TKK HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking
S-38.1145 Introduction to Teletraffic Theory, Spring 2008

Demonstrations
Lecture 9
14.2.2008

D9/1 Consider elastic data traffic on a link between two routers at flow level. The traffic consists of TCP flows sharing the link, and arriving with intensity λ. The link capacity is denoted by C and the random flow size by L. In addition to the shared link, the rate of TCP flows is limited by access links. Let r denote the capacity of each access link.
(a) Consider this as an M/M/n-PS model. Assume that $\lambda=80$ flows $/ \mathrm{s}$, $E[L]=$ $0.125 \cdot 10^{6}$ bytes, $C=100 \mathrm{Mbps}$, and $r=10 \mathrm{Mbps}$. Determine the throughput θ.
(b) What happens with the throughput if $C=10 \mathrm{Gbps}$?

D9/2 As in the previous problem, consider elastic data traffic on a link. Assume now that $\lambda=80$ flows $/ \mathrm{s}, E[L]=0.125 \cdot 10^{6}$ bytes, and $C=r=100 \mathrm{Mbps}$. In addition, there is an admission control scheme (to avoid overload situations) that allows at most 10 concurrent flows. Let $X(t)$ denote the number of flows sharing the link at time t, which is a Markov process.
(a) What is the traffic model in question (with Kendall's notation)?
(b) Draw the state transition diagram of $X(t)$.
(c) Derive the equilibrium distribution of $X(t)$.
(d) What is the mean number of flows sharing the link?

D9/3 Consider the M/M/1/3/3-PS model with $1 / \nu=1 / \mu=1$ (time unit). Determine the mean delay and the relative throughput of a customer.

D9/1 (a) This is a M/M/n-PS model with

$$
n=\frac{C}{r}=\frac{100}{10}=10
$$

The throughput of a flow is thus (L9/25)

$$
\theta=\frac{E[L]}{E[D]}=r \cdot \frac{n(1-\rho)}{p_{W}+n(1-\rho)},
$$

where ρ refers to the load of the shared link (L9/15),

$$
\rho=\frac{\lambda}{n \mu}=\frac{\lambda}{\frac{C}{E[L]}}=\frac{80}{\frac{100 \cdot 10^{6}}{8 \cdot 0.125 \cdot 10^{6}}}=\frac{4}{5}=0.8,
$$

and p_{W} to the following probability ($\mathrm{L} 9 / 20, \mathrm{~L} 8 / 31$):

$$
p_{W}=\frac{\beta}{\alpha+\beta}=\frac{\frac{(n \rho)^{n}}{n+(1)-\rho)}}{\sum_{0}^{n-1} \frac{(n \rho)^{i}}{\imath!}+\frac{(n \rho \rho)^{n}}{n!(1-\rho)}}=\cdots \stackrel{\text { num. }}{=} 0.41
$$

Thus, the throughput is

$$
\theta=r \cdot \frac{n(1-\rho)}{p_{W}+n(1-\rho)}=10 \cdot \frac{2}{0.41+2}=8.3 \mathrm{Mbps}
$$

(b) As C becomes sufficiently large (while the offered traffic remains the same), the shared link hardly ever acts as a bottleneck so that the throughputs approach the access rate $r=10 \mathrm{Mbps}$. Thus, we deduce that, for $C=10 \mathrm{Gbps}$,

$$
\theta \approx r=10 \mathrm{Mbps}
$$

D9/2 (a) Now

$$
n=\frac{C}{r}=\frac{100}{100}=1 .
$$

In addition, the admission control limits the number of concurrent flows up to 10. So this is a $\mathrm{M} / \mathrm{M} / 1 / 10-\mathrm{PS}$ model with parameters $\lambda=80$ flows $/ \mathrm{s}$ and $\mu=$ $r / E[L]=100$ flows $/ \mathrm{s}$.
(b) Figure 1.

