- 1. Consider the M/M/2/2 model with mean customer interarrival time of $1/\lambda$ time units and mean service time of $1/\mu$ time units. Let X(t) denote the number of customers in the system at time t, which is a Markov process.
 - (a) Draw the state transition diagram of X(t).
 - (b) Derive the equilibrium distribution of X(t).
 - (c) Assume that $\lambda = 3$ and $\mu = 2$. What is the average number of customers that depart from the system in a time unit?
- 2. Consider the M/M/2 model with mean customer interarrival time of $1/\lambda$ time units and mean service time of $1/\mu$ time units. Let X(t) denote the number of customers in the system at time t, which is a Markov process.
 - (a) Draw the state transition diagram of X(t).
 - (b) Derive the equilibrium distribution of X(t).
 - (c) Assume that $\lambda = 3$ and $\mu = 2$. What is the average number of customers that depart from the system in a time unit?
- 3. Consider the M/M/2/4 model with mean customer interarrival time of $1/\lambda$ time units and mean service time of $1/\mu$ time units. Let X(t) denote the number of customers in the system at time t, which is a Markov process.
 - (a) Draw the state transition diagram of X(t).
 - (b) Derive the equilibrium distribution of X(t).
 - (c) Assume that $\lambda = 3$ and $\mu = 2$. What is the average number of customers that depart from the system in a time unit?