-to-end time blocking probability for class »
Due to the PASTA property,
— the end-to-end call blocking probability B, equals this:

B.= > r(x)
xeSﬁ

Since there is no difference between time and call blocking in this case,
we may briefly call it end-to-end blocking.




Example

» Consider the example presented in slide 9 (and continued in slide 11)
+ The end-to-end blocking probability B; for class 1 will be

B =7(13)+7(2,2)+7(3,0)+7(3,1) =

Approximative methods
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In practice,
— itis extremely hard (even impossible) to apply the exact formula
— This is due to the so called state space explosion:
there are as many dimensions in the state spaces as
there are routes in our model
= exponential growth of the state space
Thus, approximative methods are needed
— Below we will present (the simplest) one of them: product bound
Product Bound method
— estimate first blocking probabilities in each separate link
(common to all traffic classes)
— calculate then the end-to-end blocking probabilities for each class
based on the hypothesis that “blocking occurs independently in each link”

Product Bound (1)

» Consider first the blocking probability B(;) in an arbitrary link j
— Let R(j) denote the set of routes that use link j
« If the capacities of all the other links (but j) were infinite,

— linkj could be modelled as a loss system where new calls arrive according
to a Poisson process with intensity A(f),

ﬂ,(]) = Z ’1r
reR(j)

— In this case, the blocking probability could be calculated from formula

B(j)=Etl(n;, > a,)
reR(j)

— Note that this is really an approximation, since the traffic offered to link j is
smaller due to blockings in other links (and not even of Poisson type).
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Product Bound (2)

Consider then the end-to-end blocking probability B, for class r
— Let J(r) denote the set of the links that belong to route »
— Note that an arriving call of class 7 will not be blocked,
if it is not blocked in any link j € J(r)
If blocking occured independently in each link,
— an arriving call of class  would be blocked with probability

B, = I_Hjej(r)(l - B()))
— Note that for small values of B(j)’'s, we can use the following approximation:

B, ~ ZJGJ(r)B(j)

20
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Teletraffic model of a packet switched network (1)

Consider a connectionless
packet switched network at
packet level

— e.g. an Internet subnetwork
Traffic:

— data packets

— identified by their source (A) and
destination (B)

System:
— workstations & servers
(terminals)
— routers (network nodes)

— access links
(from terminals to routers)

— trunks (between routers)

Teletraffic model of a packet switched network (2)

End-to-end delay components

* Quality of service:

— described by the average end-
to-end packet delay (the mean
time for a packet to get from the
source (A) to the destination (B))

« However, in our model

— we restrict ourselves to the
average trunk network delay
(the mean time for a packet to
get from the source router (a) to
the destination router (b))

— implicitly, we assume that the
delay due to access network is
negligible (or, at least, almost
deterministic)
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Trunk network delay consists of

— propagation delays (in links)

— transmission delays (in links)

— processing delays (in nodes)

— queueing delays (before transmission and before processing)
Note that

— propagation and transmission delays are deterministic,

— processing delays might be random, and

— queueing delays are surely random
In our model,

— we will take into account the transmission and the related queueing delays

— but we will ignore the propagation delays in links and the delays in nodes
(the processing and the related queueing delays)
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Links j = 1,...,J

Routes r=1,...,R

« In this case we separate the
directions so that
— all links are one-way (why?)
* We index the links in the trunk
network by

— example on the right: J= 12

« Let Cj denote the capacity of
link j (in bps)

We define here a route as an
— ordered set of consecutive (one-
way) links connecting two
network nodes (called origin and
destination)
We index the routes by
- r=1,.., R
In the example on the right:
- R=2%(12+10+7+3) = 64
— there are three routes
from node a to node b:
(1,3), (11,6), (10,8,6)
— for these routes,
node a is the origin and
node b is the destination
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Individual link model Packet arrival rates in links
« Each link is modelled as a * Let
— pure waiting system (with a single server and an infinite buffer) — M) = arrival rate of packets following route r
+ Let —  R(j) = the set of routes that use link j
- kj = arrival rate of packets to be transmitted on link j (in packets/s) » can be deduced from the routing tables
— L = mean packet length (in bits) « |t follows that the arrival rate for link j is as follows:
- l/uj = L/Cj = average packet transmission time on link j (in seconds)
« Stability requirement: A, < . /Ij = Z/I(")
J J g
reR(j)
CJ/L
A
[ -5
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Traffic classes

State space

Note:

— Average end-to-end delay is
equal for all the packets
following the same route

Thus,

— the traffic class of a packet is
determined by the route r that
the connection follows
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* Letx; = denote the number of packets in queue j (including the packet
being transmitted (if any))

- X=(X,...X))
* Vector x is called the state of the system

— A more detailed state description (including the position and traffic class of
each packet in the whole system) is not needed under the assumptions that
we will make later!

* In this case, x;can have any non-negative value

* Thus, the state space S'is
S={x=>0}

— Note that, set S is now infinite
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Example

Queueing network

2 links:

— link a-b

— link b-c

3 routes:

— route a-b

— route b-c

— route a-b-c

State space:

- 5={00).
(1,0),(0,1),
(2,0),(1,1),(0,2),
(3,0),(2,1),(1,2),(0,3), N 0 12 3 4
- ®z20 /[~
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* Assume that

— new packets following route r arrive (independently)
according to a Poisson process with intensity A(7)

— packet lengths are independently and exponentially distributed
with mean L

« It follows that

— new packets to be transmitted on link j arrive (independently)
according to a Poisson process with intensity Xj, where

ﬂ’j = 2A(r)
reR(j)

— packet transmission times are independently and exponentially distributed
with mean l/uj = L/Cj
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Equilibrium distribution (1) Equilibrium distribution (2)

« Assume further that » Probability m(x) is again said to be of product-form
— the system is stable: kj <y for all — Now, the number of packets in different queues are independent (why?)
— packet length is independently redrawn (from the same distribution) + Each individual queue j behaves as an M/M/1 queue

every time the packet moves from one link to another

L Rk . ' — Number of packets in queue j follows a geometric distribution with mean
« This is so called Kleinrock’s independence assumption

* Under these assumptions, it is possible to show that X. = Pj
— the stationary state probability (x) for any state x € S'is as follows: U pj
J
X
z(x)=[1A-p;)p;"/
J=1
— where yer denotes the traffic load of link J:
A, A;L
py="L 00"
py Ly
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Mean end-to-end delay

* Consider then the mean end-to-end delay for class r
— Let J(r) denote the set of the links that belong to route r

* In our model, the mean end-to-end delay will be

— the sum of mean delays experienced in the links along the route
(including both the transmission delay and the queueing delay)

« By Little’s formula, the mean link delay is

Ta A l-py omyl-p opy— A

¢ Thus, the mean end-to-end delay for class r is

FoXi_1 P 11 1

Tr)= Y T;= Yy —L—= ¥ —L-
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