

Contents

- Markov processes
- Birth-death processes

Markov process

- Consider a continuous-time and discrete-state stochastic process X(t)
 - with state space $S = \{0, 1, ..., N\}$ or $S = \{0, 1, ...\}$
- **Definition**: The process X(t) is a **Markov process** if

$$P\{X(t_{n+1}) = x_{n+1} \mid X(t_1) = x_1, \dots, X(t_n) = x_n\} = P\{X(t_{n+1}) = x_{n+1} \mid X(t_n) = x_n\}$$

for all $n, t_1 < ... < t_{n+1}$ and $x_1, ..., x_{n+1}$

- This is called the Markov property
 - Given the current state, the future of the process does not depend on its past (that is, how the process has evolved to the current state)
 - As regards the future of the process, the current state contains all the required information

Example

• Process X(t) with independent increments is always a Markov process:

$$X(t_n) = X(t_{n-1}) + (X(t_n) - X(t_{n-1}))$$

- Consequence: Poisson process A(t) is a Markov process:
 - according to Definition 3, the increments of a Poisson process are independent

Time-homogeneity

• **Definition**: Markov process X(t) is **time-homogeneous** if

$$P{X(t + \Delta) = y \mid X(t) = x} = P{X(\Delta) = y \mid X(0) = x}$$

for all t, $\Delta \ge 0$ and x, $y \in S$

- In other words, probabilities $P\{X(t + \Delta) = y \mid X(t) = x\}$ are independent of t

State transition rates

- Consider a time-homogeneous Markov process X(t)
- The state transition rates q_{ij} , where $i, j \in S$, are defined as follows:

$$q_{ij} := \lim_{h \downarrow 0} \frac{1}{h} P\{X(h) = j \mid X(0) = i\}$$

- The initial distribution $P\{X(0)=i\}$, $i\in S$, and the state transition rates q_{ij} together determine the state probabilities $P\{X(t)=i\}$, $i\in S$, by the Kolmogorov equations
- Note that on this course we will consider only time-homogeneous Markov processes

Exponential holding times

- Assume that a Markov process is in state i
- During a short time interval (t, t+h], the conditional probability that there is a transition from state i to state j is $q_{ij}h + o(h)$ (independently of the other time intervals)
- Let q_i denote the total transition rate out of state i, that is:

$$q_i \coloneqq \sum_{j \neq i} q_{ij}$$

- Then, during a short time interval (t, t+h], the conditional probability that there is a transition from state i to any other state is $q_ih + o(h)$ (independently of the other time intervals)
- This is clearly a memoryless property
- Thus, the holding time in (any) state i is exponentially distributed with intensity q_i

State transition probabilities

• Let T_i denote the holding time in state i and T_{ij} denote the (potential) holding time in state i that ends to a transition to state j

$$T_i \sim \text{Exp}(q_i), \ T_{ij} \sim \text{Exp}(q_{ij})$$

• T_i can be seen as the minimum of independent and exponentially

$$T_i = \min_{j \neq i} T_{ij}$$

• Let then p_{ij} denote the conditional probability that, when in state i, there is a transition from state i to state j (the **state transition probabilities**);

$$p_{ij} = P\{T_i = T_{ij}\} = \frac{q_{ij}}{q_i}$$

State transition diagram

- A time-homogeneous Markov process can be represented by a state transition diagram, which is a directed graph where
 - nodes correspond to states and
 - one-way links correspond to potential state transitions

link from state i to state $j \Leftrightarrow q_{ij} > 0$

• Example: Markov process with three states, $S = \{0,1,2\}$

$$Q = \begin{pmatrix} - & + & 0 \\ 0 & - & + \\ + & + & - \end{pmatrix}$$

$$q_{20} \qquad q_{01}$$

$$q_{21} \qquad 1$$

Irreducibility

- **Definition**: There is a **path** from state i to state j ($i \rightarrow j$) if there is a directed path from state i to state j in the state transition diagram.
 - In this case, starting from state i, the process visits state j with positive probability (sometimes in the future)
- **Definition**: States i and j **communicate** $(i \leftrightarrow j)$ if $i \to j$ and $j \to i$.
- **Definition**: Markov process is **irreducible** if all states $i \in S$ communicate with each other
 - Example: The Markov process presented in the previous slide is irreducible

Global balance equations and equilibrium distributions

- Consider an irreducible Markov process X(t), with state transition rates q_{ij}
- **Definition**: Let $\pi = (\pi_i \mid \pi_i \ge 0, i \in S)$ be a distribution defined on the state space S, that is:

$$\sum_{i \in S} \pi_i = 1 \tag{N}$$

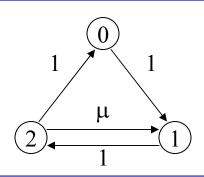
It is the **equilibrium distribution** of the process if the following **global** balance equations (GBE) are satisfied for each $i \in S$:

$$\sum_{j \neq i} \pi_i q_{ij} = \sum_{j \neq i} \pi_j q_{ji}$$
 (GBE)

- It is possible that no equilibrium distribution exists, but if the state space is finite, a unique equilibrium distribution does exist
- By choosing the equilibrium distribution (if it exists) as the initial distribution, the Markov process X(t) becomes stationary (with stationary distribution π)

