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D7/1 Consider a link in a circuit switched trunk network. Denote by n the number of
parallel channels. Users generate new calls according to a Poisson process. The mean
interarrival time between new calls is denoted by t, and the mean call holding time
by h.

(a) What is the traffic model in question (with Kendall’s notation)?

(b) Determine the time blocking, the call blocking, and the traffic carried for n = 2,
t = 4 min, and h = 3 min.

D7/2 Consider a link in a circuit switched access network. Denote by n the number of parallel
channels. There are k on-off type users generating new calls when idle, with k > n.
The mean idle time is denoted by t, and the mean call holding time by h.

(a) What is the traffic model in question (with Kendall’s notation)?

(b) Determine the time blocking, the call blocking, and the traffic carried for n = 2,
k = 4, t = 9 min, and h = 3 min.

D7/3 Consider a pure loss system with two servers. Customers arrive in independent batches
of size 1 or 2. Both sizes are equally probable. These batches arrive according to a
Poisson process with intensity λ. The whole batch is lost whenever the system is
full at the arrival time. But if exactly one of the servers is idle when a new batch
of size 2 arrives, only one of the arriving customers is lost. The customers are served
individually and independently with the service time following the Exp(µ) distribution.
Let X(t) denote the number of customers in the system at time t, which is a Markov
process.

(a) Draw the state transition diagram of X(t).

(b) Derive the equilibrium distribution of X(t).

(c) Assume that λ = µ. What is the utilization factor of the system, that is, the
mean number of busy servers divided by the total number of servers?

(d) Assume again that λ = µ. What is the “call” blocking probability, that is, the
probability that an arriving customer is lost?
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D7/1 (a) This is the M/G/n/n model, that is, the Erlang model with a general call holding
time distribution (L7/15).

(b) Now the arrival rate is λ == 1/t = 1/4 calls/min, and the traffic intensity a =
λh = h/t = 3/4 = 0.75 erl. In the Erlang model, the call blocking Bc and the time
blocking Bt are equal, and they can calculated from the Erlang formula (L7/20):

Bc = Bt =
an

n!∑n
j=0

aj

j!

=
1
2(3

4)2

1 + 3
4 + 1

2(3
4)2

=
9

32 + 24 + 9
=

9
65

= 0.14

Thus, the traffic carried is

acarried = a(1 − Bc) =
3
4
· (1− 9

65
) =

42
65

= 0.65 erl

On the other hand, by Little’s formula (L1/31), the traffic carried equals the mean
number of customers in the system, E[X ]. Since the equilibrium distribution of
the Erlang model is the following truncated Poisson distribution (L7/18),

πi =
ai

i!∑n
j=0

aj

j!

, i = 0, 1, 2,

the mean value E[X ] becomes

E[X ] =
n∑

i=0

i · πi =
3
4

1 + 3
4 + 1

2(3
4)2

+ 2 ·
1
2(3

4)2

1 + (3
4) + 1

2(3
4)2

=
24

32 + 24 + 9
+ 2 · 9

32 + 24 + 9
=

42
65

= 0.65,

as it should be.

D7/2 (a) This is the M/G/n/n/k model, that is, the Engset model with a general call
holding time distribution (L7/32).

(b) When idle, a user becomes active with intensity ν = 1/t = 1/9 times/min. Cor-
respondingly, when active, a user becomes idle with intensity µ = 1/h = 1/3
times/min. Thus, ν/µ = 3/9 = 1/3 = 0.33. The formula for the time blocking is
given by (L7/36)

Bt =

(
k
n

)
( ν

µ)n

∑n
j=0

(
k
j

)
( ν

µ)j
=

6(1
3)2

1 + 4(1
3) + 6(1

3)2
=

6
9 + 12 + 6

=
2
9

= 0.22

The call blocking equals the time blocking in a modified system with one less
customer, and can be calculated using the Engset formula (L7/40):

Bc =

(k−1
n

)
( ν

µ)n

∑n
j=0

(k−1
j

)
( ν

µ)j
=

3(1
3)2

1 + 3(1
3) + 3(1

3)2
=

1
3 + 3 + 1

=
1
7

= 0.14

By Little’s formula (L1/31), the traffic carried equals the mean number of cus-
tomers in the system, E[X ]. Since the equilibrium distribution of the Engset
model is the following truncated binomial distribution (L7/35),

πi =

(k
i

)
( ν

µ)i

∑n
j=0

(k
j

)
( ν

µ)j
, i = 0, 1, 2,
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the mean value E[X ] becomes

E[X ] =
n∑

i=0

i · πi =
4(1

3)
1 + 4(1

3) + 6(1
3)2

+ 2 ·
6(1

3)2

1 + 4(1
3) + 6(1

3)2

=
12

9 + 12 + 6
+ 2 · 6

9 + 12 + 6
=

8
9

= 0.89

Thus, the traffic carried is acarried = E[X ] = 0.89 erl.
Note: Due to the finite population of the Engset model, there are two slightly
different definitions for the offered traffic: the hypothetical offered traffic ah

offered
and the realized offerd traffic ar

offered. According to L7/35, the (hypothetical)
offered traffic is in this case

ah
offered =

kν

ν + µ
=

k( ν
µ)

1 + ( ν
µ)

=
4(1

3)
1 + (1

3)
= 1.

