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4. Basic probability theory

Sample space, sample points, events

• Sample space Ω is the set of all possible sample points ω ∈ Ω

– Example 0. Tossing a coin: Ω = {H,T}

– Example 1. Casting a die: Ω = {1,2,3,4,5,6}

– Example 2. Number of customers in a queue: Ω = {0,1,2,...}

– Example 3. Call holding time (e.g. in minutes): Ω = {x ∈ ℜ | x > 0}

• Events A,B,C,... ⊂ Ω are measurable subsets of the sample space Ω

– Example 1. “Even numbers of a die”: A = {2,4,6}

– Example 2. “No customers in a queue”: A = {0}

– Example 3. “Call holding time greater than 3.0 (min)”:  A = {x ∈ ℜ | x > 3.0}

• Denote by the set of all events A ∈

– Sure event: The sample space Ω ∈ itself

– Impossible event: The empty set ∅ ∈
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4. Basic probability theory

Combination of events

• Union “A or B”: A ∪ B = {ω ∈ Ω | ω ∈ A or ω ∈ B}

• Intersection “A and B”: A ∩ B = {ω ∈ Ω | ω ∈ A and ω ∈ B}

• Complement “not A”: Ac = {ω ∈ Ω | ω ∉ A}

• Events A and B are disjoint if 

– A ∩ B = ∅

• A set of events {B
1
, B

2
, …} is a partition of event A if 

– (i)  Bi ∩ Bj = ∅ for all i ≠ j

– (ii) ∪i Bi = A

– Example 1. Odd and even numbers of a die 

constitute a partition of the sample space: 

B
1
= {1,3,5} and B

2
= {2,4,6}

B
1

B
2

B
3

A
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4. Basic probability theory

Probability

• Probability of event A is denoted by P(A), P(A) ∈ [0,1]

– Probability measure P is thus 

a real-valued set function defined on the set of events , P: → [0,1]

• Properties:

– (i)     0 ≤ P(A) ≤ 1

– (ii)    P(∅) = 0

– (iii)   P(Ω) = 1

– (iv)   P(Ac) = 1 − P(A)

– (v)    P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

– (vi)   A ∩ B = ∅⇒ P(A ∪ B) = P(A) + P(B)

– (vii)  {Bi} is a partition of A ⇒ P(A) = Σi P(Bi)

– (viii)  A ⊂ B ⇒ P(A) ≤ P(B)

A

B
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4. Basic probability theory

Conditional probability

• Assume that P(B) > 0

• Definition: The conditional probability of event A 

given that event B occurred is defined as

• It follows that 

)(

)(
)|(

BP

BAP
BAP

∩

=

)|()()|()()( ABPAPBAPBPBAP ==∩

7

4. Basic probability theory

Theorem of total probability

• Let {B
i
} be a partition of the sample space Ω

• It follows that {A ∩ B
i
} is a partition of event A. Thus (by slide 5) 

• Assume further that P(B
i
) > 0 for all i. Then (by slide 6)

• This is the theorem of total probability

B
1

B
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4. Basic probability theory

Bayes’ theorem

• Let {B
i
} be a partition of the sample space Ω

• Assume that P(A) > 0 and P(B
i
) > 0 for all i. Then (by slide 6)

• Furthermore, by the theorem of total probability (slide 7), we get

• This is Bayes’ theorem

– Probabilities P(B
i
) are called a priori probabilities of events B

i

– Probabilities P(B
i 
| A) are called a posteriori probabilities of events B

i

(given that the event A occured)
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4. Basic probability theory

Statistical independence of events

• Definition: Events A and B are independent if

• It follows that

• Correspondingly: 
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4. Basic probability theory

• Definition: Real-valued random variable X is a real-valued and 

measurable function defined on the sample space Ω, X: Ω→ ℜ

– Each sample point ω ∈ Ω is associated with a real number X(ω)

