9. Sharing systems

Contents

- Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- M/M/1/k/k-PS (k customers, 1 server, k customer places)

Simple teletraffic model

- Customers arrive at rate λ (customers per time unit)
- $1 / \lambda=$ average inter-arrival time
- Customers are served by n parallel servers
- When busy, a server serves at rate μ (customers per time unit)
- $1 / \mu=$ average service time of a customer
- There are $n+m$ customer places in the system
- at least n service places and at most m waiting places
- It is assumed that blocked customers (arriving in a full system) are lost

Pure sharing system

- Finite number of servers ($n<\infty$), infinite number of service places ($n+m=\infty$), no waiting places
- If there are at most n customers in the system $(x \leq n)$, each customer has its own server. Otherwise $(x>n)$, the total service rate $(n \mu)$ is shared fairly among all customers.
- Thus, the rate at which a customer is served equals $\min \{\mu, n \mu / x\}$
- No customers are lost, and no one needs to wait before the service.
- But the delay is the greater, the more there are customers in the system. Thus, delay is an interesing measure from the customer's point of view.

Contents

- Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- M/M/1/k/k-PS (k customers, 1 server, k customer places)

M/M/1-PS queue

- Consider the following simple teletraffic model:
- Infinite number of independent customers ($k=\infty$)
- Interarrival times are IID and exponentially distributed with mean $1 / \lambda$
- so, customers arrive according to a Poisson process with intensity λ
- One server ($n=1$)
- Service requirements are IID and exponentially distributed with mean $1 / \mu$
- Infinite number of customer places $(p=\infty)$
- Queueing discipline: PS. All customers are served simultaneously in a fair way with equal shares of the service capacity μ.
- Using Kendall's notation, this is an M/M/1-PS queue
- Notation:
- $\rho=\lambda / \mu=$ traffic load

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
- with prob. $\lambda h+o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $i(\mu / i) h+o(h)=\mu h+o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that this is the same irreducible birth-death process with an infinite state space $S=\{0,1,2, \ldots\}$ as for the M/M/1-FIFO queue.

Equilibrium distribution (1)

- Local balance equations (LBE):

$$
\begin{aligned}
& \pi_{i} \lambda=\pi_{i+1} \mu \\
& \Rightarrow \quad \pi_{i+1}=\frac{\lambda}{\mu} \pi_{i}=\rho \pi_{i} \\
& \Rightarrow \pi_{i}=\rho^{i} \pi_{0}, \quad i=0,1,2, \ldots
\end{aligned}
$$

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{\infty} \pi_{i}=\pi_{0} \sum_{i=0}^{\infty} \rho^{i}=1 \tag{N}\\
& \Rightarrow \pi_{0}=\left(\sum_{i=0}^{\infty} \rho^{i}\right)^{-1}=\left(\frac{1}{1-\rho}\right)^{-1}=1-\rho, \text { if } \rho<1
\end{align*}
$$

Equilibrium distribution (2)

- Thus, for a stable system ($\rho<1$), the equilibrium distribution exists and is a geometric distribution:

$$
\begin{aligned}
& \rho<1 \Rightarrow X \sim \operatorname{Geom}(\rho) \\
& P\{X=i\}=\pi_{i}=(1-\rho) \rho^{i}, \quad i=0,1,2, \ldots \\
& E[X]=\frac{\rho}{1-\rho}, \quad D^{2}[X]=\frac{\rho}{(1-\rho)^{2}}
\end{aligned}
$$

- Remark: Insensitivity with respect to service time distribution
- The result for the PS discipline is insensitive to the service time distribution, that is: it is valid for any service time distribution with mean $1 / \mu$
- So, instead of the M/M/1-PS model, we can consider, as well, the more general $\mathrm{M} / \mathrm{G} / 1-\mathrm{PS}$ model

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer
- Since the mean number of customers in the system, $E[X]$, is the same for all work-conserving queueing disciplines, also the mean delay is the same, by Little's result.
- Thus, we may apply the result derived for the FIFO discipline in Lect. 8:

$$
E[D]=\frac{1}{\mu} \cdot \frac{1}{1-\rho}
$$

Mean delay $E[D]$ vs. traffic load ρ

- Note that the time unit is the average service requirement $E[S]$

Relative throughput

- A quality of service measure is the relative throughput $E[S] / E[D]$:

$$
\frac{E[S]}{E[D]}=\frac{1}{\mu} \cdot \mu(1-\rho)=1-\rho
$$

Relative throughput $E[S] / E[D]$ vs. traffic load ρ

Contents

- Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- M/M/1/k/k-PS (k customers, 1 server, k customer places)

