4. Basic probability theory

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Sample space, sample points, events

- Sample space Ω is the set of all possible sample points $\omega \in \Omega$
- Example 0. Tossing a coin: $\Omega=\{\mathrm{H}, \mathrm{T}\}$
- Example 1. Casting a die: $\Omega=\{1,2,3,4,5,6\}$
- Example 2. Number of customers in a queue: $\Omega=\{0,1,2, \ldots\}$
- Example 3. Call holding time (e.g. in minutes): $\Omega=\{x \in \mathfrak{R} \mid x>0\}$
- Events $A, B, C, \ldots \subset \Omega$ are measurable subsets of the sample space Ω
- Example 1. "Even numbers of a die": $A=\{2,4,6\}$
- Example 2. "No customers in a queue": $A=\{0\}$
- Example 3. "Call holding time greater than 3.0 (min)": $A=\{x \in \mathfrak{R} \mid x>3.0\}$
- Denote by \mathcal{F} the set of all events $A \in \mathscr{F}$
- Sure event: The sample space $\Omega \in \mathscr{F}$ itself
- Impossible event: The empty set $\varnothing \in \mathscr{F}$

Combination of events

- Union "A or B":
- Intersection "A and B":
- Complement "not A":
- Events A and B are disjoint if
- $A \cap B=\varnothing$
- A set of events $\left\{B_{1}, B_{2}, \ldots\right\}$ is a partition of event A if
- (i) $B_{i} \cap B_{j}=\varnothing$ for all $i \neq j$
- (ii) $\cup_{i} B_{i}=A$
- Example 1. Odd and even numbers of a die constitute a partition of the sample space:
$A \cup B=\{\omega \in \Omega \mid \omega \in A$ or $\omega \in B\}$
$A \cap B=\{\omega \in \Omega \mid \omega \in A$ and $\omega \in B\}$
$A^{c}=\{\omega \in \Omega \mid \omega \notin A\}$

$$
B_{1}=\{1,3,5\} \text { and } B_{2}=\{2,4,6\}
$$

Probability

- Probability of event A is denoted by $P(A), P(A) \in[0,1]$
- Probability measure P is thus a real-valued set function defined on the set of events $\mathcal{F}, P: \mathscr{F} \rightarrow[0,1]$
- Properties:
- (i) $0 \leq P(A) \leq 1$
- (ii) $P(\varnothing)=0$
- (iii) $P(\Omega)=1$
- (iv) $P\left(A^{c}\right)=1-P(A)$
- (v) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- (vi) $A \cap B=\varnothing \Rightarrow P(A \cup B)=P(A)+P(B)$

- (vii) $\left\{B_{i}\right\}$ is a partition of $A \Rightarrow P(A)=\Sigma_{i} P\left(B_{i}\right)$
- $\quad(\mathrm{v} i \mathrm{ii}) \quad A \subset B \Rightarrow P(A) \leq P(B)$

Conditional probability

- Assume that $P(B)>0$
- Definition: The conditional probability of event A given that event B occurred is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- It follows that

$$
P(A \cap B)=P(B) P(A \mid B)=P(A) P(B \mid A)
$$

Theorem of total probability

- Let $\left\{B_{i}\right\}$ be a partition of the sample space Ω
- It follows that $\left\{A \cap B_{i}\right\}$ is a partition of event A. Thus (by slide 5)

$$
P(A) \stackrel{(v i i)}{=} \sum_{i} P\left(A \cap B_{i}\right)
$$

- Assume further that $P\left(B_{i}\right)>0$ for all i. Then (by slide 6)

$$
P(A)=\sum_{i} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

- This is the theorem of total probability

Bayes' theorem

- Let $\left\{B_{i}\right\}$ be a partition of the sample space Ω
- Assume that $P(A)>0$ and $P\left(B_{i}\right)>0$ for all i. Then (by slide 6)

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \cap B_{i}\right)}{P(A)}=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{P(A)}
$$

- Furthermore, by the theorem of total probability (slide 7), we get

$$
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{\sum_{j} P\left(B_{j}\right) P\left(A \mid B_{j}\right)}
$$

- This is Bayes' theorem
- Probabilities $P\left(B_{i}\right)$ are called a priori probabilities of events B_{i}
- Probabilities $P\left(B_{i} \mid A\right)$ are called a posteriori probabilities of events B_{i} (given that the event A occured)

