

2. Traffic

lect02.ppt

S-38.1145 - Introduction to Teletraffic Theory - Spring 2006

1

2. Traffic

Contents

- Traffic characterisation
- Telephone traffic modelling
- · Data traffic modelling at packet level
- Data traffic modelling at flow level

2

2. Traffic

Offered vs. carried traffic

- Offered traffic
 - traffic as it is originally generated in the sources
- Carried traffic
 - traffic as it is carried by the network

2. Traffic

Characterisation of carried traffic

- · Circuit-switched traffic
 - number of ongoing calls or active connections (erl)
 - may be converted into bit rate in digital systems
 - e.g. a telephone call reserves 64 kbps (= 8000*8 bps) in a PCM system
- Packet-switched traffic
 - bit stream (bps, kbps, Mbps, Gbps, ...)
 - packet stream (pps)
 - number of active flows (erl)

Traffic units

- · Telephone traffic:
 - erlangs (erl)
 - one erlang corresponds to one ongoing call or one occupied channel
- Data traffic:
 - bits per second (bps)
 - packets per second (pps)
- Note:
 - 1 byte = 8 bits
 - 1 kbps = 1 kbit/s = 1,000 bits per second
 - 1 Mbps = 1 Mbit/s = 1,000,000 bits per second
 - 1 Gbps = 1 Gbit/s = 1,000,000,000 bits per second

Predictive variations:

- Fredictive variations
 - Trend (years)
 - · traffic growth: due to
 - existing services (new users, new ways to use, new tariffs)

Traffic variations in different time scales (1)

- new services
- Regular **year profile** (months)
- Regular week profile (days)
- Regular day profile (hours)
 - · including "busy hour"
- Variations caused by predictive (regular and irregular) external events
 - regular: e.g. Christmas day
 - · irregular: e.g. televoting

6

2. Traffic

Traffic variations in different time scales (2)

- Non-predictive variations:
 - Short term random variations (seconds minutes)
 - · random call arrivals
 - · random call holding times
 - Long term random variations (hours ...)
 - · random deviations around the profiles
 - · each day, week, month, etc. is different
 - Variations caused by non-predictive external events
 - · e.g. earthquakes and other natural disasters
- · Note:
 - Ordinary traffic theoretic models focus on short term random variations

2. Traffic

Busy hour (1)

- For dimensioning,
 - an estimate of the traffic load is needed
- In telephone networks,
 - standard way is to use so called **busy hour** traffic for dimensioning

Busy hour ≈ the continuous 1-hour period for which the traffic volume is greatest

- This is unambiguous only for a single day (let's call it daily peak hour)
- For dimensioning, however, we have to look at not only a single day but many more
- Different definitions for busy hour (covering several days) traffic have been proposed by ITU:
 - Average Daily Peak Hour (ADPH)
 - · Time Consistent Busy Hour (TCBH)

Busy hour (2)

Let

- N = number of days during which measurements are done (e.g. N = 10)

- $a_n(\Delta)$ = measured average traffic during 1-hour interval Δ of day n

- $\max_{\Lambda} a_n(\Delta)$ = daily peak hour traffic of day n

• Busy hour traffic *a* with different methods:

$$a_{\text{ADPH}} = \frac{1}{N} \sum_{n=1}^{N} \max_{\Delta} a_n(\Delta)$$

$$a_{\text{TCBH}} = \max_{\Delta} \frac{1}{N} \sum_{n=1}^{N} a_n(\Delta)$$

· Note that

 $a_{\text{TCBH}} \le a_{\text{ADPH}}$

(

2. Traffic

Contents

· Traffic characterisation

· Telephone traffic modelling

· Data traffic modelling at packet level

· Data traffic modelling at flow level

2. Traffic

Demo: Funet

Diurnal pattern, day profile

day vs. night

- peak traffic, busy "hour"

- changes in routing?

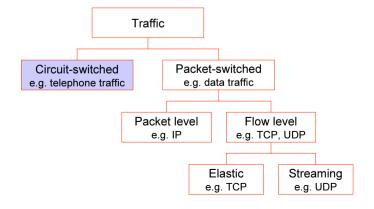
Week profile

- working days vs. weekend

Month profile

- special days: e.g. Christmas day

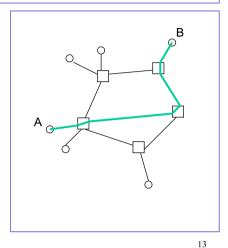
Year profile


· Long-term trend?

http://www.csc.fi/suomi/funet/verkko.html.fi http://www.csc.fi/suomi/funet/noc/looking-glass/wm

