TKK HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking
S-38.1145 Introduction to Teletraffic Theory, Spring 2008

Demonstrations

Lecture 8

8.2.2008

D8/1 Consider the following simple teletraffic model with a single server $(n=1)$: Customers arrive according to a Poisson process with intensity λ. Service times are IID and exponentially distributed with mean $1 / \mu$. The number of waiting places is finite $(0<$ $m<\infty)$. Queueing discipline is FIFO. Let $X(t)$ denote the number of customers in the system at time t, which is a Markov process.
(a) What is the traffic model in question (with Kendall's notation)?
(b) Draw the state transition diagram of $X(t)$.
(c) Derive the equilibrium distribution of $X(t)$.
(d) What is the probability that an arriving customer is lost?
(e) What is the probability that an arriving customer that is not lost has to wait?

D8/2 Consider the $\mathrm{M} / \mathrm{M} / 2 / 3$ model with mean customer interarrival time of $1 / \lambda$ time units and mean service time of $1 / \mu$ time units. Let $X(t)$ denote the number of customers in the system at time t, which is a Markov process.
(a) Draw the state transition diagram of $X(t)$.
(b) Derive the equilibrium distribution of $X(t)$.
(c) Assume that $\lambda=\mu$. What is the probability that an arriving customer is lost?
(d) Assume again that $\lambda=\mu$. What is the utilization factor of the system, that is, the mean number of busy servers divided by the total number of servers?
D8/3 Consider a (lossy) queueing system with two servers and one waiting place. As in D7/3, customers arrive in independent batches of size 1 or 2 . Both sizes are equally probable. These batches arrive according to a Poisson process with intensity λ. The whole batch is lost whenever the system is full at the arrival time. But if the waiting place is free when a new batch of size 2 arrives, only one of the arriving customers is lost. The customers are served individually and independently with the service time following the $\operatorname{Exp}(\mu)$ distribution. Let $X(t)$ denote the number of customers in the system at time t, which is a Markov process.
(a) Draw the state transition diagram of $X(t)$.
(b) Derive the equilibrium distribution of $X(t)$.
(c) Assume that $\lambda=\mu$. What is the utilization factor of the system, that is, the mean number of busy servers divided by the total number of servers?
(d) Assume $1 / \lambda=1 / \mu=1$ (time unit). What is the mean waiting time for the customers that are not lost?

D8/1 (a) This is the M/M/1/N model where $N=m+1$.
(b) Figure 1.

Figure 1: [D8/1] State transiotion diagram.
(c) We see from Figure 1 that $X(t)$ is an irreducible birth-death-process (L6/16). Since the state space is finite, the equilibrium distribution π exists, and it can be derived based on the local balance equations (LBE) and the normalization condition (N), cf. L6/17.
Let us start with the LBE's for states $i-1$ and i, where $i=1, \ldots, N$:

$$
\pi_{i-1} \lambda=\pi_{i} \mu
$$

This results in the following recursion:

$$
\pi_{i}=\pi_{i-1} \frac{\lambda}{\mu}=\pi_{i-2}\left(\frac{\lambda}{\mu}\right)^{2}=\ldots=\pi_{0}\left(\frac{\lambda}{\mu}\right)^{i}=\pi_{0} \rho^{i}
$$

where $\rho=\lambda / \mu$. The remaining probability π_{0} is determined by (N):

$$
\pi_{0}+\pi_{1}+\ldots+\pi_{N}=\pi_{0} \sum_{i=0}^{N} \rho^{i}=1
$$

so that

$$
\pi_{0}= \begin{cases}\frac{1}{N+1}, & \text { if } \rho=1 \\ \frac{1-\rho}{1-\rho^{N+1}}, & \text { otherwise }\end{cases}
$$

Thus, the equilibrium distribution is the truncated geometric distribution:

$$
\pi_{i}=\left\{\begin{array}{ll}
\frac{1}{N+1}, & \text { if } \rho=1, \\
\frac{(1-\rho) \rho^{i}}{1-\rho^{N+1}}, & \text { otherwise. }
\end{array} \quad(i=0,1, \ldots, N)\right.
$$

(d) A customer is lost if the system is full at the arrival time. Due to the PASTA property (L5/28) of the Poisson arrival processs, this happens with probability which is equal to the equilibrium probability π_{N}. Thus,

$$
P\{\text { "a customer is lost" }\}=P\{X=N\}=\pi_{N}= \begin{cases}\frac{1}{N+1}, & \text { if } \rho=1, \\ \frac{(1-\rho) \rho^{N}}{1-\rho^{N+1}}, & \text { otherwise. }\end{cases}
$$