Statistical independence of events

- Definition: Events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- It follows that

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)
$$

- Correspondingly:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A) P(B)}{P(A)}=P(B)
$$

Random variables

- Definition: Real-valued random variable X is a real-valued and measurable function defined on the sample space $\Omega, X: \Omega \rightarrow \mathfrak{R}$
- Each sample point $\omega \in \Omega$ is associated with a real number $X(\omega)$
- Measurability means that all sets of type

$$
\{X \leq x\}:=\{\omega \in \Omega \mid X(\omega) \leq x\} \subset \Omega
$$

belong to the set of events \mathscr{F}, that is

$$
\{X \leq x\} \in \mathcal{F}
$$

- The probability of such an event is denoted by $P\{X \leq x\}$

Example

- A coin is tossed three times
- Sample space:

$$
\Omega=\left\{\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \mid \omega_{i} \in\{\mathrm{H}, \mathrm{~T}\}, i=1,2,3\right\}
$$

- Let X be the random variable that tells the total number of tails in these three experiments:

ω	HHH	HHT	HTH	THH	HTT	THT	TTH	TTT
$X(\omega)$	0	1	1	1	2	2	2	3

Indicators of events

- Let $A \in \mathcal{F}$ be an arbitrary event
- Definition: The indicator of event A is a random variable defined as follows:

$$
1_{A}(\omega)= \begin{cases}1, & \omega \in A \\ 0, & \omega \notin A\end{cases}
$$

- Clearly:

$$
\begin{aligned}
& P\left\{1_{A}=1\right\}=P(A) \\
& P\left\{1_{A}=0\right\}=P\left(A^{c}\right)=1-P(A)
\end{aligned}
$$

Cumulative distribution function

- Definition: The cumulative distribution function (cdf) of a random variable X is a function $F_{X}: \mathfrak{R} \rightarrow[0,1]$ defined as follows:

$$
F_{X}(x)=P\{X \leq x\}
$$

- Cdf determines the distribution of the random variable,
- that is: the probabilities $P\{X \in B\}$, where $B \subset \mathfrak{R}$ and $\{X \in B\} \in \mathcal{J}$
- Properties:
- (i) F_{X} is non-decreasing
- (ii) F_{X} is continuous from the right
- (iii) $F_{X}(-\infty)=0$
- (iv) $F_{X}(\infty)=1$

Statistical independence of random variables

- Definition: Random variables X and Y are independent if for all x and y

$$
P\{X \leq x, Y \leq y\}=P\{X \leq x\} P\{Y \leq y\}
$$

- Definition: Random variables X_{1}, \ldots, X_{n} are totally independent if for all i and x_{i}

$$
P\left\{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right\}=P\left\{X_{1} \leq x_{1}\right\} \cdots P\left\{X_{n} \leq x_{n}\right\}
$$

Maximum and minimum of independent random variables

- Let the random variables X_{1}, \ldots, X_{n} be totally independent
- Denote: $X^{\max }:=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Then

$$
\begin{aligned}
P\left\{X^{\max } \leq x\right\} & =P\left\{X_{1} \leq x, \ldots, X_{n} \leq x\right\} \\
& =P\left\{X_{1} \leq x\right\} \cdots P\left\{X_{n} \leq x\right\}
\end{aligned}
$$

- Denote: $X^{\text {min }}:=\min \left\{X_{1}, \ldots, X_{n}\right\}$. Then

$$
\begin{aligned}
P\left\{X^{\min }>x\right\} & =P\left\{X_{1}>x, \ldots, X_{n}>x\right\} \\
& =P\left\{X_{1}>x\right\} \cdots P\left\{X_{n}>x\right\}
\end{aligned}
$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Discrete random variables

- Definition: Set $A \subset \mathfrak{R}$ is called discrete if it is
- finite, $A=\left\{x_{1}, \ldots, x_{n}\right\}$, or
- countably infinite, $A=\left\{x_{1}, x_{2}, \ldots\right\}$
- Definition: Random variable X is discrete if there is a discrete set $S_{X} \subset \mathfrak{R}$ such that

$$
P\left\{X \in S_{X}\right\}=1
$$

- It follows that
- $P\{X=x\} \geq 0$ for all $x \in S_{X}$
- $P\{X=x\}=0$ for all $x \notin S_{X}$
- The set S_{X} is called the value set