10

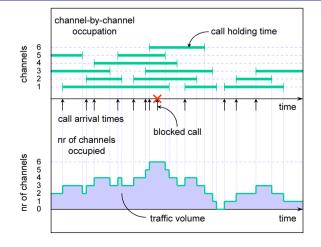
2. Traffic


Traffic classification

2. Traffic

Telephone network

- · Connection oriented:
 - connections set up end-to-end before information transfer
 - resources reserved for the whole duration of connection
 - if resources are not available, the call is blocked and lost
- Information transfer as continuous stream

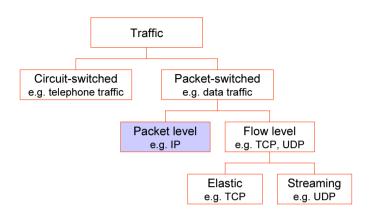


Telephone traffic model

- Telephone traffic consists of calls
 - a call occupies one channel from each of the links along its route
 - call characterisation: **holding time** (in time units)
- · Modelling of offered traffic:
 - call arrival process (at which moments new calls arrive)
 - holding time distribution (how long they take)
- Link model: a pure loss system
 - a server corresponds to a channel
 - the service rate μ depends on the average holding time
 - the number of servers, *n*, depends on the **link capacity**
 - when all channels are occupied, call admission control rejects new calls so that they will be blocked and lost
- Modelling of carried traffic:
 - traffic process tells the number of ongoing calls = the number of occupied channels

2. Traffic

Traffic process

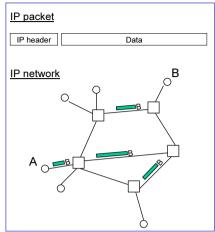


2. Traffic

Contents

- · Traffic characterisation
- · Telephone traffic modelling
- · Data traffic modelling at packet level
- · Data traffic modelling at flow level

Traffic classification


17

19

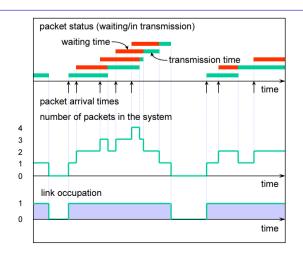
Traffic

Network layer in IP networks

- IP = Internet Protocol
- Connectionless:
 - no connection establishment
 - no resource reservations
- Information transfer as discrete packets
- Best Effort service paradigm
 - Network nodes (routers) forward packets "as well as possible"
 - Packets may be lost, delayed or their order may change
 "intelligence" should be implemented at the edge nodes or terminals

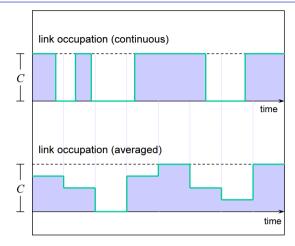
18

2. Traffic


Packet level model of data traffic

Data traffic consists of packets

- packets compete with each other for the processing and transmission resources (statistical multiplexing)
- packet characterisation: length (in data units)
- · Modelling of offered traffic:
 - packet arrival process (at which moments new packets arrive)
 - packet length distribution (how long they are)
- · Link model: a single server queueing system
 - the service rate μ depends on the link capacity and the average packet length
 - when the link is busy, new packets are buffered, if possible, otherwise they are lost
- · Modelling of carried traffic:
 - traffic process tells the number of packets in the system (including both the packet in transmission and the packets waiting in the buffer)

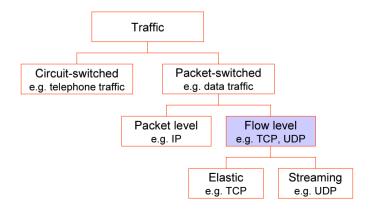

2. Traffic

Packet level traffic process (1)

2. Traffic

Packet level traffic process (2)

2. Traffic


Contents

- Traffic characterisation
- Telephone traffic modelling
- · Data traffic modelling at packet level
- · Data traffic modelling at flow level

22

2. Traffic

Traffic classification

2. Traffic

Transport layer in IP networks

- On top of the network layer (IP) there is the **transport layer**
 - takes care of handling the IP packets in the terminals
 - operates end-to-end
- · Transport layer protocols:
 - TCP = Transmission Control Protocol
 - transmission rate adapts to traffic conditions in the network by a congestion control mechanism
 - suitable for non-real time (elastic) traffic, such as transfers of digital documents (file transfer)
 - UDP = User Datagram Protocol
 - · transmission rate independent of traffic conditions in the network
 - suitable for transactions (interactive traffic with short transfers)
 - used also for real time (streaming) traffic with the help of upper layer protocols, such as RTP