(e) A customer that is not lost will get an immediate service (without any waiting) if the system is empty at the arrival time. Again, we apply the PASTA property (L5/28) to get the required probabilities as follows:

$$
\begin{aligned}
& P\{\text { "a customer has to wait" |"not lost" }\} \\
& =1-P\{X=0 \mid X<N\} \\
& =1-\frac{P\{X=0\}}{P\{X<N\}} \\
& =1-\frac{\pi_{0}}{1-\pi_{N}} \\
& = \begin{cases}\frac{N-1}{N}, & \text { if } \rho=1, \\
\frac{\rho-\rho^{N}}{1-\rho^{N}}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

D8/2 (a) Figure 2.

Figure 2: [D8/2] State transition diagram.
(c) We see from Figure 1 that $X(t)$ is an irreducible birth-death-process (L6/16). Since the state space is finite, the equilibrium distribution π exists, and it can be derived based on the local balance equations (LBE) and the normalization condition (N), cf. L6/17.
Let us start with the LBE's for states $i-1$ and i, where $i=1,2,3$:

$$
\pi_{0} \lambda=\pi_{1} \mu, \quad \pi_{1} \lambda=\pi_{2} 2 \mu, \quad \pi_{2} \lambda=\pi_{3} 2 \mu
$$

The other probabilities are now solved as a function of π_{0} :

$$
\pi_{1}=\pi_{0} \frac{\lambda}{\mu}, \quad \pi_{2}=\pi_{0} \frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}, \quad \pi_{3}=\pi_{0} \frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}
$$

The remaining probability π_{0} is determined by (N):

$$
\pi_{0}+\pi_{1}+\ldots+\pi_{N}=\pi_{0}\left(1+\frac{\lambda}{\mu}+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}\right)=1
$$

Thus, the equilibrium distribution is

$$
\begin{array}{ll}
\pi_{0}=\frac{1}{1+\frac{\lambda}{\mu}+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}, & \pi_{1}=\frac{\frac{\lambda}{\mu}}{1+\frac{\lambda}{\mu}+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}, \\
\pi_{2}=\frac{\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}}{1+\frac{\lambda}{\mu}+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}, & \pi_{3}=\frac{\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}{1+\frac{\lambda}{\mu}+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}
\end{array}
$$

For (c) and (d), we compute the equilibrium distribution under the assumption that $\lambda=\mu$:

$$
\pi_{0}=\frac{4}{11}=0.36, \quad \pi_{1}=\frac{4}{11}=0.36, \quad \pi_{2}=\frac{2}{11}=0.18, \quad \pi_{3}=\frac{1}{11}=0.09
$$

(c) A customer is lost if the system is full at the arrival time. Due to the PASTA property (L5/28) of the Poisson arrival processs, this happens with probability which is equal to the equilibrium probability π_{3}. Thus,

$$
P\{\text { "a customer is lost" }\}=\pi_{3}=\frac{1}{11}=0.09
$$

(d) The mean number of busy servers is

$$
E\left[X_{\mathrm{S}}\right]=\pi_{1}+2\left(\pi_{2}+\pi_{3}\right)=\frac{4}{11}+2 \cdot\left(\frac{2}{11}+\frac{1}{11}\right)=\frac{10}{11}=0.91
$$

Thus, the utilization factor becomes

$$
E[U]=\frac{E\left[X_{\mathrm{S}}\right]}{n}=\frac{\frac{10}{11}}{2}=\frac{5}{11}=0.45
$$

D8/3 (a) Figure 3.

Figure 3: [D8/3] State transition diagram.
(b) We see from Figure 3 that the Markov process $X(t)$ is irreducible (L6/10). Since the state space is finite, the equilibrium distribution π exists, and it can be derived based on the global balance equations (GBE) and the normalization condition (N), cf. L6/11.
Let us start with the GBE's for states 0,1 , and 2:

$$
\pi_{0} \lambda=\pi_{1} \mu, \quad \pi_{1}(\lambda+\mu)=\pi_{0} \frac{\lambda}{2}+\pi_{2} 2 \mu, \quad \pi_{2}(\lambda+2 \mu)=\pi_{1} \frac{\lambda}{2}+\pi_{3} 2 \mu
$$

The other probabilities are now solved as a function of π_{0} :

$$
\pi_{1}=\pi_{0} \frac{\lambda}{\mu}, \quad \pi_{2}=\pi_{0}\left(\frac{1}{4}\left(\frac{\lambda}{\mu}\right)+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}\right), \quad \pi_{3}=\pi_{0}\left(\frac{3}{8}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}\right)
$$

