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D8/1 Consider the following simple teletraffic model with a single server (n = 1): Customers
arrive according to a Poisson process with intensity λ. Service times are IID and
exponentially distributed with mean 1/µ. The number of waiting places is finite (0 <
m < ∞). Queueing discipline is FIFO. Let X(t) denote the number of customers in
the system at time t, which is a Markov process.

(a) What is the traffic model in question (with Kendall’s notation)?

(b) Draw the state transition diagram of X(t).

(c) Derive the equilibrium distribution of X(t).

(d) What is the probability that an arriving customer is lost?

(e) What is the probability that an arriving customer that is not lost has to wait?

D8/2 Consider the M/M/2/3 model with mean customer interarrival time of 1/λ time units
and mean service time of 1/µ time units. Let X(t) denote the number of customers in
the system at time t, which is a Markov process.

(a) Draw the state transition diagram of X(t).

(b) Derive the equilibrium distribution of X(t).

(c) Assume that λ = µ. What is the probability that an arriving customer is lost?

(d) Assume again that λ = µ. What is the utilization factor of the system, that is,
the mean number of busy servers divided by the total number of servers?

D8/3 Consider a (lossy) queueing system with two servers and one waiting place. As in
D7/3, customers arrive in independent batches of size 1 or 2. Both sizes are equally
probable. These batches arrive according to a Poisson process with intensity λ. The
whole batch is lost whenever the system is full at the arrival time. But if the waiting
place is free when a new batch of size 2 arrives, only one of the arriving customers is
lost. The customers are served individually and independently with the service time
following the Exp(µ) distribution. Let X(t) denote the number of customers in the
system at time t, which is a Markov process.

(a) Draw the state transition diagram of X(t).

(b) Derive the equilibrium distribution of X(t).

(c) Assume that λ = µ. What is the utilization factor of the system, that is, the
mean number of busy servers divided by the total number of servers?

(d) Assume 1/λ = 1/µ = 1 (time unit). What is the mean waiting time for the
customers that are not lost?
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D8/1 (a) This is the M/M/1/N model where N = m + 1.

(b) Figure 1.

Figure 1: [D8/1] State transiotion diagram.

(c) We see from Figure 1 that X(t) is an irreducible birth-death-process (L6/16).
Since the state space is finite, the equilibrium distribution π exists, and it can
be derived based on the local balance equations (LBE) and the normalization
condition (N), cf. L6/17.
Let us start with the LBE’s for states i − 1 and i, where i = 1, . . . , N :

πi−1λ = πiµ

This results in the following recursion:

πi = πi−1
λ

µ
= πi−2(

λ

µ
)2 = . . . = π0(

λ

µ
)i = π0 ρi

where ρ = λ/µ. The remaining probability π0 is determined by (N):

π0 + π1 + . . . + πN = π0

N∑

i=0

ρi = 1

so that

π0 =





1
N + 1

, if ρ = 1,

1 − ρ

1 − ρN+1
, otherwise.

Thus, the equilibrium distribution is the truncated geometric distribution:

πi =





1
N + 1

, if ρ = 1,

(1 − ρ)ρi

1 − ρN+1
, otherwise.

(i = 0, 1, . . . , N)

(d) A customer is lost if the system is full at the arrival time. Due to the PASTA
property (L5/28) of the Poisson arrival processs, this happens with probability
which is equal to the equilibrium probability πN . Thus,

P{“a customer is lost”} = P{X = N} = πN =





1
N + 1

, if ρ = 1,

(1− ρ)ρN

1 − ρN+1
, otherwise.
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(e) A customer that is not lost will get an immediate service (without any waiting)
if the system is empty at the arrival time. Again, we apply the PASTA property
(L5/28) to get the required probabilities as follows:

P{“a customer has to wait” | “not lost”}
= 1− P{X = 0 | X < N}

= 1− P{X = 0}
P{X < N}

= 1− π0

1 − πN

=





N − 1
N

, if ρ = 1,

ρ− ρN

1 − ρN
, otherwise.

D8/2 (a) Figure 2.

Figure 2: [D8/2] State transition diagram.

(c) We see from Figure 1 that X(t) is an irreducible birth-death-process (L6/16).
Since the state space is finite, the equilibrium distribution π exists, and it can
be derived based on the local balance equations (LBE) and the normalization
condition (N), cf. L6/17.
Let us start with the LBE’s for states i − 1 and i, where i = 1, 2, 3:

π0λ = π1µ, π1λ = π2 2µ, π2λ = π3 2µ

The other probabilities are now solved as a function of π0:

π1 = π0
λ

µ
, π2 = π0

1
2
(
λ

µ
)2, π3 = π0

1
4
(
λ

µ
)3

The remaining probability π0 is determined by (N):