So this is equal to the carried traffic in the corresponding lossless system (that is,
the binomial model M/G/k/k/k). As it is reasonable to require, this characteri-
zation of the offered traffic is independent of the system parameters (such as the
number of servers, n). However, the realized offered traffic is different from this
due to the feedback mechanism of the model: the same customers return to the
system (after an idle period). The (average) realized arrival rate is clearly

λr =
n∑

i=0

(k − i)ν · πi = · · · = 28
81

,

so that the realized offered traffic becomes

ar
offered = λh/µ =

28
27

= 1.037.

This can be expressed in an equivalent form as follows:

ar
offered =

kν

ν(1 − Bc) + µ
=

k( ν
µ)

1 + ( ν
µ)(1− Bc)

=
4(1

3)
1 + (1

3)(1 − 1
7)

=
28
27

= 1.037.

Finally, the carried traffic satisfies

acarried = ar
offered(1− Bc) =

28
27

(1 − 1
7
) =

8
9

= 0.89

D7/3 (a) Figure 1.

(b) We see from Figure 1 that the Markov process X(t) is irreducible (L6/10). Since
the state space is finite, the equilibrium distribution π exists, and it can be derived
based on the global balance equations (GBE) and the normalization condition (N),
cf. L6/11.
Let us start with the GBE’s for states 0 and 2:

π0λ = π1µ, π2 2µ = π0
λ

2
+ π1λ
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Figure 1: [D7/3] State transition diagram.

The other probabilities are now solved as a function of π0:

π1 = π0
λ

µ
, π2 = π0

(
1
4
(
λ

µ
) +

1
2
(
λ

µ
)2

)

The remaining probability π0 is determined by (N):

π0 + π1 + π2 = π0

(
1 +

5
4
(
λ

µ
) +

1
2
(
λ

µ
)2

)
= 1.

Thus, the equilibrium distribution is

π0 =
1

1 + 5
4(λ

µ) + 1
2(λ

µ)2
, π1 =

λ
µ

1 + 5
4(λ

µ) + 1
2(λ

µ)2
, π2 =

1
4(λ

µ) + 1
2(λ

µ)2

1 + 5
4(λ

µ) + 1
2(λ

µ)2

If λ = µ (as will be assumed in (c) and (d)), the equlibrium distribution is

π0 =
4
11

= 0.36, π1 =
4
11

= 0.36, π2 =
3
11

= 0.27

(c) The mean number of busy servers is

E[Xs] =
n∑

i=0

i · πi =
4
11

+ 2 · 3
11

=
10
11

= 0.91

Thus, the utilization factor becomes

E[U ] =
E[Xs]

n
=

(10
11)
2

=
5
11

= 0.45

(d) To calculate the call blocking probability, we need to know the mean number of
customers in a batch, E[A], and the mean number of lost customers in a batch,
E[L]. The former one is clearly

E[A] = 1 · P{A = 1} + 2 · P{A = 2} = 1 · 1
2

+ 2 · 1
2

=
3
2

= 1.50

On the other hand, due to the PASTA property of the Poisson process (L5/28),
an arriving batch sees the system in equilibrium. Thus,

E[L] = π1 (1 · P{A = 2}) + π2 (1 · P{A = 1} + 2 · P{A = 2})

= π1P{A = 2} + π2E[A] =
4
11

· 1
2

+
3
11

· 3
2

=
13
22

= 0.59

4



The call blocking probability Bc is their ratio:

Bc =
E[L]
E[A]

=
13
22
3
2

=
13
33

= 0.39

Note: The traffic intensity is now

a =
λE[A]

µ
= E[A] =

3
2

= 1.50

If the customers arrived individually (and not in batches) according to a Poisson
process, the blocking probability would be, by the Erlang formula (L7/20),

Erl(n, a) =
an

n!∑n
j=0

aj

j!

=
1
2(3

2)2

1 + 3
2 + 1

2(3
2)2

=
9

8 + 12 + 9
=

9
29

= 0.31,

which is less than for the original system. So a burstier arrival process results in
a higher blocking probability.
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