Point probabilities

- Let X be a discrete random variable
- The distribution of X is determined by the point probabilities p_{i},

$$
p_{i}:=P\left\{X=x_{i}\right\}, \quad x_{i} \in S_{X}
$$

- Definition: The probability mass function (pmf) of X is a function $p_{X}: \mathfrak{R} \rightarrow[0,1]$ defined as follows:

$$
p_{X}(x):=P\{X=x\}= \begin{cases}p_{i}, & x=x_{\mathrm{i}} \in S_{X} \\ 0, & x \notin S_{X}\end{cases}
$$

- Cdf is in this case a step function:

$$
F_{X}(x)=P\{X \leq x\}=\sum_{i: x_{i} \leq x} p_{i}
$$

Example

probability mass function (pmf)

cumulative distribution function (cdf)

$$
S_{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
$$

Independence of discrete random variables

- Discrete random variables X and Y are independent if and only if for all $x_{i} \in S_{X}$ and $y_{j} \in S_{Y}$

$$
P\left\{X=x_{i}, Y=y_{j}\right\}=P\left\{X=x_{i}\right\} P\left\{Y=y_{j}\right\}
$$

Expectation

- Definition: The expectation (mean value) of X is defined by

$$
\mu_{X}:=E[X]:=\sum_{x \in S_{X}} P\{X=x\} \cdot x=\sum_{x \in S_{X}} p_{X}(x) x=\sum_{i} p_{i} x_{i}
$$

- Note 1: The expectation exists only if $\Sigma_{i} p_{i}\left|x_{i}\right|<\infty$
- Note 2: If $\sum_{i} p_{i} x_{i}=\infty$, then we may denote $E[X]=\infty$
- Properties:
- (i) $c \in \mathfrak{R} \Rightarrow E[c X]=c E[X]$
- (ii) $E[X+Y]=E[X]+E[Y]$
- (iii) X and Y independent $\Rightarrow E[X Y]=E[X] E[Y]$

Variance

- Definition: The variance of X is defined by

$$
\sigma_{X}^{2}:=D^{2}[X]:=\operatorname{Var}[X]:=E\left[(X-E[X])^{2}\right]
$$

- Useful formula (prove!):

$$
D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

- Properties:
- (i) $c \in \mathfrak{R} \Rightarrow D^{2}[c X]=c^{2} D^{2}[X]$
- (ii) X and Y independent $\Rightarrow D^{2}[X+Y]=D^{2}[X]+D^{2}[Y]$

Covariance

- Definition: The covariance between X and Y is defined by

$$
\sigma_{X Y}^{2}:=\operatorname{Cov}[X, Y]:=E[(X-E[X])(Y-E[Y])]
$$

- Useful formula (prove!):

$$
\operatorname{Cov}[X, Y]=E[X Y]-E[X] E[Y]
$$

- Properties:
- (i) $\operatorname{Cov}[X, X]=\operatorname{Var}[X]$
- (ii) $\operatorname{Cov}[X, Y]=\operatorname{Cov}[Y, X]$
- (iii) $\operatorname{Cov}[X+Y, Z]=\operatorname{Cov}[X, Z]+\operatorname{Cov}[Y, Z]$
- (iv) X and Y independent $\Rightarrow \operatorname{Cov}[X, Y]=0$

Other distribution related parameters

- Definition: The standard deviation of X is defined by

$$
\sigma_{X}:=D[X]:=\sqrt{D^{2}[X]}
$$

- Definition: The coefficient of variation of X is defined by

$$
c_{X}:=C[X]:=\frac{D[X]}{E[X]}
$$

- Definition: The k th moment, $k=1,2, \ldots$, of X is defined by

$$
\mu_{X}^{(k)}:=E\left[X^{k}\right]
$$

Average of IID random variables

- Let X_{1}, \ldots, X_{n} be independent and identically distributed (IID) with mean μ and variance σ^{2}
- Denote the average (sample mean) as follows:

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- Then (prove!)

$$
\begin{aligned}
& E\left[X_{n}\right]=\mu \\
& D^{2}\left[\bar{X}_{n}\right]=\frac{\sigma^{2}}{n} \\
& D\left[X_{n}\right]=\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

Law of large numbers (LLN)