Figure 1: [D9/2] State transition diagram.
(c) We see from Figure 1 that $X(t)$ is an irreducible birth-death-process (L6/16). Since the state space is finite, the equilibrium distribution π exists, and it can be derived based on the local balance equations ($\mathrm{LBE} \mathrm{)} \mathrm{and} \mathrm{the} \mathrm{normalization}$ condition (N), cf. L6/17.
Let us start with the LBE's for states $i-1$ and i, where $i=1, \ldots, N$:

$$
\pi_{i-1} \lambda=\pi_{i} \mu
$$

This results in the following recursion:

$$
\pi_{i}=\pi_{i-1}\left(\frac{\lambda}{\mu}\right)=\pi_{i-2}\left(\frac{\lambda}{\mu}\right)^{2}=\ldots=\pi_{0}\left(\frac{\lambda}{\mu}\right)^{i}=\pi_{0} \rho^{i}
$$

where $\rho=\lambda / \mu=80 / 100=0.8$. The remaining probability π_{0} is determined by (N):

$$
\pi_{0}+\pi_{1}+\ldots+\pi_{10}=\pi_{0} \sum_{i=0}^{10} \rho^{i}=\pi_{0} \frac{1-\rho^{11}}{1-\rho}=1
$$

Thus,

$$
\pi_{0}=\frac{1-\rho}{1-\rho^{11}}=\frac{0.2}{1-(0.8)^{11}} \stackrel{\text { num. }}{=} 0.219
$$

Thus, the equilibrium distribution is the truncated geometric distribution:

$$
\begin{aligned}
\pi & =\left(\pi_{i} \mid i=0,1, \ldots, 10\right) \\
& =(0.219,0.175,0.140,0.112,0.090,0.072,0.057,0.046,0.0370 .029,0.023)
\end{aligned}
$$

(d) The mean number of flows sharing the link is

$$
E[X]=\sum_{i=0}^{10} i \cdot \pi_{i}=\ldots \stackrel{\text { num. }}{=} 2.97
$$

D9/3 By L9/31, the equilibrium distribution of the $\mathrm{M} / \mathrm{M} / 1 / k / k$ model reads as follows:

$$
\pi_{i}=\frac{\frac{\left(\frac{\nu}{\mu}\right)^{i}}{(k-i)!}}{\sum_{j=0}^{k} \frac{\left(\frac{\nu}{\mu}\right)^{j}}{(k-j)!}}
$$

For $k=3$ and $\nu=\mu=1$, we get

$$
\begin{aligned}
& \pi_{0}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{2}+1+1}=\frac{1}{1+3+6+6}=\frac{1}{16}=0.062 \\
& \pi_{1}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{2}+1+1}=\frac{3}{1+3+6+6}=\frac{3}{16}=0.187 \\
& \pi_{2}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{2}+1+1}=\frac{6}{1+3+6+6}=\frac{6}{16}=0.375 \\
& \pi_{3}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{2}+1+1}=\frac{6}{1+3+6+6}=\frac{6}{16}=0.375
\end{aligned}
$$

Thus, the mean number of customers in the system is

$$
E[X]=\sum_{i=1}^{3} i \cdot \pi_{i}=\frac{3}{16}+2 \cdot \frac{6}{16}+3 \cdot \frac{6}{16}=\frac{33}{16}=2.062
$$

To apply Little's formula, we also need to know the rate λ at which new customers enter the system. When in state $X=i$, which happens with probability π_{i}, new customers enter the system with rate $(3-i) \nu$. Thus, for $\nu=1$, we get

$$
\lambda=\sum_{i=0}^{3}(3-i) \nu \cdot \pi_{i}=3 \cdot \frac{1}{16}+2 \cdot \frac{3}{16}+\frac{6}{16}=\frac{15}{16}=0.937
$$

Now, by Little's formula ($\mathrm{L} 1 / 31$), the mean delay is

$$
E[D]=\frac{E[X]}{\lambda}=\frac{11}{5}=2.2
$$

On the other hand, the mean service time is $E[S]=1 / \mu=1$ so that the relative throughput (cf. L9/22) is

$$
\frac{E[S]}{E[D]}=\frac{1}{\frac{11}{5}}=\frac{5}{11}=0.454
$$