M/M/n-PS queue

- Consider the following simple teletraffic model:
- Infinite number of independent customers ($k=\infty$)
- Interarrival times are IID and exponentially distributed with mean $1 / \lambda$
- so, customers arrive according to a Poisson process with intensity λ
- Finite number of servers $(n<\infty)$
- Service requirements are IID and exponentially distributed with mean $1 / \mu$
- Infinite number of customer places $(p=\infty)$
- Queueing discipline: PS. If there are at most n customers in the system ($i \leq n$), each customer has its own server. Otherwise $(i>n$), the total service rate $(n \mu)$ is shared fairly among all customers.
- Using Kendall's notation, this is an M/M/n-PS queue
- Notation:
- $\quad \rho=\lambda /(n \mu)=$ traffic load

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
- with prob. $\lambda h+o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $i \cdot \min \{\mu, n \mu / i\} \cdot h+o(h)=\min \{i, n\} \cdot \mu h+o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that this is the same irreducible birth-death process with an infinite state space $S=\{0,1,2, \ldots\}$ as for the $\mathrm{M} / \mathrm{M} / n$-FIFO queue.

Equilibrium distribution (1)

- Local balance equations (LBE) for $i<n$:

$$
\begin{align*}
& \pi_{i} \lambda=\pi_{i+1}(i+1) \mu \tag{LBE}\\
& \Rightarrow \pi_{i+1}=\frac{\lambda}{(i+1) \mu} \pi_{i}=\frac{n \rho}{i+1} \pi_{i} \\
& \Rightarrow \quad \pi_{i}=\frac{(n \rho)^{i}}{i!} \pi_{0}, \quad i=0,1, \ldots, n
\end{align*}
$$

- Local balance equations (LBE) for $i \geq n$:

$$
\begin{aligned}
& \pi_{i} \lambda=\pi_{i+1} n \mu \\
& \Rightarrow \pi_{i+1}=\frac{\lambda}{n \mu} \pi_{i}=\rho \pi_{i} \\
& \Rightarrow \pi_{i}=\rho^{i-n} \pi_{n}=\rho^{i-n} \frac{(n \rho)^{n}}{n!} \pi_{0}=\frac{n^{n} \rho^{i}}{n!} \pi_{0}, \quad i=n, n+1, \ldots 17
\end{aligned}
$$

Equilibrium distribution (2)

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{\infty} \pi_{i}=\pi_{0}\left(\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}+\sum_{i=n}^{\infty} \frac{n^{n} \rho^{i}}{n!}\right)=1 \tag{N}\\
& \Rightarrow \pi_{0}=\left(\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}+\frac{(n \rho)^{n}}{n!} \sum_{i=n}^{\infty} \rho^{i-n}\right)^{-1} \\
& \quad=\left(\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}+\frac{(n \rho)^{n}}{n!(1-\rho)}\right)^{-1}=\frac{1}{\alpha+\beta}, \text { if } \rho<1 \\
& \text { Notation : } \alpha=\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}, \quad \beta=\frac{(n \rho)^{n}}{n!(1-\rho)}
\end{align*}
$$

Equilibrium distribution (3)

- Thus, for a stable system ($\rho<1$, that is: $\lambda<n \mu$), the equilibrium distribution exists and is as follows:

$$
\begin{aligned}
& \rho<1 \Rightarrow \\
& P\{X=i\}=\pi_{i}= \begin{cases}\frac{(n \rho)^{i}}{i!} \cdot \frac{1}{\alpha+\beta}, & i=0,1, \ldots, n \\
\frac{n^{n} \rho^{i}}{n!} \cdot \frac{1}{\alpha+\beta}, & i=n, n+1, \ldots\end{cases}
\end{aligned}
$$

- Remark: Insensitivity with respect to service time distribution
- The result for the PS discipline is insensitive to the service time distribution, that is: it is valid for any service time distribution with mean $1 / \mu$
- So, instead of the M/M/n-PS model, we can consider, as well, the more general $\mathrm{M} / \mathrm{G} / n$-PS model

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer
- Since the mean number of customers in the system, $E[X]$, is the same for all work-conserving queueing disciplines, also the mean delay is the same, by Little's result.
- Thus, we may apply the result derived for the FIFO discipline in Lect. 8:

$$
E[D]=\frac{1}{\mu} \cdot\left(\frac{p_{W}}{n(1-\rho)}+1\right)
$$

- where p_{w} refers to the probability

$$
p_{W}=P\left\{X^{*} \geq n\right\}=\sum_{i=n}^{\infty} \pi_{i}=\sum_{i=n}^{\infty} \pi_{0} \cdot \frac{n^{n} \rho^{i}}{n!}=\pi_{0} \cdot \frac{(n \rho)^{n}}{n!(1-\rho)}=\frac{\beta}{\alpha+\beta}
$$