• Measurability means that all sets of type 

belong to the set of events , that is

{X ≤ x} ∈

• The probability of such an event is denoted by P{X ≤ x}

Random variables

Ω⊂≤Ω∈=≤ })(|{:}{ xXxX ωω
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4. Basic probability theory

Example

• A coin is tossed three times

• Sample space:

• Let X be the random variable that tells the total number of tails 
in these three experiments:

}3,2,1},T,H{|),,{( 321 =∈=Ω iiωωωω

ω HHH HHT HTH THH HTT THT TTH TTT

X(ω) 0 1 1 1 2 2 2 3
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4. Basic probability theory

Indicators of events

• Let A ∈ be an arbitrary event

• Definition: The indicator of event A is a random variable defined as 

follows:

• Clearly:
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4. Basic probability theory

• Definition: The cumulative distribution function (cdf) of a random 

variable X is a function F
X
: ℜ→ [0,1] defined as follows: 

• Cdf determines the distribution of the random variable, 

– that is: the probabilities P{X ∈ B}, where B ⊂ ℜ and {X ∈ B} ∈

• Properties:

– (i)    F
X
is non-decreasing

– (ii)   F
X
is continuous from the right

– (iii)  F
X 
(−∞) = 0

– (iv)   F
X 
(∞) = 1

Cumulative distribution function

}{)( xXPxFX ≤=

F
X
(x)

x

0

1
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4. Basic probability theory

Statistical independence of random variables

• Definition: Random variables X and Y are independent if 

for all x and y

• Definition: Random variables X
1
,…, X

n
are totally independent if 

for all i and x
i

}{}{},{ yYPxXPyYxXP ≤≤=≤≤

}{}{},...,{ 1111 nnnn
xXPxXPxXxXP ≤≤=≤≤ L
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4. Basic probability theory

Maximum and minimum of independent random variables

• Let the random variables X
1
,…, X

n
be totally independent

• Denote: Xmax := max{X
1
,…, X

n
}. Then 

• Denote: Xmin := min{X
1
,…, X

n
}. Then

},  ,{}{ 1
max

xXxXPxXP
n
≤≤=≤ K

}{}{ 1 xXPxXP
n
≤≤= L

},  ,{}{ 1
min

xXxXPxXP
n
>>=> K

}{}{ 1 xXPxXP
n
>>= L
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4. Basic probability theory

Discrete random variables

• Definition: Set A ⊂ ℜ is called discrete if it is 

– finite, A = {x
1
,…, x

n
}, or 

– countably infinite, A = {x
1
, x

2
,…}

• Definition: Random variable X is discrete if 

there is a discrete set SX ⊂ ℜ such that

• It follows that 

– P{X = x} ≥ 0 for all x ∈ S
X

– P{X = x} = 0 for all x ∉ S
X

• The set SX is called the value set

1}{ =∈ XSXP
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4. Basic probability theory

Point probabilities

• Let X be a discrete random variable

• The distribution of X is determined by the point probabilities pi, 

• Definition: The probability mass function (pmf) of X is a function 

pX: ℜ → [0,1] defined as follows: 

• Cdf is in this case a step function:

Xiii SxxXPp ∈==      },{:
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4. Basic probability theory

Example

x

p
X
(x)

probability mass function (pmf)

x

F
X
(x)

cumulative distribution function (cdf)

x
1

x
2
x
3
x
4

x
1

x
2
x
3
x
4

1 1

SX = {x1, x2, x3, x4}
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4. Basic probability theory

Independence of discrete random variables

• Discrete random variables X and Y are independent if and only if 

for all xi ∈ SX and yj ∈ SY

}{}{},{ jiji yYPxXPyYxXP =====
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4. Basic probability theory

Expectation

• Definition: The expectation (mean value) of X is defined by

– Note 1: The expectation exists only if  Σ
i
p
i
|x
i
| < ∞

– Note 2: If Σ
i
p
i 
x
i
= ∞,  then we may denote E[X] = ∞

• Properties: 

