9. Sharing systems

Simple teletraffic model

- **Customers arrive** at rate λ (customers per time unit)
 - $1/\lambda$ = average inter-arrival time
- **Customers are served** by n parallel servers
- When busy, a server serves at rate μ (customers per time unit)
 - $1/\mu$ = average service time of a customer
- There are $n + m$ customer places in the system
 - at least n service places and at most m waiting places
- It is assumed that blocked customers (arriving in a full system) are lost

Pure sharing system

- Finite number of servers ($n < \infty$), infinite number of service places ($n + m = \infty$), no waiting places
 - If there are at most n customers in the system ($x \leq n$), each customer has its own server. Otherwise ($x > n$), the total service rate ($n\mu$) is shared fairly among all customers.
 - Thus, the rate at which a customer is served equals $\min\{\mu, n\mu/x\}$
 - No customers are lost, and no one needs to wait before the service.
 - But the delay is the greater, the more there are customers in the system. Thus, delay is an interesting measure from the customer’s point of view.
9. Sharing systems

Contents

• Refresher: Simple teletraffic model
 • M/M/1-PS (∞ customers, 1 server, ∞ customer places)
 • M/M/n-PS (∞ customers, n servers, ∞ customer places)
• Application to flow level modelling of elastic data traffic
 • M/M/1/k/k-PS (k customers, 1 server, k customer places)

9. Sharing systems

M/M/1-PS queue

• Consider the following simple teletraffic model:
 – Infinite number of independent customers ($k = \infty$)
 – Interarrival times are IID and exponentially distributed with mean $1/\lambda$.
 • so, customers arrive according to a Poisson process with intensity λ.
 – One server ($n = 1$)
 – Service requirements are IID and exponentially distributed with mean $1/\mu$.
 – Infinite number of customer places ($p = \infty$)
 – Queueing discipline: PS. All customers are served simultaneously in a fair way with equal shares of the service capacity μ.
• Using Kendall’s notation, this is an M/M/1-PS queue
• Notation:
 – $\rho = \lambda/\mu$ = traffic load

State transition diagram

• Let $X(t)$ denote the number of customers in the system at time t
 – Assume that $X(t) = i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
 • with prob. $\lambda h + o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
 • if $i > 0$, then, with prob. $i(\mu/\mu)h + o(h) = \mu h + o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
• Process $X(t)$ is clearly a Markov process with state transition diagram

Equilibrium distribution (1)

• Local balance equations (LBE):
 \[\pi_i \lambda = \pi_{i+1} \mu \] (LBE)
 \[\Rightarrow \pi_{i+1} = \frac{\lambda}{\mu} \pi_i = \rho \pi_i \]
 \[\Rightarrow \pi_i = \rho^i \pi_0, \quad i = 0,1,2,\ldots \]
• Normalizing condition (N):
 \[\sum_{i=0}^{\infty} \pi_i = \pi_0 \sum_{i=0}^{\infty} \rho^i = 1 \] (N)
 \[\Rightarrow \pi_0 = \left(\sum_{i=0}^{\infty} \rho^i \right)^{-1} \left(\frac{1}{1-\rho} \right)^{-1} = 1 - \rho, \quad \text{if } \rho < 1 \]
Equilibrium distribution (2)

- Thus, for a **stable** system ($\rho < 1$), the equilibrium distribution exists and is a geometric distribution:

$$\rho < 1 \Rightarrow X \sim \text{Geom}(\rho)$$

$$P\{X = i\} = \pi_i = (1 - \rho)\rho^i, \quad i = 0,1,2,...$$

$$E[X] = \frac{\rho}{1 - \rho}, \quad D^2[X] = \frac{\rho}{(1 - \rho)^2}$$

- **Remark**: Insensitivity with respect to service time distribution
 - The result for the PS discipline is **insensitive** to the service time distribution, that is: it is valid for any service time distribution with mean $1/\mu$.
 - So, instead of the M/M/1-PS model, we can consider, as well, the more general M/G/1-PS model.

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer.
- Since the mean number of customers in the system, $E[X]$, is the same for all work-conserving queueing disciplines, also the mean delay is the same, by Little’s result.
- Thus, we may apply the result derived for the FIFO discipline in Lect. 8:

$$E[D] = \frac{1}{\mu} \cdot \frac{1}{1 - \rho}$$

Mean delay $E[D]$ vs. traffic load ρ

- Note that the time unit is the average service requirement $E[S]$.

