9. Sharing systems
9. Sharing systems

Contents

• Refresher: Simple teletraffic model
 • M/M/1-PS (∞ customers, 1 server, ∞ customer places)
 • M/M/n-PS (∞ customers, n servers, ∞ customer places)
 • Application to flow level modelling of elastic data traffic
 • M/M/1/k/k-PS (k customers, 1 server, k customer places)
9. Sharing systems

Simple teletraffic model

- **Customers arrive** at rate λ (customers per time unit)
 - $1/\lambda$ = average inter-arrival time
- Customers are **served** by n parallel **servers**
- When busy, a server serves at rate μ (customers per time unit)
 - $1/\mu$ = average service time of a customer
- There are $n + m$ **customer places** in the system
 - at least n **service places** and at most m **waiting places**
- It is assumed that blocked customers (arriving in a full system) are lost
Pure sharing system

- Finite number of servers \((n < \infty)\), infinite number of service places \((n + m = \infty)\), no waiting places
 - If there are at most \(n\) customers in the system \((x \leq n)\), each customer has its own server. Otherwise \((x > n)\), the total service rate \((n\mu)\) is shared fairly among all customers.
 - Thus, the rate at which a customer is served equals \(\min\{\mu, n\mu/x\}\)
 - No customers are lost, and no one needs to wait before the service.
 - But the delay is the greater, the more there are customers in the system. Thus, delay is an interesting measure from the customer’s point of view.
Contents

• Refresher: Simple teletraffic model
• M/M/1-PS (∞ customers, 1 server, ∞ customer places)
• M/M/n-PS (∞ customers, n servers, ∞ customer places)
• Application to flow level modelling of elastic data traffic
• M/M/1/k/k-PS (k customers, 1 server, k customer places)
9. Sharing systems

M/M/1-PS queue

- Consider the following simple teletraffic model:
 - Infinite number of independent customers \(k = \infty \)
 - Interarrival times are IID and exponentially distributed with mean \(1/\lambda \)
 - so, customers arrive according to a Poisson process with intensity \(\lambda \)
 - One server \(n = 1 \)
 - Service requirements are IID and exponentially distributed with mean \(1/\mu \)
 - Infinite number of customer places \(p = \infty \)
 - Queueing discipline: **PS**. All customers are served simultaneously in a fair way with equal shares of the service capacity \(\mu \).
- Using Kendall’s notation, this is an **M/M/1-PS queue**
- Notation:
 - \(\rho = \lambda/\mu = \text{traffic load} \)
9. Sharing systems

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
 - Assume that $X(t) = i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
 - with prob. $\lambda h + o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
 - if $i > 0$, then, with prob. $i(\mu/i)h + o(h) = \mu h + o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

```
0 1 2 ...
\lambda \mu \lambda \mu \lambda
```

- Note that this is the same irreducible birth-death process with an infinite state space $S = \{0,1,2,\ldots\}$ as for the M/M/1-FIFO queue.
9. Sharing systems

Equilibrium distribution (1)

- Local balance equations (LBE):

\[\pi_i \lambda = \pi_{i+1} \mu \] \hspace{1cm} (LBE)

\[\Rightarrow \pi_{i+1} = \frac{\lambda}{\mu} \pi_i = \rho \pi_i \]

\[\Rightarrow \pi_i = \rho^i \pi_0, \ i = 0, 1, 2, \ldots \]

- Normalizing condition (N):

\[\sum_{i=0}^{\infty} \pi_i = \pi_0 \sum_{i=0}^{\infty} \rho^i = 1 \] \hspace{1cm} (N)

\[\Rightarrow \pi_0 = \left(\sum_{i=0}^{\infty} \rho^i \right)^{-1} = \left(\frac{1}{1-\rho} \right)^{-1} = 1 - \rho, \text{ if } \rho < 1 \]
9. Sharing systems

Equilibrium distribution (2)