– (i)   c ∈ ℜ ⇒ E[cX] = cE[X]

– (ii)  E[X + Y] = E[X] + E[Y]

– (iii) X and Y independent ⇒ E[XY] = E[X]E[Y]
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4. Basic probability theory

Variance

• Definition: The variance of X is defined by

• Useful formula (prove!):

• Properties: 

– (i)   c ∈ ℜ ⇒ D2[cX] = c2D2[X]

– (ii)  X and Y independent ⇒ D2[X + Y] = D2[X] + D2[Y]

]])[[(:]Var[:][: 222
XEXEXXDX −===σ

222
][][][ XEXEXD −=
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4. Basic probability theory

Covariance

• Definition: The covariance between X and Y is defined by

• Useful formula (prove!):

• Properties: 

– (i)   Cov[X,X] = Var[X]

– (ii)  Cov[X,Y] = Cov[Y,X]

– (iii) Cov[X+Y,Z] = Cov[X,Z] + Cov[Y,Z]

– (iv) X and Y independent ⇒ Cov[X,Y] = 0

])][])([[(:],[Cov: 2
YEYXEXEYXXY −−==σ

][][][],Cov[ YEXEXYEYX −=
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4. Basic probability theory

Other distribution related parameters

• Definition: The standard deviation of X is defined by

• Definition: The coefficient of variation of X is defined by

• Definition: The kth moment, k=1,2,…, of X is defined by
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4. Basic probability theory

Average of IID random variables

• Let X1,…, Xn be independent and identically distributed (IID) 

with mean µ and variance σ2 

• Denote the average (sample mean) as follows:

• Then (prove!)
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4. Basic probability theory

Law of large numbers (LLN)

• Let X1,…, Xn be independent and identically distributed (IID) 

with mean µ and variance σ2 

• Weak law of large numbers: for all ε > 0

• Strong law of large numbers: with probability 1

• It follows that for large values of n

µ≈
n

X

0}|{| →>− εµ
n

XP

µ→
n

X
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4. Basic probability theory

Bernoulli distribution

– describes a simple random experiment with two possible outcomes:

success (1) and failure (0); cf. coin tossing

– success with probability p (and failure with probability 1 − p) 

• Value set: SX = {0,1}

• Point probabilities:

• Mean value: E[X] = (1 − p)⋅0 + p⋅1 = p

• Second moment: E[X2] = (1 − p)⋅02 + p⋅12 = p

• Variance: D2[X] = E[X2] − E[X]2 = p − p2 = p(1 − p)

)1,0(   ),(Bernoulli ∈∼ ppX

pXPpXP ==−== }1{     ,1}0{
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4. Basic probability theory

Binomial distribution

– number of successes in an independent series of simple random 

experiments (of Bernoulli type); X = X
1
+… + X

n
(with X

i
∼ Bernoulli(p))

– n = total number of experiments

– p = probability of success in any single experiment

• Value set: SX = {0,1,…,n}

• Point probabilities:

• Mean value: E[X] = E[X1] +… + E[Xn] = np

• Variance: D2[X] = D2[X1] +… + D2[Xn] = np(1 − p) (independence!)

)1,0(,...},2,1{   ),,(Bin ∈∈∼ pnpnX
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4. Basic probability theory

Geometric distribution

– number of successes until the first failure in an independent series of simple 

random experiments (of Bernoulli type)

– p = probability of success in any single experiment

• Value set: SX = {0,1,…}

• Point probabilities:

• Mean value: E[X] = ∑i ip
i(1 − p) = p/(1 − p)

• Second moment: E[X2] = ∑i i
2pi(1 − p) = 2(p/(1 − p))2 + p/(1 − p)

• Variance: D2[X] = E[X2] − E[X]2 = p/(1 − p)2

)1,0(   ),(Geom ∈∼ ppX

)1(}{ ppiXP
i
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4. Basic probability theory

Memoryless property of geometric distribution

• Geometric distribution has so called memoryless property: 

for all i,j ∈ {0,1,...}

• Prove! 

