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6. Stochastic processes (2)

Markov process

• Consider a continuous-time and discrete-state stochastic process X(t)

– with state space S = {0,1,…,N} or S = {0,1,...}

• Definition: The process X(t) is a Markov process if

for all n, t
1
<… < t

n+1
and x

1
,…, x

n +1

• This is called the Markov property

– Given the current state, the future of the process does not depend on its past 

(that is, how the process has evolved to the current state)

– As regards the future of the process, the current state contains all the 

required information
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6. Stochastic processes (2)

Example

• Process X(t) with independent increments is always a Markov process:

• Consequence: Poisson process A(t) is a Markov process:

– according to Definition 3, the increments of a Poisson process are 

independent
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6. Stochastic processes (2)

Time-homogeneity

• Definition: Markov process X(t) is time-homogeneous if

for all t, ∆ ≥ 0 and x, y ∈ S

– In other words, probabilities P{X(t + ∆) = y | X(t) = x} are independent of t
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6. Stochastic processes (2)

State transition rates

• Consider a time-homogeneous Markov process X(t)

• The state transition rates qij, where i, j ∈ S, are defined as follows:

• The initial distribution P{X(0) = i}, i ∈ S, and the state transition rates 

qij together determine the state probabilities P{X(t) = i}, i ∈ S, by the 
Kolmogorov equations

• Note that on this course we will consider only time-homogeneous  

Markov processes
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6. Stochastic processes (2)

Exponential holding times

• Assume that a Markov process is in state i

• During a short time interval (t, t+h] , the conditional probability that there 
is a transition from state i to state j is qijh + o(h) (independently of the 
other time intervals)

• Let qi denote the total transition rate out of state i, that is:

• Then, during a short time interval (t, t+h] , the conditional probability that 
there is a transition from state i to any other state is qih + o(h)
(independently of the other time intervals)

• This is clearly a memoryless property

• Thus, the holding time in (any) state i is exponentially distributed with 

intensity qi
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6. Stochastic processes (2)

State transition probabilities

• Let Ti denote the holding time in state i and  Tij denote the (potential) 

holding time in state i that ends to a transition to state j

• Ti can be seen as the minimum of independent and exponentially 

distributed holding times Tij (see lecture 5, slide 44)

• Let then pij denote the conditional probability that, when in state i, there 

is a transition from state i to state j (the state transition probabilities); 
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6. Stochastic processes (2)

State transition diagram

• A time-homogeneous Markov process can be represented by a state 

transition diagram, which is a directed graph where 

– nodes correspond to states and 

– one-way links correspond to potential state transitions

• Example: Markov process with three states, S = {0,1,2}
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6. Stochastic processes (2)

Irreducibility

• Definition: There is a path from state i to state j (i → j) if there is a 

directed path from state i to state j in the state transition diagram.

– In this case, starting from state i, the process visits state j with positive 

probability (sometimes in the future)

• Definition: States i and j communicate (i ↔ j) if i→ j and j → i.

• Definition: Markov process is irreducible if all states i ∈ S
communicate with each other

– Example: The Markov process presented in the previous slide is irreducible
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6. Stochastic processes (2)

Global balance equations and equilibrium distributions

• Consider an irreducible Markov process X(t), with state transition rates qij

• Definition: Let π = (πi | πi ≥ 0, i ∈ S) be a distribution defined on the 

state space S, that is:

It is the equilibrium distribution of the process if the following global 

balance equations (GBE) are satisfied for each i ∈ S:

– It is possible that no equilibrium distribution exists, but if the state space is 

finite, a unique equilibrium distribution does exist

– By choosing the equilibrium distribution (if it exists) as the initial distribution, 

the Markov process X(t) becomes stationary (with stationary distribution π) 
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6. Stochastic processes (2)

Example
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6. Stochastic processes (2)

Local balance equations

• Consider still an irreducible Markov process X(t).with state transition rates qij

• Proposition: Let π = (πi | πi ≥ 0, i ∈ S) be a distribution defined on the state 

space S, that is:

•

If the following local balance equations (LBE) are satisfied for each i,j ∈ S:

•

then π is the equilibrium distribution of the process.

• Proof: (GBE) follows from (LBE) by summing over all j ≠ i

• In this case the Markov process X(t) is called reversible (looking stochastically 
the same in either direction of time)
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6. Stochastic processes (2)

Birth-death process

• Consider a continuous-time and discrete-state Markov process X(t)

– with state space S = {0,1,…,N} or S = {0,1,...}

• Definition: The process X(t) is a birth-death process (BD) if state 
transitions are possible only between neighbouring states, that is:

• In this case, we denote

– In particular, we define µ
0
= 0 and λN = 0 (if N < ∞)
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6. Stochastic processes (2)

Irreducibility

• Proposition: A birth-death process is irreducible if and only if 

λ
i
> 0 for all i ∈ S\{N} and µ

i
> 0 for all i ∈ S\{0}

• State transition diagram of an infinite-state irreducible BD process:

• State transition diagram of a finite-state irreducible BD process:
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6. Stochastic processes (2)

Equilibrium distribution (1)

• Consider an irreducible birth-death process X(t)

• We aim is to derive the equilibrium distribution π = (π
i
| i ∈ S) (if it 

exists)

• Local balance equations (LBE):

• Thus we get the following recursive formula:

• Normalizing condition (N):
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6. Stochastic processes (2)
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Equilibrium distribution (2)

• Thus, the equilibrium distribution exists if and only if 

• Finite state space: 

The sum above is always finite, and the equilibrium distribution is

• Infinite state space: 

If the sum above is finite, the equilibrium distribution is
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6. Stochastic processes (2)

Example
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6. Stochastic processes (2)

Pure birth process

• Definition: A birth-death process is a pure birth process if

µ
i
= 0 for all i ∈ S

• State transition diagram of an infinite-state pure birth process:

• State transition diagram of a finite-state pure birth process:

• Example: Poisson process is a pure birth process (with constant birth 

rate λ
i
= λ for all i ∈ S = {0,1,…})

• Note: Pure birth process is never irreducible (nor stationary)!
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