Relative throughput

- A quality of service measure is the relative throughput $E[S]/E[D]$:

$$\frac{E[S]}{E[D]} = \frac{1}{\mu} \cdot \mu(1 - \rho) = 1 - \rho$$
9. Sharing systems

Contents

- Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- M/M/1/k-k-PS (k customers, 1 server, k customer places)

Relative throughput $E[S]/E[D]$ vs. traffic load ρ

![Graph](image)

M/M/n-PS queue

- Consider the following simple teletraffic model:
 - Infinite number of independent customers ($k = \infty$)
 - Interarrival times are IID and exponentially distributed with mean $1/\lambda$.
 - So, customers arrive according to a Poisson process with intensity λ.
 - Finite number of servers ($n < \infty$)
 - Service requirements are IID and exponentially distributed with mean $1/\mu$.
 - Infinite number of customer places ($p = \infty$)
 - Queueing discipline: PS. If there are at most n customers in the system ($i \leq n$), each customer has its own server. Otherwise ($i > n$), the total service rate ($n\mu$) is shared fairly among all customers.

- Using Kendall’s notation, this is an M/M/n-PS queue

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
 - Assume that $X(t) = i$ at some time t, and consider what happens during a short time interval $(t, t+h)$:
 - With prob. $\lambda h + o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
 - If $i > 0$, then, with prob. $i\min\{\mu, n\mu/i\}h + o(h) = \min\{i, n\} \mu h + o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
 - Process $X(t)$ is clearly a Markov process with state transition diagram

![Diagram](image)

- Note that this is the same irreducible birth-death process with an infinite state space $S = \{0,1,2,\ldots\}$ as for the M/M/n-FIFO queue.
Equilibrium distribution (1)

- Local balance equations (LBE) for $i < n$:
 \[\pi_i \lambda = \pi_{i+1} (i+1) \mu \quad \text{(LBE)} \]
 \[\Rightarrow \pi_{i+1} = \frac{\lambda}{(i+1) \mu} \pi_i = \frac{\lambda}{i+1} \pi_i \]
 \[\Rightarrow \pi_i = \frac{(n \rho)^i}{i!} \pi_0, \quad i = 0, 1, \ldots, n \]

- Local balance equations (LBE) for $i \geq n$:
 \[\pi_i \lambda = \pi_{i+1} n \mu \quad \text{(LBE)} \]
 \[\Rightarrow \pi_{i+1} = \frac{\lambda}{n \mu} \pi_i = \rho \pi_i \]
 \[\Rightarrow \pi_i = \rho^{i-n} \pi_n = \frac{\rho^{i-n}}{i!} n! \pi_0 = \frac{n^i \rho^n}{n!} \pi_0, \quad i = n, n+1, \ldots \]

Equilibrium distribution (2)

- Normalizing condition (N):
 \[\sum_{i=0}^{\infty} \pi_i = \pi_0 \left(\sum_{i=0}^{n-1} \frac{(n \rho)^i}{i!} + \sum_{i=n}^{\infty} \frac{n^i \rho^n}{n!} \right) = 1 \quad \text{(N)} \]
 \[\Rightarrow \pi_0 = \left(\frac{\sum_{i=0}^{n-1} \frac{(n \rho)^i}{i!} + \frac{n^i \rho^n}{n!} \sum_{i=n}^{\infty} \rho^i}{\sum_{i=0}^{n-1} \frac{(n \rho)^i}{i!} + \frac{n^i \rho^n}{n!} \sum_{i=n}^{\infty} \rho^i} \right)^{-1} = \frac{1}{\alpha + \beta}, \quad \text{if } \rho < 1 \]
 Notation: \[\alpha = \sum_{i=0}^{n-1} \frac{(n \rho)^i}{i!}, \quad \beta = \frac{(n \rho)^n}{n! (1-\rho)} \]

Equilibrium distribution (3)

- Thus, for a stable system ($\rho < 1$, that is: $\lambda < n \mu$), the equilibrium distribution exists and is as follows:
 \[\rho < 1 \Rightarrow P\{X = i\} = \pi_i = \begin{cases} \frac{(n \rho)^i}{i!} \cdot \frac{1}{\alpha + \beta}, & i = 0, 1, \ldots, n \\ \frac{n^i \rho^n}{i!} \cdot \frac{1}{\alpha + \beta}, & i = n, n+1, \ldots \end{cases} \]

- Remark: Insensitivity with respect to service time distribution
 - The result for the PS discipline is insensitive to the service time distribution, that is: it is valid for any service time distribution with mean $1/\mu$
 - So, instead of the M/M/n-PS model, we can consider, as well, the more general M/G/n-PS model

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer
- Since the mean number of customers in the system, $E[X]$, is the same for all work-conserving queueing disciplines, also the mean delay is the same, by Little’s result.
- Thus, we may apply the result derived for the FIFO discipline in Lect. 8:
 \[E[D] = \frac{1}{\mu} \left(\frac{p_w}{n(1-\rho)} + 1 \right) \]
 \[- \text{where } p_w \text{ refers to the probability} \]
 \[p_w = P\{X^* \geq n\} = \sum_{i=n}^{\infty} \pi_i = \sum_{i=n}^{\infty} \pi_0 \cdot \frac{n^i \rho^n}{i!} \pi_0 \cdot \frac{(n \rho)^n}{n! (1-\rho)} = \frac{\beta}{\alpha + \beta} \]
9. Sharing systems

Mean delay $E[D]$ vs. traffic load ρ

- Note that the time unit is the average service requirement $E[S]$.