– Tip: Prove first that P{X ≥ i} = pi

}{}|{ jXPiXjiXP ≥=≥+≥

32

4. Basic probability theory

Minimum of geometric random variables

• Let X1 ∼ Geom(p1) and X2 ∼ Geom(p2) be independent. Then 

and

• Prove! 

– Tip: See slide 15
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4. Basic probability theory

Poisson distribution

– limit of binomial distribution as n→ ∞ and p → 0 in such a way that np → a

• Value set: S
X
= {0,1,…}

• Point probabilities:

• Mean value: E[X] = a

• Second moment: E[X(X −1)] = a2 ⇒ E[X2] = a2 + a

• Variance: D2[X] = E[X2] − E[X]2 = a

0   ),(Poisson >∼ aaX
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4. Basic probability theory

Example

• Assume that 

– 200 subscribers are connected to a local exchange

– each subscriber’s characteristic traffic is 0.01 erlang

– subscribers behave independently

• Then the number of active calls X ∼ Bin(200,0.01)

• Corresponding Poisson-approximation X ≈ Poisson(2.0)

• Point probabilities:

0 1 2 3 4 5

Bin(200,0.01) .1326 .2679 .2693 .1795 .0893 .0354

Poisson(2.0) .1353 .2701 .2701 .1804 .0902 .0361
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4. Basic probability theory

Properties

• (i) Sum: Let X1 ∼ Poisson(a1) and X2 ∼ Poisson(a2) be independent. 
Then

• (ii) Random sample: Let X ∼ Poisson(a) denote the number of 

elements in a set, and Y denote the size of a random sample of this set 

(each element taken independently with probability p). Then

• (iii) Random sorting: Let X and Y be as in (ii), and Z = X − Y. Then 

Y and Z are independent (given that X is unknown) and 

)(Poisson 2121 aaXX +∼+

)(Poisson paY ∼

))1((Poisson apZ −∼
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4. Basic probability theory

Continuous random variables

• Definition: Random variable X is continuous if 

there is an integrable function f
X
: ℜ→ℜ

+
such that for all x ∈ ℜ

• The function f
X
is called the probability density function (pdf)

– The set S
X
, where f

X
> 0, is called the value set

• Properties:

– (i)   P{X = x} = 0  for all x ∈ ℜ

– (ii)  P{a < X < b} = P{a ≤ X ≤ b} = ∫
a
b f

X
(x) dx

– (iii)  P{X ∈ A} = ∫
A
f
X
(x) dx

– (iv)  P{X ∈ ℜ} = ∫
-∞

∞ f
X
(x) dx = ∫

S
X
f
X
(x) dx = 1

∫
∞−

=≤=

x

XX dyyfxXPxF  )(}{:)(
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4. Basic probability theory

Example

x

f
X
(x)

probability density function (pdf)

x

F
X
(x)

cumulative distribution function (cdf)

x
1

x
2

x
3

x
1

x
2

x
3

1

S
X
= [x1, x3]
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4. Basic probability theory

Expectation and other distribution related parameters

• Definition: The expectation (mean value) of X is defined by

– Note 1: The expectation exists only if ∫
-∞

∞ f
X
(x)|x| dx < ∞

– Note 2: If ∫
-∞

∞ f
X
(x)x = ∞,  then we may denote E[X] = ∞

– The expectation has the same properties as in the discrete case 

(see slide 21)

• The other distribution parameters (variance, covariance,...) are defined 

just as in the discrete case

– These parameters have the same properties as in the discrete case 

(see slides 22-24)
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4. Basic probability theory

Uniform distribution

– continuous counterpart of “casting a die”

• Value set: S
X
= (a,b)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X] = ∫
a
b x/(b − a) dx = (a + b)/2