- Let X_{1}, \ldots, X_{n} be independent and identically distributed (IID) with mean μ and variance σ^{2}
- Weak law of large numbers: for all $\varepsilon>0$

$$
P\left\{\left|\bar{X}_{n}-\mu\right|>\varepsilon\right\} \rightarrow 0
$$

- Strong law of large numbers: with probability 1

$$
\bar{X}_{n} \rightarrow \mu
$$

- It follows that for large values of n

$$
X_{n} \approx \mu
$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Bernoulli distribution

$X \sim \operatorname{Bernoulli}(p), \quad p \in(0,1)$

- describes a simple random experiment with two possible outcomes: success (1) and failure (0); cf. coin tossing
- success with probability p (and failure with probability $1-p$)
- Value set: $S_{X}=\{0,1\}$
- Point probabilities:

$$
P\{X=0\}=1-p, \quad P\{X=1\}=p
$$

- Mean value: $E[X]=(1-p) \cdot 0+p \cdot 1=p$
- Second moment: $E\left[X^{2}\right]=(1-p) \cdot 0^{2}+p \cdot 1^{2}=p$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=p(1-p)$

Binomial distribution

$X \sim \operatorname{Bin}(n, p), \quad n \in\{1,2, \ldots\}, p \in(0,1)$

- number of successes in an independent series of simple random experiments (of Bernoulli type); $X=X_{1}+\ldots+X_{n}$ (with $X_{i} \sim \operatorname{Bernoulli}(p)$)
- $n=$ total number of experiments
- $\quad p=$ probability of success in any single experiment
- Value set: $S_{X}=\{0,1, \ldots, n\}$
- Point probabilities:

$$
\begin{aligned}
& \binom{n}{i}=\frac{n!}{i!(n-i)!} \\
& n!=n \cdot(n-1) \cdots 2 \cdot 1
\end{aligned}
$$

$$
P\{X=i\}=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

- Mean value: $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=n p$
- Variance: $D^{2}[X]=D^{2}\left[X_{1}\right]+\ldots+D^{2}\left[X_{n}\right]=n p(1-p)$ (independence!)

Geometric distribution

$X \sim \operatorname{Geom}(p), \quad p \in(0,1)$

- number of successes until the first failure in an independent series of simple random experiments (of Bernoulli type)
- $p=$ probability of success in any single experiment
- Value set: $S_{X}=\{0,1, \ldots\}$
- Point probabilities:

$$
P\{X=i\}=p^{i}(1-p)
$$

- Mean value: $E[X]=\sum_{i} i^{i}(1-p)=p /(1-p)$
- Second moment: $E\left[X^{2}\right]=\sum_{i} i^{2} p^{i}(1-p)=2(p /(1-p))^{2}+p /(1-p)$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=p /(1-p)^{2}$

Memoryless property of geometric distribution

- Geometric distribution has so called memoryless property: for all $i, j \in\{0,1, \ldots\}$

$$
P\{X \geq i+j \mid X \geq i\}=P\{X \geq j\}
$$

- Prove!
- Tip: Prove first that $P\{X \geq i\}=p^{i}$

Minimum of geometric random variables

- Let $X_{1} \sim \operatorname{Geom}\left(p_{1}\right)$ and $X_{2} \sim \operatorname{Geom}\left(p_{2}\right)$ be independent. Then

$$
X^{\min }:=\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Geom}\left(p_{1} p_{2}\right)
$$

and

$$
P\left\{X^{\min }=X_{i}\right\}=\frac{1-p_{i}}{1-p_{1} p_{2}}, \quad i \in\{1,2\}
$$

- Prove!
- Tip: See slide 15

Poisson distribution

$X \sim \operatorname{Poisson}(a), \quad a>0$

- limit of binomial distribution as $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $n p \rightarrow a$
- Value set: $S_{X}=\{0,1, \ldots\}$
- Point probabilities:

$$
P\{X=i\}=\frac{a^{i}}{i!} e^{-a}
$$

- Mean value: $E[X]=a$
- Second moment: $E[X(X-1)]=a^{2} \Rightarrow E\left[X^{2}\right]=a^{2}+a$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=a$

Example

- Assume that
- 200 subscribers are connected to a local exchange
- each subscriber's characteristic traffic is 0.01 erlang
- subscribers behave independently
- Then the number of active calls $X \sim \operatorname{Bin}(200,0.01)$
- Corresponding Poisson-approximation $X \approx \operatorname{Poisson}(2.0)$
- Point probabilities:

	0	1	2	3	4	5
$\operatorname{Bin}(200,0.01)$.1326	.2679	.2693	.1795	.0893	.0354
Poisson(2.0)	.1353	.2701	.2701	.1804	.0902	.0361

Properties

- (i) Sum: Let $X_{1} \sim \operatorname{Poisson}\left(a_{1}\right)$ and $X_{2} \sim \operatorname{Poisson}\left(a_{2}\right)$ be independent. Then

$$
X_{1}+X_{2} \sim \operatorname{Poisson}\left(a_{1}+a_{2}\right)
$$

- (ii) Random sample: Let $X \sim \operatorname{Poisson}(a)$ denote the number of elements in a set, and Y denote the size of a random sample of this set (each element taken independently with probability p). Then

$$
Y \sim \operatorname{Poisson}(p a)
$$

- (iii) Random sorting: Let X and Y be as in (ii), and $Z=X-Y$. Then Y and Z are independent (given that X is unknown) and

$$
Z \sim \operatorname{Poisson}((1-p) a)
$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Continuous random variables

- Definition: Random variable X is continuous if there is an integrable function $f_{X}: \mathfrak{R} \rightarrow \mathfrak{R}_{+}$such that for all $x \in \mathfrak{R}$

$$
F_{X}(x):=P\{X \leq x\}=\int_{-\infty}^{x} f_{X}(y) d y
$$

- The function f_{X} is called the probability density function (pdf)
- The set S_{X}, where $f_{X}>0$, is called the value set
- Properties:
- (i) $P\{X=x\}=0$ for all $x \in \mathfrak{R}$
- (ii) $P\{a<X<b\}=P\{a \leq X \leq b\}=\int_{a}^{b} f_{X}(x) d x$
- (iii) $P\{X \in A\}=\int_{A} f_{X}(x) d x$
- (iv) $P\{X \in \mathfrak{R}\}=\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{S_{X}} f_{X}(x) d x=1$

Example

probability density function (pdf)

cumulative distribution function (cdf)

$$
S_{X}=\left[x_{1}, x_{3}\right]
$$

Expectation and other distribution related parameters

- Definition: The expectation (mean value) of X is defined by

$$
\mu_{X}:=E[X]:=\int^{\infty} f_{X}(x) x d x
$$

- Note 1: The expectation exists only if $\int_{-\infty} f_{X}(x)|x| d x<\infty$
- Note 2: If $\int_{-\infty}{ }^{\infty} f_{X}(x) x=\infty$, then we may denote $E[X]=\infty$
- The expectation has the same properties as in the discrete case (see slide 21)
- The other distribution parameters (variance, covariance,...) are defined just as in the discrete case
- These parameters have the same properties as in the discrete case (see slides 22-24)

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Uniform distribution

$$
X \sim \mathrm{U}(a, b), \quad a<b
$$

- continuous counterpart of "casting a die"
- Value set: $S_{X}=(a, b)$
- Probability density function (pdf):

$$
f_{X}(x)=\frac{1}{b-a}, \quad x \in(a, b)
$$

- Cumulative distribution function (cdf):

$$
F_{X}(x):=P\{X \leq x\}=\frac{x-a}{b-a}, \quad x \in(a, b)
$$

- Mean value: $E[X]=\int_{a}{ }^{b} x /(b-a) d x=(a+b) / 2$
- Second moment: $E\left[X^{2}\right]=\int_{a}^{b} x^{2} /(b-a) d x=\left(a^{2}+a b+b^{2}\right) / 3$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=(b-a)^{2} / 12$

Exponential distribution

$$
X \sim \operatorname{Exp}(\lambda), \quad \lambda>0
$$

- continuous counterpart of geometric distribution ("failure" prob. $\approx \lambda d t$)
- $P\{X \in(t, t+h] \mid X>t\}=\lambda h+o(h)$, where $o(h) / h \rightarrow 0$ as $h \rightarrow 0$
- Value set: $S_{X}=(0, \infty)$
- Probability density function (pdf):

$$
f_{X}(x)=\lambda e^{-\lambda x}, \quad x>0
$$

- Cumulative distribution function (cdf):

$$
F_{X}(x)=P\{X \leq x\}=1-e^{-\lambda x}, \quad x>0
$$

- Mean value: $E[X]=\int_{0}^{\infty} \lambda x \exp (-\lambda x) d x=1 / \lambda$
- Second moment: $E\left[X^{2}\right]=\int_{0}^{\infty} \lambda x^{2} \exp (-\lambda x) d x=2 / \lambda^{2}$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / \lambda^{2}$