Relative throughput

A quality of service measure is the relative throughput $E[S]/E[D]$:

$$
\frac{E[S]}{E[D]} = \frac{1}{\mu} \cdot \frac{\mu (1-\rho)}{p_W (n) + n(1-\rho)} = \frac{n(1-\rho)}{p_W (n) + n(1-\rho)}
$$

$$
n = 1: \quad \frac{E[S]}{E[D]} = \frac{1-\rho}{p_W (1) + 1-\rho} = 1 - \rho
$$

$$
n = 2: \quad \frac{E[S]}{E[D]} = \frac{2(1-\rho)}{p_W (2) + 2(1-\rho)} = 1 - \rho^2
$$

Contents

- Refresher: Simple teletraffic model
- $M/M/1$-PS (∞ customers, 1 server, ∞ customer places)
- $M/M/n$-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- $M/M/1/k/k$-PS (k customers, 1 server, k customer places)
Application to flow level modelling of elastic data traffic

- M/G/n-PS model is applicable to flow level modelling of elastic data traffic
 - customer = TCP flow
 - λ = flow arrival rate (flows per time unit)
 - r = access link speed for a flow (data units per time unit)
 - $C = nr$ = speed of the shared link (data units per time unit)
 - $E[L]$ = average flow size (data units)
 - $E[S] = 1/\mu = E[L]/r$ = average flow transfer time with access link rate
 - $\rho = \lambda/(n\mu)$ = traffic load
- A quality of service measure is the throughput
 \[
 \theta = \frac{E[L]}{E[D]} = \frac{r \cdot E[S]}{E[D]} = \frac{r \cdot n(1 - \rho)}{p_0^k(n + n(1 - \rho))} = \frac{(1 - \rho)}{p_0^k(n + n(1 - \rho))}
 \]

Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
 - M/M/1/k-PS (k customers, 1 server, k customer places)

Throughput θ vs. traffic load ρ

- Note that the rate unit is the link rate C

M/M/1/k-PS queue

- Consider the following simple teletraffic model:
 - Finite number of independent customers ($k < \infty$)
 - on-off type customers (alternating between idleness and activity)
 - Idle times are IID and exponentially distributed with mean $1/\nu$
 - One server ($n = 1$)
 - Service requirements are IID and exponentially distributed with mean $1/\mu$
 - As many customer places as customers ($p = k$)
 - Queueing discipline: PS
- Using Kendall’s notation, this is an M/M/1/k/k-PS queue
- On-off type customer:
9. Sharing systems

State transition diagram

- Let \(X(t) \) denote the number of customers in the system at time \(t \)
 - Assume that \(X(t) = i \) at some time \(t \), and consider what happens during a short time interval \((t, t+h)\):
 - if \(i < k \), then, with prob. \((k-i)\nu h + o(h)\), an idle customer becomes active (state transition \(i \to i+1 \))
 - if \(i > 0 \), then, with prob. \(i\mu h + o(h) = \mu + o(h)\), an active customer becomes idle (state transition \(i \to i-1 \))
- Process \(X(t) \) is clearly a Markov process with state transition diagram

\[
\begin{array}{cccccc}
0 & \frac{k\nu}{\mu} & 1 & (k-1)\nu & \vdots & \frac{2\nu}{\mu} \to \frac{\nu}{\mu} \to \frac{k\nu}{\mu} & k \\
\end{array}
\]

- Note that process \(X(t) \) is an irreducible birth-death process with a finite state space \(S = \{0, 1, \ldots, k\} \)

Equilibrium distribution (1)

- Local balance equations (LBE):
 \[\pi_i (k-i)\nu = \pi_{i+1} \mu \]
 \[\Rightarrow \pi_i = \frac{\mu}{(k-i)\nu} \pi_{i+1} \]
 \[\Rightarrow \pi_i = \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} \pi_k, \quad i = 0, 1, \ldots, k \]

Equilibrium distribution (2)

- Normalizing condition (N):
 \[\sum_{i=0}^{k} \pi_i = \pi_k \sum_{i=0}^{k} \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} = 1 \]
 \[\Rightarrow \pi_k = \left(\sum_{i=0}^{k} \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} \right)^{-1} \]
 \[\Rightarrow \pi_i = \pi_k \cdot \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} = \frac{1}{(k-i)!} \left(\frac{\nu}{\mu} \right)^i \sum_{i'=0}^{k} \frac{1}{(k-i')!} \left(\frac{\nu}{\mu} \right)^i \]