Mean delay $E[D]$ vs. traffic load ρ

- Note that the time unit is the average service requirement $E[S]$

Relative throughput

- A quality of service measure is the relative throughput $E[S] / E[D]$:

$$
\frac{E[S]}{E[D]}=\frac{1}{\mu} \cdot \mu \cdot \frac{n(1-\rho)}{p_{W}(n)+n(1-\rho)}=\frac{n(1-\rho)}{p_{W}(n)+n(1-\rho)}
$$

$$
\begin{aligned}
& n=1: \frac{E[S]}{E[D]}=\frac{1-\rho}{p_{W}(1)+1-\rho}=1-\rho \\
& n=2: \quad \frac{E[S]}{E[D]}=\frac{2(1-\rho)}{p_{W}(2)+2(1-\rho)}=1-\rho^{2}
\end{aligned}
$$

Relative throughput $E[S] / E[D]$ vs. traffic load ρ

Contents

- Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- M/M/1/k/k-PS (k customers, 1 server, k customer places)

Application to flow level modelling of elastic data traffic

- $\mathrm{M} / \mathrm{G} / n$-PS model is applicable to flow level modelling of elastic data traffic
- customer $=$ TCP flow
- $\lambda=$ flow arrival rate (flows per time unit)
- $\quad r=$ access link speed for a flow (data units per time unit)
- $C=n r=$ speed of the shared link (data units per time unit)
- $\quad E[L]=$ average flow size (data units)
- $E[S]=1 / \mu=E[L] / r=$ average flow transfer time with access link rate
- $\quad \rho=\lambda /(n \mu)=$ traffic load
- A quality of service measure is the throughput

$$
\theta=\frac{E[L]}{E[D]}=\frac{r \cdot E[S]}{E[D]}=\frac{r \cdot n(1-\rho)}{p_{W}(n)+n(1-\rho)}=C \cdot \frac{(1-\rho)}{p_{W}(n)+n(1-\rho)}
$$

Throughput θ vs. traffic load ρ

- Note that the rate unit is the link rate C

Contents

- Refresher: Simple teletraffic model
- M/M/1-PS (∞ customers, 1 server, ∞ customer places)
- M/M/n-PS (∞ customers, n servers, ∞ customer places)
- Application to flow level modelling of elastic data traffic
- M/M/1/k/k-PS (k customers, 1 server, k customer places)

M/M/1/k/k-PS queue

- Consider the following simple teletraffic model:
- Finite number of independent customers ($k<\infty$)
- on-off type customers (alternating between idleness and activity)
- Idle times are IID and exponentially distributed with mean $1 / v$
- One server ($n=1$)
- Service requirements are IID and exponentially distributed with mean $1 / \mu$
- As many customer places as customers $(p=k)$
- Queueing discipline: PS.
- Using Kendall's notation, this is an $\mathbf{M} / \mathbf{M} / \mathbf{1} / \boldsymbol{k} / \boldsymbol{k}$-PS queue
- On-off type customer:

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
- if $i<k$, then, with prob. $(k-i) v h+o(h)$, an idle customer becomes active (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $i(\mu / i) h+o(h)=\mu+o(h)$, an active customer becomes idle (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process with a finite state space $S=\{0,1, \ldots, k\}$

Equilibrium distribution (1)

- Local balance equations (LBE):

$$
\begin{align*}
& \pi_{i}(k-i) v=\pi_{i+1} \mu \tag{LBE}\\
& \Rightarrow \quad \pi_{i}=\frac{\mu}{(k-i) v} \pi_{i+1} \\
& \Rightarrow \quad \pi_{i}=\frac{1}{(k-i)!}\left(\frac{\mu}{v}\right)^{k-i} \pi_{k}, \quad i=0,1, \ldots, k
\end{align*}
$$

Equilibrium distribution (2)

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{k} \pi_{i}=\pi_{k} \sum_{i=0}^{k} \frac{1}{(k-i)!}\left(\frac{\mu}{v}\right)^{k-i}=1 \tag{N}\\
& \Rightarrow \pi_{k}=\left(\sum_{i=0}^{k} \frac{1}{(k-i)!}\left(\frac{\mu}{v}\right)^{k-i}\right)^{-1} \\
& \Rightarrow \pi_{i}=\pi_{k} \cdot \frac{1}{(k-i)!}\left(\frac{\mu}{v}\right)^{k-i}=\frac{\overline{1}(k-i)!}{}\left(\frac{v}{\mu}\right)^{i} \\
& \sum_{i^{\prime}=0}^{k} \frac{1}{\left(k-i^{\prime}\right)!}\left(\frac{v}{\mu}\right)^{i^{\prime}}
\end{align*}
$$

THE END