- Thus, for a **stable** system ($\rho < 1$), the equilibrium distribution exists and is a **geometric distribution**:

\[
\rho < 1 \implies X \sim \text{Geom}(\rho)
\]

\[
P\{X = i\} = \pi_i = (1 - \rho)\rho^i, \quad i = 0,1,2,\ldots
\]

\[
E[X] = \frac{\rho}{1 - \rho}, \quad D^2[X] = \frac{\rho}{(1 - \rho)^2}
\]

- **Remark**: Insensitivity with respect to service time distribution
 - The result for the PS discipline is **insensitive** to the service time distribution, that is: it is valid for **any** service time distribution with mean $1/\mu$
 - So, instead of the M/M/1-PS model, we can consider, as well, the more general M/G/1-PS model
9. Sharing systems

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer.
- Since the mean number of customers in the system, $E[X]$, is the same for all work-conserving queueing disciplines, also the mean delay is the same, by Little’s result.
- Thus, we may apply the result derived for the FIFO discipline in Lect. 8:

$$E[D] = \frac{1}{\mu} \cdot \frac{1}{1-\rho}$$
9. Sharing systems

Mean delay $E[D]$ vs. traffic load ρ

- Note that the time unit is the average service requirement $E[S]$
9. Sharing systems

Relative throughput

- A quality of service measure is the relative throughput $E[S]/E[D]$:

$$\frac{E[S]}{E[D]} = \frac{1}{\mu} \cdot \mu(1 - \rho) = 1 - \rho$$
9. Sharing systems

Relative throughput $E[S]/E[D]$ vs. traffic load ρ

\[
E[S]/E[D]
\]

\[
\begin{array}{c}
0.2 \\
0.4 \\
0.6 \\
0.8 \\
1 \\
\end{array}
\]

\[
\begin{array}{c}
0.2 \\
0.4 \\
0.6 \\
0.8 \\
1 \\
\end{array}
\]

traffic load ρ
9. Sharing systems

Contents

• Refresher: Simple teletraffic model
• M/M/1-PS (∞ customers, 1 server, ∞ customer places)
• M/M/n-PS (∞ customers, n servers, ∞ customer places)
• Application to flow level modelling of elastic data traffic
• M/M/1/k/k-PS (k customers, 1 server, k customer places)
M/M/n-PS queue

- Consider the following simple teletraffic model:
 - Infinite number of independent customers ($k = \infty$)
 - Interarrival times are IID and exponentially distributed with mean $1/\lambda$
 - so, customers arrive according to a Poisson process with intensity λ
 - Finite number of servers ($n < \infty$)
 - Service requirements are IID and exponentially distributed with mean $1/\mu$
 - Infinite number of customer places ($p = \infty$)
 - Queueing discipline: PS. If there are at most n customers in the system ($i \leq n$), each customer has its own server. Otherwise ($i > n$), the total service rate ($n\mu$) is shared fairly among all customers.

- Using Kendall’s notation, this is an M/M/n-PS queue
- Notation:
 - $\rho = \lambda/(n\mu) = \text{traffic load}$
9. Sharing systems

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
 - Assume that $X(t) = i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
 - with prob. $\lambda h + o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
 - if $i > 0$, then, with prob. $i \cdot \min\{\mu, n\mu/i\} \cdot h + o(h) = \min\{i,n\} \cdot \mu h + o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

```
0  \lambda \rightarrow 1 \lambda \rightarrow \cdots \lambda \rightarrow n \lambda \rightarrow n+1 \lambda \rightarrow \cdots
\mu \quad \lambda \quad \lambda \quad \lambda \quad \lambda
2\mu \quad n\mu \quad n\mu \quad n\mu
```

- Note that this is the same irreducible birth-death process with an infinite state space $S = \{0,1,2,\ldots\}$ as for the M/M/n-FIFO queue.
Equilibrium distribution (1)