π0 + π1 + . . . + πN = π0

(
1 +

λ

µ
+

1
2
(
λ

µ
)2 +

1
4
(
λ

µ
)3

)
= 1

Thus, the equilibrium distribution is

π0 =
1

1 + λ
µ + 1

2(λ
µ)2 + 1

4(λ
µ)3

, π1 =
λ
µ

1 + λ
µ + 1

2(λ
µ)2 + 1

4(λ
µ)3

,

π2 =
1
2(λ

µ)2

1 + λ
µ + 1

2(λ
µ)2 + 1

4(λ
µ)3

, π3 =
1
4(λ

µ)3

1 + λ
µ + 1

2(λ
µ)2 + 1

4(λ
µ)3
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For (c) and (d), we compute the equilibrium distribution under the assumption
that λ = µ:

π0 =
4
11

= 0.36, π1 =
4
11

= 0.36, π2 =
2
11

= 0.18, π3 =
1
11

= 0.09

(c) A customer is lost if the system is full at the arrival time. Due to the PASTA
property (L5/28) of the Poisson arrival processs, this happens with probability
which is equal to the equilibrium probability π3. Thus,

P{“a customer is lost”} = π3 =
1
11

= 0.09

(d) The mean number of busy servers is

E[Xs] = π1 + 2(π2 + π3) =
4
11

+ 2 ·
(

2
11

+
1
11

)
=

10
11

= 0.91

Thus, the utilization factor becomes

E[U ] =
E[Xs]

n
=

10
11

2
=

5
11

= 0.45

D8/3 (a) Figure 3.

Figure 3: [D8/3] State transition diagram.

(b) We see from Figure 3 that the Markov process X(t) is irreducible (L6/10). Since
the state space is finite, the equilibrium distribution π exists, and it can be derived
based on the global balance equations (GBE) and the normalization condition (N),
cf. L6/11.
Let us start with the GBE’s for states 0, 1, and 2:

π0λ = π1µ, π1(λ + µ) = π0
λ

2
+ π2 2µ, π2(λ + 2µ) = π1

λ

2
+ π3 2µ

The other probabilities are now solved as a function of π0:

π1 = π0
λ

µ
, π2 = π0

(
1
4
(
λ

µ
) +

1
2
(
λ

µ
)2

)
, π3 = π0

(
3
8
(
λ

µ
)2 +

1
4
(
λ

µ
)3

)

The remaining probability π0 is determined by (N):

π0 + π1 + π2 = π0

(
1 +

5
4
(
λ

µ
) +

7
8
(
λ

µ
)2 +

1
4
(
λ

µ
)3

)
= 1,
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so that the equilibrium distribution is

π0 =
1

1 + 5
4(λ

µ) + 7
8(λ

µ)2 + 1
4(λ

µ)3
, π1 =

λ
µ

1 + 5
4(λ

µ) + 7
8(λ

µ)2 + 1
4(λ

µ)3
,

π2 =
1
4(λ

µ) + 1
2(λ

µ)2

1 + 5
4(λ

µ) + 7
8(λ

µ)2 + 1
4(λ

µ)3
, π3 =

3
8(λ

µ)2 + 1
4(λ

µ)3

1 + 5
4(λ

µ) + 7
8(λ

µ)2 + 1
4(λ

µ)3

For (c) and (d), we compute the equilibrium distribution under the assumption
that λ = µ:

π0 =
8
27

= 0.30, π1 =
8
27

= 0.30, π2 =
6
27

= 0.22, π3 =
5
27

= 0.19

(c) The mean number of busy servers is

E[Xs] = π1 + 2(π2 + π3) =
8
27

+ 2 ·
(

6
27

+
5
27

)
=

10
9

= 1.11

Thus, the utilization factor becomes

E[U ] =
E[Xs]

n
=

10
9

2
=

5
9

= 0.56

(d) There is a single customer waiting in state 3, while in all the other states no
customers wait. Thus, the mean number of waiting customers is

E[Xw] = π3 =
5
27

= 0.19

New customers (that are not lost) enter the system with intensity

λcarried = λ(1− Bc),

wher Bc is the (call blocking) probability that an arriving customer is lost. When
this intensity λcarried is known, we can use Little’s formula to calculate the
required mean waiting time.
To calculate the call blocking probability, we need to know the mean number of
customers in a batch, E[A], and the mean number of lost customers in a batch,
E[L]. The former one is clearly

E[A] = 1 · P{A = 1} + 2 · P{A = 2} = 1 · 1
2

+ 2 · 1
2

=
3
2

= 1.50

On the other hand, due to the PASTA property of the Poisson process (L5/28),
an arriving batch sees the system in equilibrium. Thus,

E[L] = π2 (1 · P{A = 2}) + π3 (1 · P{A = 1} + 2 · P{A = 2})

= π2P{A = 2} + π3E[A] =
6
27

· 1
2

+
5
27

· 3
2

=
7
18

= 0.39

The call blocking probability Bc is their ratio:

Bc =
E[L]
E[A]

=
7
18
3
2

=
7
27

= 0.26,
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so that, due to Little’s formula (L1/31), the mean waiting time for the customers
that are not lost is finally

E[W ] =
E[Xw]

λcarried
=

E[Xw]
λ(1− Bc)

=
5
27

1 − 7
27

=
1
4

= 0.25 (time units)
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