1. Consider the $\mathrm{M} / \mathrm{M} / 2 / 2$ model with mean customer interarrival time of $1 / \lambda$ time units and mean service time of $1 / \mu$ time units. Let $X(t)$ denote the number of customers in the system at time t, which is a Markov process.
(a) Draw the state transition diagram of $X(t)$.
(b) Derive the equilibrium distribution of $X(t)$.
(c) Assume that $\lambda=3$ and $\mu=2$. What is the average number of customers that depart from the system in a time unit?
2. Consider the $M / M / 2$ model with mean customer interarrival time of $1 / \lambda$ time units and mean service time of $1 / \mu$ time units. Let $X(t)$ denote the number of customers in the system at time t, which is a Markov process.
(a) Draw the state transition diagram of $X(t)$.
(b) Derive the equilibrium distribution of $X(t)$.
(c) Assume that $\lambda=3$ and $\mu=2$. What is the average number of customers that depart from the system in a time unit?
3. Consider the $\mathrm{M} / \mathrm{M} / 2 / 4$ model with mean customer interarrival time of $1 / \lambda$ time units and mean service time of $1 / \mu$ time units. Let $X(t)$ denote the number of customers in the system at time t, which is a Markov process.
(a) Draw the state transition diagram of $X(t)$.
(b) Derive the equilibrium distribution of $X(t)$.
(c) Assume that $\lambda=3$ and $\mu=2$. What is the average number of customers that depart from the system in a time unit?