- Local balance equations (LBE) for $i < n$:

$$\pi_i \lambda = \pi_{i+1} (i+1) \mu$$

$$\Rightarrow \pi_{i+1} = \frac{\lambda}{(i+1) \mu} \pi_i = \frac{n \rho}{i+1} \pi_i$$

$$\Rightarrow \pi_i = \frac{(n \rho)^i}{i!} \pi_0, \quad i = 0, 1, \ldots, n$$

- Local balance equations (LBE) for $i \geq n$:

$$\pi_i \lambda = \pi_{i+1} n \mu$$

$$\Rightarrow \pi_{i+1} = \frac{\lambda}{n \mu} \pi_i = \rho \pi_i$$

$$\Rightarrow \pi_i = \rho^{i-n} \pi_n = \rho^{i-n} \frac{(n \rho)^n}{n!} \pi_0 = \frac{n^n \rho^i}{n!} \pi_0, \quad i = n, n+1, \ldots$$
9. Sharing systems

Equilibrium distribution (2)

• Normalizing condition (N):

\[
\sum_{i=0}^{\infty} \pi_i = \pi_0 \left(\sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!} + \sum_{i=n}^{\infty} \frac{n^n \rho^i}{n!} \right) = 1 \\
\Rightarrow \pi_0 = \left(\sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!} + \frac{(n\rho)^n}{n!} \sum_{i=n}^{\infty} \rho^{i-n} \right)^{-1} = \frac{(n\rho)^{n-1}}{n!} \sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!} + \frac{(n\rho)^n}{n!(1-\rho)} \right)^{-1} = \frac{1}{\alpha + \beta}, \text{ if } \rho < 1
\]

Notation: \(\alpha = \sum_{i=0}^{n-1} \frac{(n\rho)^i}{i!}, \ \beta = \frac{(n\rho)^n}{n!(1-\rho)} \)
9. Sharing systems

Equilibrium distribution (3)

- Thus, for a **stable** system ($\rho < 1$, that is: $\lambda < n\mu$), the equilibrium distribution exists and is as follows:

\[\rho < 1 \quad \Rightarrow \]

\[P\{X = i\} = \pi_i = \begin{cases}
\frac{(n\rho)^i}{i!} \cdot \frac{1}{\alpha + \beta}, & i = 0, 1, \ldots, n \\
\frac{n^n \rho^i}{n!} \cdot \frac{1}{\alpha + \beta}, & i = n, n+1, \ldots
\end{cases} \]

- **Remark**: Insensitivity with respect to service time distribution
 - The result for the PS discipline is **insensitive** to the service time distribution, that is: it is valid for **any** service time distribution with mean $1/\mu$
 - So, instead of the $M/M/n$-PS model, we can consider, as well, the more general $M/G/n$-PS model
9. Sharing systems

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer.
- Since the mean number of customers in the system, $E[X]$, is the same for all work-conserving queueing disciplines, also the mean delay is the same, by Little’s result.
- Thus, we may apply the result derived for the FIFO discipline in Lect. 8:

$$E[D] = \frac{1}{\mu} \cdot \left(\frac{p_W}{n(1-\rho)} + 1 \right)$$

- where p_w refers to the probability

$$p_W = P\{X^* \geq n\} = \sum_{i=n}^{\infty} \pi_i = \sum_{i=n}^{\infty} \pi_0 \cdot \frac{n^n \rho^i}{n!} = \pi_0 \cdot \frac{(n\rho)^n}{n!(1-\rho)} = \frac{\beta}{\alpha+\beta}$$
Mean delay $E[D]$ vs. traffic load ρ

- Note that the time unit is the average service requirement $E[S]$
9. Sharing systems

Relative throughput

- A quality of service measure is the relative throughput $E[S]/E[D]$:

$$
\frac{E[S]}{E[D]} = \frac{1}{\mu} \cdot \mu \cdot \frac{n(1-\rho)}{p_W(n) + n(1-\rho)} = \frac{n(1-\rho)}{p_W(n) + n(1-\rho)}
$$