• Second moment: E[X2] = ∫
a
b x2/(b − a) dx = (a2 + ab + b2)/3

• Variance: D2[X] = E[X2] − E[X]2 = (b − a)2/12

babaX <∼    ),,(U

),(   ,}{:)( baxxXPxF
ab

ax
X ∈=≤=

−

−

),(   ,)( 1 baxxf
abX ∈=

−
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4. Basic probability theory

Exponential distribution

– continuous counterpart of geometric distribution (“failure” prob. ≈ λdt)

– P{X ∈ (t,t+h] | X > t} = λh + o(h), where o(h)/h → 0 as h → 0

• Value set: S
X
= (0,∞)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X] = ∫0
∞ λx exp(−λx) dx = 1/λ

• Second moment: E[X2] = ∫0
∞ λx2 exp(−λx) dx = 2/λ2

• Variance: D2[X] = E[X2] − E[X]2 = 1/λ2

0   ),(Exp >∼ λλX

0   ,)( >=
− xexf x
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4. Basic probability theory

Memoryless property of exponential distribution

• Exponential distribution has so called memoryless property: 

for all x,y ∈ (0,∞)

• Prove! 

– Tip: Prove first that P{X > x} = e−λx

• Application:

– Assume that the call holding time is exponentially distributed with 

mean h minutes.

– Consider a call that has already lasted for x minutes. 

Due to memoryless property, this gives no information about the length of 

the remaining holding time: it is distributed as the original holding time 

and, on average, lasts still h minutes!

}{}|{ yXPxXyxXP >=>+>
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4. Basic probability theory

Minimum of exponential random variables

• Let X
1
∼ Exp(λ

1
) and X

2
∼ Exp(λ

2
) be independent. Then 

and

• Prove! 

– Tip: See slide 15

)(Exp},min{: 2121
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4. Basic probability theory

Standard normal (Gaussian) distribution

– limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1 
(cf. slide 48)

• Value set: S
X
= (−∞,∞)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X] = 0 (symmetric pdf)

• Variance: D2[X] = 1

)1,0(N∼X

2

2
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4. Basic probability theory

Normal (Gaussian) distribution

– if (X − µ)/σ ∼ N(0,1)

• Value set: S
X
= (−∞,∞)

• Probability density function (pdf):

• Cumulative distribution function (cdf):

• Mean value: E[X] = µ + σE[(X − µ)/σ] = µ (symmetric pdf around µ)

• Variance: D2[X] = σ2D2[(X − µ)/σ] = σ2

0   ,     ),,(N 2
>ℜ∈∼ σµσµX
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4. Basic probability theory

Properties of the normal distribution

• (i) Linear transformation: Let X ∼ N(µ,σ2) and α,β ∈ ℜ. Then

• (ii) Sum: Let X
1
∼ N(µ

1
,σ

1
2) and X

2
∼ N(µ

2
,σ

2
2) be independent. 

Then

• (iii) Sample mean: Let X
i
∼ N(µ,σ2), i = 1,…n, be independent and 

identically distributed (IID). Then (cf. slide 25) 

),(N: 22σαβαµβα +∼+= XY

),(N 2
2

2
12121 σσµµ ++∼+ XX
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i
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4. Basic probability theory

Central limit theorem (CLT)

• Let X
1
,…, X

n
be independent and identically distributed (IID) 

with mean µ and variance σ2 (and the third moment exists)
• Central limit theorem:

• It follows that for large values of n

)1,0(N)(
i.d.

/

1
→− µ

σ
n

n

X
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4. Basic probability theory

Other random variables

• In addition to discrete and continuous random variables, 

there are so called mixed random variables 

– containing some discrete as well as continuous portions

• Example:

– The customer waiting time W in an M/M/1 queue has an atom at zero 

(P{W = 0} = 1 − ρ > 0) but otherwise the distribution is continuous

F
W
(x)

x
0

1

0

1 − ρ