Memoryless property of exponential distribution

- Exponential distribution has so called memoryless property: for all $x, y \in(0, \infty)$

$$
P\{X>x+y \mid X>x\}=P\{X>y\}
$$

- Prove!
- Tip: Prove first that $P\{X>x\}=e^{-\lambda x}$
- Application:
- Assume that the call holding time is exponentially distributed with mean h minutes.
- Consider a call that has already lasted for x minutes. Due to memoryless property, this gives no information about the length of the remaining holding time: it is distributed as the original holding time and, on average, lasts still h minutes!

Minimum of exponential random variables

- Let $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ be independent. Then

$$
X^{\min }:=\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)
$$

and

$$
P\left\{X^{\min }=X_{i}\right\}=\frac{\lambda_{i}}{\lambda_{1}+\lambda_{2}}, \quad i \in\{1,2\}
$$

- Prove!
- Tip: See slide 15

Standard normal (Gaussian) distribution

$$
X \sim \mathrm{~N}(0,1)
$$

- limit of the "normalized" sum of IID r.v.s with mean 0 and variance 1 (cf. slide 48)
- Value set: $S_{X}=(-\infty, \infty)$
- Probability density function (pdf):

$$
f_{X}(x)=\varphi(x):=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

- Cumulative distribution function (cdf):

$$
F_{X}(x):=P\{X \leq x\}=\Phi(x):=\int_{-\infty}^{x} \varphi(y) d y
$$

- Mean value: $E[X]=0 \quad$ (symmetric pdf)
- Variance: $D^{2}[X]=1$

Normal (Gaussian) distribution

$$
X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \quad \mu \in \mathfrak{R}, \quad \sigma>0
$$

- if $(X-\mu) / \sigma \sim N(0,1)$
- Value set: $S_{X}=(-\infty, \infty)$
- Probability density function (pdf):

$$
f_{X}(x)=F_{X}^{\prime}(x)=\frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right)
$$

- Cumulative distribution function (cdf):

$$
F_{X}(x):=P\{X \leq x\}=P\left\{\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right\}=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

- Mean value: $E[X]=\mu+\sigma E[(X-\mu) / \sigma]=\mu$ (symmetric pdf around μ)
- Variance: $D^{2}[X]=\sigma^{2} D^{2}[(X-\mu) / \sigma]=\sigma^{2}$

Properties of the normal distribution

- (i) Linear transformation: Let $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ and $\alpha, \beta \in \mathfrak{R}$. Then

$$
Y:=\alpha X+\beta \sim \mathrm{N}\left(\alpha \mu+\beta, \alpha^{2} \sigma^{2}\right)
$$

- (ii) Sum: Let $X_{1} \sim \mathrm{~N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathrm{~N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ be independent. Then

$$
X_{1}+X_{2} \sim \mathrm{~N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

- (iii) Sample mean: Let $X_{i} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), i=1, \ldots n$, be independent and identically distributed (IID). Then (cf. slide 25)

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathrm{~N}\left(\mu, \frac{1}{n} \sigma^{2}\right)
$$

Central limit theorem (CLT)

- Let X_{1}, \ldots, X_{n} be independent and identically distributed (IID) with mean μ and variance σ^{2} (and the third moment exists)
- Central limit theorem:

$$
\frac{1}{\sigma / \sqrt{n}}\left(\bar{X}_{n}-\mu\right) \xrightarrow{\text { i.d. }} \mathrm{N}(0,1)
$$

- It follows that for large values of n

$$
\bar{X}_{n} \approx \mathrm{~N}\left(\mu, \frac{1}{n} \sigma^{2}\right)
$$

Contents

- Basic concepts
- Discrete random variables
- Discrete distributions (nbr distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other random variables

Other random variables

- In addition to discrete and continuous random variables, there are so called mixed random variables
- containing some discrete as well as continuous portions
- Example:
- The customer waiting time W in an $\mathrm{M} / \mathrm{M} / 1$ queue has an atom at zero ($P\{W=0\}=1-\rho>0)$ but otherwise the distribution is continuous

THE END