The remaining probability π_{0} is determined by (N) :

$$
\pi_{0}+\pi_{1}+\pi_{2}=\pi_{0}\left(1+\frac{5}{4}\left(\frac{\lambda}{\mu}\right)+\frac{7}{8}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}\right)=1
$$

so that the equilibrium distribution is

$$
\begin{array}{ll}
\pi_{0}=\frac{1}{1+\frac{5}{4}\left(\frac{\lambda}{\mu}\right)+\frac{7}{8}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}, & \pi_{1}=\frac{\frac{\lambda}{\mu}}{1+\frac{5}{4}\left(\frac{\lambda}{\mu}\right)+\frac{7}{8}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}, \\
\pi_{2}=\frac{\frac{1}{4}\left(\frac{\lambda}{\mu}\right)+\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2}}{1+\frac{5}{4}\left(\frac{\lambda}{\mu}\right)+\frac{7}{8}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}, & \pi_{3}=\frac{\frac{3}{8}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}{1+\frac{5}{4}\left(\frac{\lambda}{\mu}\right)+\frac{7}{8}\left(\frac{\lambda}{\mu}\right)^{2}+\frac{1}{4}\left(\frac{\lambda}{\mu}\right)^{3}}
\end{array}
$$

For (c) and (d), we compute the equilibrium distribution under the assumption that $\lambda=\mu$:

$$
\pi_{0}=\frac{8}{27}=0.30, \quad \pi_{1}=\frac{8}{27}=0.30, \quad \pi_{2}=\frac{6}{27}=0.22, \quad \pi_{3}=\frac{5}{27}=0.19
$$

(c) The mean number of busy servers is

$$
E\left[X_{\mathrm{S}}\right]=\pi_{1}+2\left(\pi_{2}+\pi_{3}\right)=\frac{8}{27}+2 \cdot\left(\frac{6}{27}+\frac{5}{27}\right)=\frac{10}{9}=1.11
$$

Thus, the utilization factor becomes

$$
E[U]=\frac{E\left[X_{\mathrm{S}}\right]}{n}=\frac{\frac{10}{9}}{2}=\frac{5}{9}=0.56
$$

(d) There is a single customer waiting in state 3 , while in all the other states no customers wait. Thus, the mean number of waiting customers is

$$
E\left[X_{\mathrm{W}}\right]=\pi_{3}=\frac{5}{27}=0.19
$$

New customers (that are not lost) enter the system with intensity

$$
\lambda_{\text {carried }}=\lambda\left(1-B_{\mathrm{c}}\right)
$$

wher B_{C} is the (call blocking) probability that an arriving customer is lost. When this intensity $\lambda_{\text {carried }}$ is known, we can use Little's formula to calculate the required mean waiting time.
To calculate the call blocking probability, we need to know the mean number of customers in a batch, $E[A]$, and the mean number of lost customers in a batch, $E[L]$. The former one is clearly

$$
E[A]=1 \cdot P\{A=1\}+2 \cdot P\{A=2\}=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{2}=\frac{3}{2}=1.50
$$

On the other hand, due to the PASTA property of the Poisson process (L5/28), an arriving batch sees the system in equilibrium. Thus,

$$
\begin{aligned}
E[L] & =\pi_{2}(1 \cdot P\{A=2\})+\pi_{3}(1 \cdot P\{A=1\}+2 \cdot P\{A=2\}) \\
& =\pi_{2} P\{A=2\}+\pi_{3} E[A]=\frac{6}{27} \cdot \frac{1}{2}+\frac{5}{27} \cdot \frac{3}{2}=\frac{7}{18}=0.39
\end{aligned}
$$

The call blocking probability B_{C} is their ratio:

$$
B_{\mathrm{C}}=\frac{E[L]}{E[A]}=\frac{\frac{7}{18}}{\frac{3}{2}}=\frac{7}{27}=0.26
$$

so that, due to Little's formula (L1/31), the mean waiting time for the customers that are not lost is finally

$$
E[W]=\frac{E\left[X_{\mathrm{w}}\right]}{\lambda_{\text {carried }}}=\frac{E\left[X_{\mathrm{W}}\right]}{\lambda\left(1-B_{\mathrm{C}}\right)}=\frac{\frac{5}{27}}{1-\frac{7}{27}}=\frac{1}{4}=0.25 \text { (time units) }
$$