Example

$$Q = \begin{pmatrix} - & 1 & 0 \\ 0 & - & 1 \\ 1 & \mu & - \end{pmatrix}$$



$$\pi_0 + \pi_1 + \pi_2 = 1 \tag{N}$$

$$\pi_0 \cdot 1 = \pi_2 \cdot 1$$

$$\pi_1 \cdot 1 = \pi_0 \cdot 1 + \pi_2 \cdot \mu \qquad (GBE)$$

$$\pi_2 \cdot (1 + \mu) = \pi_1 \cdot 1$$

$$\Rightarrow \pi_0 = \frac{1}{3+\mu}, \quad \pi_1 = \frac{1+\mu}{3+\mu}, \quad \pi_2 = \frac{1}{3+\mu}$$

Local balance equations

- Consider still an irreducible Markov process $X\!(t)$ with state transition rates q_{ij}
- **Proposition**: Let $\pi = (\pi_i \mid \pi_i \ge 0, i \in S)$ be a distribution defined on the state space S, that is:

$$\sum_{i \in S} \pi_i = 1 \tag{N}$$

If the following **local balance equations** (LBE) are satisfied for each $i,j \in S$:

$$\pi_i q_{ij} = \pi_j q_{ji} \tag{LBE}$$

then π is the equilibrium distribution of the process.

- **Proof**: (GBE) follows from (LBE) by summing over all $j \neq i$
- In this case the Markov process X(t) is called **reversible** (looking stochastically the same in either direction of time)

Contents

- Markov processes
- Birth-death processes

Birth-death process

- Consider a continuous-time and discrete-state Markov process X(t)
 - with state space $S = \{0,1,...,N\}$ or $S = \{0,1,...\}$
- **Definition**: The process X(t) is a **birth-death process** (BD) if state transitions are possible only between neighbouring states, that is:

$$|i-j| > 1 \implies q_{ij} = 0$$

In this case, we denote

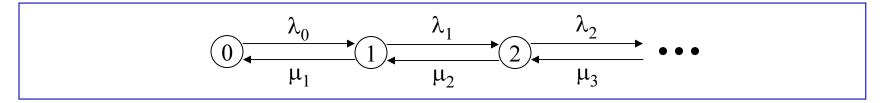
$$\mu_i := q_{i,i-1} \ge 0$$

$$\mu_i \coloneqq q_{i,i-1} \ge 0$$
$$\lambda_i \coloneqq q_{i,i+1} \ge 0$$

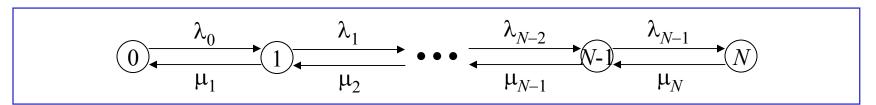
In particular, we define $\mu_0=0$ and $\lambda_N=0$ (if $N<\infty$)

Irreducibility

- **Proposition**: A birth-death process is irreducible if and only if $\lambda_i > 0$ for all $i \in S \setminus \{N\}$ and $\mu_i > 0$ for all $i \in S \setminus \{0\}$
- State transition diagram of an infinite-state irreducible BD process:



• State transition diagram of a finite-state irreducible BD process:



Equilibrium distribution (1)

- Consider an irreducible birth-death process X(t)
- We aim is to derive the equilibrium distribution $\pi = (\pi_i \mid i \in S)$ (if it exists)
- Local balance equations (LBE):

$$\pi_i \lambda_i = \pi_{i+1} \mu_{i+1} \tag{LBE}$$

Thus we get the following recursive formula:

$$\pi_{i+1} = \frac{\lambda_i}{\mu_{i+1}} \pi_i \quad \Rightarrow \quad \pi_i = \pi_0 \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}$$

Normalizing condition (N):

$$\sum_{i \in S} \pi_i = \pi_0 \sum_{i \in S} \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j} = 1$$
 (N)

Equilibrium distribution (2)

• Thus, the equilibrium distribution exists if and only if

$$\sum_{i \in S} \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_j} < \infty$$

Finite state space:

The sum above is always finite, and the equilibrium distribution is

$$\pi_i = \pi_0 \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}, \quad \pi_0 = \left(1 + \sum_{i=1}^N \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}\right)^{-1}$$

Infinite state space:

If the sum above is finite, the equilibrium distribution is

$$\pi_i = \pi_0 \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}, \quad \pi_0 = \left(1 + \sum_{i=1}^\infty \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}\right)^{-1}$$

Example

$$Q = \begin{pmatrix} - & \lambda & 0 \\ \mu & - & \lambda \\ 0 & \mu & - \end{pmatrix}$$

$$0 \xrightarrow{\lambda} 1 \xrightarrow{\lambda} 2$$

$$\pi_{i}\lambda = \pi_{i+1}\mu$$

$$\Rightarrow \quad \pi_{i+1} = \rho\pi_{i} \quad (\rho := \lambda/\mu) \quad \text{(LBE)}$$

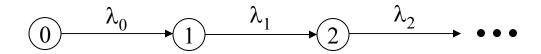
$$\Rightarrow \quad \pi_{i} = \pi_{0}\rho^{i}$$

$$\pi_0 + \pi_1 + \pi_2 = \pi_0 (1 + \rho + \rho^2) = 1$$
 (N)

$$\Rightarrow \quad \pi_i = \frac{\rho^i}{1 + \rho + \rho^2}$$

Pure birth process

- **Definition**: A birth-death process is a **pure birth process** if $\mu_i = 0$ for all $i \in S$
- State transition diagram of an infinite-state pure birth process:



• State transition diagram of a finite-state pure birth process:

- Example: Poisson process is a pure birth process (with constant birth rate $\lambda_i = \lambda$ for all $i \in S = \{0,1,...\}$)
- Note: Pure birth process is never irreducible (nor stationary)!

THE END