- For $n = 1$:
 $$
 \frac{E[S]}{E[D]} = \frac{1-\rho}{p_W(1) + 1-\rho} = 1 - \rho
 $$

- For $n = 2$:
 $$
 \frac{E[S]}{E[D]} = \frac{2(1-\rho)}{p_W(2) + 2(1-\rho)} = 1 - \rho^2
 $$
Relative throughput $E[S]/E[D]$ vs. traffic load ρ
9. Sharing systems

Contents

- Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- M/M/1/k/k-PS (k customers, 1 server, k customer places)
9. Sharing systems

Application to flow level modelling of elastic data traffic

- **M/G/n-PS model** is applicable to flow level modelling of elastic data traffic
 - customer = TCP flow
 - \(\lambda = \) flow arrival rate (flows per time unit)
 - \(r = \) access link speed for a flow (data units per time unit)
 - \(C = nr = \) speed of the shared link (data units per time unit)
 - \(E[L] = \) average flow size (data units)
 - \(E[S] = 1/\mu = E[L]/r = \) average flow transfer time with access link rate
 - \(\rho = \lambda/(n\mu) = \) traffic load

- **A quality of service measure** is the throughput

\[
\theta = \frac{E[L]}{E[D]} = \frac{r \cdot E[S]}{E[D]} = \frac{r \cdot n(1-\rho)}{pW(n)+n(1-\rho)} = C \cdot \frac{(1-\rho)}{pW(n)+n(1-\rho)}
\]
Throughput θ vs. traffic load ρ

- Note that the rate unit is the link rate C
9. Sharing systems

Contents

• Refresher: Simple teletraffic model
• $M/M/1$-PS (∞ customers, 1 server, ∞ customer places)
• $M/M/n$-PS (∞ customers, n servers, ∞ customer places)
• Application to flow level modelling of elastic data traffic
• $M/M/1/k/k$-PS (k customers, 1 server, k customer places)
Consider the following simple teletraffic model:
- **Finite** number of independent customers ($k < \infty$)
 - **on-off type** customers (alternating between idleness and activity)
 - Idle times are IID and exponentially distributed with mean $1/\nu$
 - One server ($n = 1$)
 - Service requirements are IID and exponentially distributed with mean $1/\mu$
 - As many customer places as customers ($p = k$)
 - Queueing discipline: **PS**.
- Using Kendall’s notation, this is an **M/M/1/k/k-PS queue**
- On-off type customer:
9. Sharing systems

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
 - Assume that $X(t) = i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
 - if $i < k$, then, with prob. $(k-i)\nu h + o(h)$, an idle customer becomes active (state transition $i \to i+1$)
 - if $i > 0$, then, with prob. $i(\mu/i)h + o(h) = \mu + o(h)$, an active customer becomes idle (state transition $i \to i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process with a finite state space $S = \{0, 1, \ldots, k\}$
9. Sharing systems

Equilibrium distribution (1)

• Local balance equations (LBE):

\[\pi_i (k - i) \nu = \pi_{i+1} \mu \]

\[\Rightarrow \pi_i = \frac{\mu}{(k-i) \nu} \pi_{i+1} \]

\[\Rightarrow \pi_i = \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} \pi_k, \quad i = 0,1,\ldots,k \]
9. Sharing systems

Equilibrium distribution (2)

- Normalizing condition (N):

\[
\sum_{i=0}^{k} \pi_i = \pi_k \sum_{i=0}^{k} \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} = 1
\]

\[
\Rightarrow \pi_k = \left(\sum_{i=0}^{k} \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} \right)^{-1}
\]

\[
\Rightarrow \pi_i = \pi_k \cdot \frac{1}{(k-i)!} \left(\frac{\mu}{\nu} \right)^{k-i} = \frac{1}{(k-i)!} \left(\frac{\nu}{\mu} \right)^i \sum_{i'=0}^{k} \frac{1}{(k-i')!} \left(\frac{\nu}{\mu} \right)^{i'}
\]
9. Sharing systems

THE END