TCP

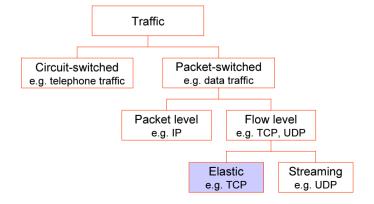
- TCP = Transmission Control Protocol
 - connection oriented end-to-end transmission layer protocol
 - for a reliable byte stream transfer on top of IP
 - the delivery of packets in the right order is checked using acknowledgements and retransmissions
 - Protocol specific flow and congestion control mechanisms for traffic control
 - · based on the use of an adaptive sliding window
 - flow control: prevents over flooding the receiver
 - · the receiver tells who many bytes it can receive
 - congestion control: prevents over flooding the network
 - the transmitter has to find out when the network is congested
 - a packet loss indicates congestion: when a packet is lost, the window is decreased, otherwise gradually increased (to detect the network state)

2. Traffic

Data traffic at flow level

- · In a longer time scale, data traffic may be thought to consist of flows
 - A single flow is described as a continuous bit stream with a possibly varying rate (and not as discrete packets)
- · Flow classification:
 - Elastic flows
 - transmission rate adapts to traffic conditions in the network by a congestion control mechanism
 - e.g. transfers of digital documents (HTTP,FTP,...) using TCP
 - Streaming flows
 - · transmission rate independent of traffic conditions in the network
 - e.g. real time voice, audio and video transmissions using UDP

2. Traffic


UDP

- UDP = User Datagram Protocol
 - connectionless end-to-end transmission layer protocol
 - on top of IP, but only for multiplexing
 - no guarantees of packet transfer (unreliable)
 - no flow control: may overload the receiver
 - no congestion control: may overload the network

IP header UDP header Data 26

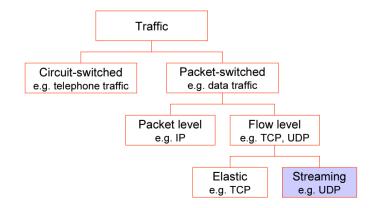
2. Traffic

Traffic classification

Flow level model of elastic traffic

- Elastic traffic consists of adaptive TCP flows
 - flow characterisation: size (in data units)
 - the transfer rate and the duration of an elastic flow are not fixed but depend on the network state dynamically
- · Modelling of offered traffic:
 - flow arrival process (at which moments new flows arrive)
 - flow size distribution (how large they are)
- · Link model: a sharing system
 - due to lack of admission control, no flows are rejected
 - the service rate μ depends on the link capacity and the average flow size
 - in the model, the adaptation of the transmission rate is immediate, and the link capacity is shared evenly (fairly) among all competing flows
- Modelling of carried traffic:
 - traffic process tells the number of flows in the system

29


Flow level traffic process for elastic flows

30

2. Traffic

Traffic classification

2. Traffic

2. Traffic

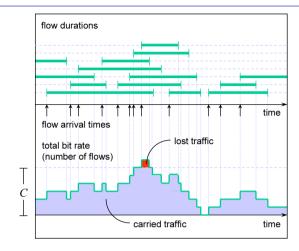
Streaming traffic classification

- CBR = constant bit rate
 - e.g. CBR coded voice/audio/video
 - packet level: fixed size packets generated regularly with uniform intervals
 - flow level: constant rate bit stream
 - flow characterisation: bit rate and duration
- VBR = variable bit rate
 - e.g. VBR coded voice/audio/video
 - packet level: variable size packets generated irregularly
 - flow level: variable rate bit stream
 - flow characterisation: bit rate as a function of time

Flow level model of streaming CBR traffic

- · Streaming CBR traffic consists of UDP flows with constant bit rate
 - flow characterisation: bit rate and duration
- · Modelling of offered traffic:
 - flow arrival process (at which moments new flows arrive)
 - flow duration distribution (how long they last)
- Link model: an infinite system
 - due to lack of admission control, no flows are rejected
 - the service rate μ depends on the average flow duration
 - transmission rate and flow duration are insensitive to the network state
 - no buffering in the flow level model: when the total transmission rate of the flows exceeds the link capacity, bits are lost (uniformly from all flows)
- · Modelling of carried traffic:
 - traffic process tells the number of flows in the system, and, as well, the total bit rate

33


2. Traffic

THE END

2. Traffic

Flow level traffic process for streaming CBR flows

