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9. Sharing systems

Simple teletraffic model

• Customers arrive at rate λ (customers per time unit)

– 1/λ = average inter-arrival time

• Customers are served by n parallel servers

• When busy, a server serves at rate µ (customers per time unit)

– 1/µ = average service time of a customer

• There are n + m customer places in the system

– at least n service places and at most m waiting places

• It is assumed that blocked customers (arriving in a full system) are lost
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9. Sharing systems

Pure sharing system

• Finite number of servers (n < ∞), infinite number of service places 

(n + m = ∞), no waiting places

– If there are at most n customers in the system (x ≤ n), each customer has 

its own server. Otherwise (x > n), the total service rate (nµ) is shared fairly 
among all customers.

– Thus, the rate at which a customer is served equals min{µ,nµ/x}

– No customers are lost, and no one needs to wait before the service. 

– But the delay is the greater, the more there are customers in the system. 

Thus, delay is an interesing measure from the customer’s point of view.
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9. Sharing systems

M/M/1-PS queue

• Consider the following simple teletraffic model:

– Infinite number of independent customers (k = ∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ

• so, customers arrive according to a Poisson process with intensity λ

– One server (n = 1)

– Service requirements are IID and exponentially distributed with mean 1/µ

– Infinite number of customer places (p = ∞)

– Queueing discipline: PS. All customers are served simultaneously in a fair 

way with equal shares of the service capacity µ.

• Using Kendall’s notation, this is an M/M/1-PS queue

• Notation:

– ρ = λ/µ = traffic load
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9. Sharing systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h), 

a new customer arrives (state transition i→ i+1)

• if i > 0, then, with prob. i(µ/i)h + o(h) = µh + o(h), 

a customer leaves the system (state transition i→ i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that this is the same irreducible birth-death process with an infinite 

state space S = {0,1,2,...} as for the M/M/1-FIFO queue.

1 2

λ

µ
0

λ

µ

λ

µ



8

9. Sharing systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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9. Sharing systems

Equilibrium distribution (2)

• Thus, for a stable system (ρ < 1),  the equilibrium distribution exists 
and is a geometric distribution:

• Remark: Insensitivity with respect to service time distribution 

– The result for the PS discipline is insensitive to the service time 

distribution, that is: it is valid for any service time distribution with mean 1/µ

– So, instead of the M/M/1-PS model, we can consider, as well, the more 

general M/G/1-PS model
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9. Sharing systems

Mean delay

• Let D denote the total time (delay) in the system of a (typical) customer

• Since the mean number of customers in the system, E[X], is the same
for all work-conserving queueing disciplines, also the mean delay is the 

same, by Little’s result.

• Thus, we may apply the result derived for the FIFO discipline in Lect. 8:
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9. Sharing systems

Mean delay E[D] vs. traffic load ρ

– Note that the time unit is the average service requirement E[S]

traffic load ρ

E[D]
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9. Sharing systems

Relative throughput

• A quality of service measure is the relative throughput E[S]/E[D]:
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9. Sharing systems

Relative throughput E[S]/E[D] vs. traffic load ρ

traffic load ρ

E[S]/E[D]

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1



14

9. Sharing systems

Contents

• Refresher: Simple teletraffic model

• M/M/1-PS (∞ customers, 1 server, ∞ customer places)

• M/M/n-PS (∞ customers, n servers, ∞ customer places)

• Application to flow level modelling of elastic data traffic

• M/M/1/k/k-PS (k customers, 1 server, k customer places)



15

9. Sharing systems

M/M/n-PS queue

• Consider the following simple teletraffic model:

– Infinite number of independent customers (k = ∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ

• so, customers arrive according to a Poisson process with intensity λ

– Finite number of servers (n < ∞)

– Service requirements are IID and exponentially distributed with mean 1/µ

– Infinite number of customer places (p = ∞)

– Queueing discipline: PS. If there are at most n customers in the system

(i ≤ n), each customer has its own server. Otherwise (i > n), the total 

service rate (nµ) is shared fairly among all customers.

• Using Kendall’s notation, this is an M/M/n-PS queue

• Notation:

– ρ = λ/(nµ) = traffic load
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9. Sharing systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h), 

a new customer arrives (state transition i → i+1)

• if i > 0, then, with prob. i⋅min{µ,nµ/i}⋅h + o(h) = min{i,n}⋅µh + o(h), 

a customer leaves the system (state transition i → i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that this is the same irreducible birth-death process with an infinite 

state space S = {0,1,2,...} as for the M/M/n-FIFO queue.
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9. Sharing systems

17

Equilibrium distribution (1)

• Local balance equations (LBE) for i < n:

• Local balance equations (LBE) for i ≥ n:
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9. Sharing systems

Equilibrium distribution (2)

• Normalizing condition (N):
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9. Sharing systems

Equilibrium distribution (3)

• Thus, for a stable system (ρ < 1, that is: λ < nµ),  the equilibrium 
distribution exists and is as follows:

• Remark: Insensitivity with respect to service time distribution 

– The result for the PS discipline is insensitive to the service time 

distribution, that is: it is valid for any service time distribution with mean 1/µ

– So, instead of the M/M/n-PS model, we can consider, as well, the more 

general M/G/n-PS model
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9. Sharing systems

Mean delay

• Let D denote the total time (delay) in the system of a (typical) customer

• Since the mean number of customers in the system, E[X], is the same
for all work-conserving queueing disciplines, also the mean delay is the 

same, by Little’s result.

• Thus, we may apply the result derived for the FIFO discipline in Lect. 8:
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9. Sharing systems

Mean delay E[D] vs. traffic load ρ

– Note that the time unit is the average service requirement E[S]

traffic load ρ

E[D]
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9. Sharing systems

Relative throughput

• A quality of service measure is the relative throughput E[S]/E[D]:
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9. Sharing systems

Relative throughput E[S]/E[D] vs. traffic load ρ

traffic load ρ

E[S]/E[D]
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9. Sharing systems

Application to flow level modelling of elastic data traffic

• M/G/n-PS model is applicable to flow level modelling of elastic data 

traffic

– customer = TCP flow

– λ = flow arrival rate (flows per time unit)

– r = access link speed for a flow (data units per time unit)

– C = nr = speed of the shared link (data units per time unit)

– E[L] = average flow size (data units)

– E[S] = 1/µ = E[L]/r = average flow transfer time with access link rate

– ρ = λ/(nµ) = traffic load

• A quality of service measure is the throughput
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9. Sharing systems
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9. Sharing systems

M/M/1/k/k-PS queue

• Consider the following simple teletraffic model:

– Finite number of independent customers (k < ∞)

• on-off type customers (alternating between idleness and activity)

– Idle times are IID and exponentially distributed with mean 1/ν

– One server (n = 1)

– Service requirements are IID and exponentially distributed with mean 1/µ

– As many customer places as customers (p = k)

– Queueing discipline: PS.

• Using Kendall’s notation, this is an  M/M/1/k/k-PS queue

• On-off type customer: 
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9. Sharing systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• if i < k, then, with prob. (k−i)νh + o(h), 

an idle customer becomes active (state transition i→ i+1)

• if i > 0, then, with prob. i(µ/i)h + o(h) = µ + o(h), 

an active customer becomes idle (state transition i→ i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process 

with a finite state space S = {0,1,…,k}
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Equilibrium distribution (1)

• Local balance equations (LBE):
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9. Sharing systems

Equilibrium distribution (2)

• Normalizing condition (N):
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9. Sharing systems

THE END


