TKK HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking
S-38.1145 Introduction to Teletraffic Theory, Spring 2008

Demonstrations
Lecture 4
25.1.2008

D4/1 Let X and Y be two independent discrete random variables. Define $Z=a X+b Y$, where $a, b \neq 0$.
(a) Determine the expectation $E[Z]$ and the variance $D^{2}[Z]$.
(b) Calculate the expectation $E[Z]$ and the probability $P\{Z=0\}$ assuming that $X \sim \operatorname{Poisson}(3.0), Y \sim \operatorname{Poisson}(1.75)$, and $a=b=10$.
(b) Calculate the expectation $E[Z]$ and the probability $P\{Z=0\}$ assuming that $X \sim \operatorname{Poisson}(3.0), Y \sim \operatorname{Poisson}(1.75)$, and $a=b=100$.

D4/2 Let X and Y be two discrete random variables such that $Y=\min \{X, n\}$, where n is a given constant. Define $Z=a X+b Y$, where $a, b \neq 0$.
(a) Determine the expectation $E[Z]$.
(b) Calculate the expectation $E[Z]$ and the probability $P\{Z=0\}$ assuming that $X \sim \operatorname{Poisson}(3.0), a=b=10$, and $n=2$.

D4/3 Let $X \sim \operatorname{Exp}(\lambda)$, and assume that $P\{X \leq 10.0\}=0.8$.
(a) Determine the parameter λ.
(b) Determine the expectation $E[X]$.
(c) Determine t such that $P\{X \leq t\}=1 / 2$ (which is called median).
(d) Determine the coefficient of variation $C[X]$.

D4/4 Let $X \sim \operatorname{Pareto}(\beta, b)$ with value set $S_{X}=(0, \infty)$ and cumulative distribution function

$$
F_{X}(x)=1-\left(\frac{1}{1+b x}\right)^{\beta}, \quad x>0
$$

The parameter β is called the shape parameter, and the parameter b is the scale parameter.
(a) Determine the expectation $E[X]$ and the variance $D^{2}[X]$.
(b) Determine the coefficient of variation $C[X]$. Make a comparison with the corresponding parameter of the exponential distribution $\operatorname{Exp}(\lambda)$.

D4/1 (a) Since expectation is a linear operator (L4/21), we have

$$
E[Z]=E[a X+b Y] \stackrel{(\mathrm{ii})}{=} E[a X]+E[b Y] \stackrel{(\mathrm{i})}{=} a E[X]+b E[Y]
$$

If X and Y are inependent (L4/20), then $a X$ and $b Y$ are independent, too, since for any x and y we have

$$
\begin{aligned}
P\{a X=x, b Y=y\} & =P\{X=x / a, Y=y / b\} \\
& =P\{X=x / a\}\{Y=y / b\} \\
& =P\{a X=x\}\{b Y=y\}
\end{aligned}
$$

Thus, the variance takes the following form ($\mathrm{L} 4 / 22$):

$$
D^{2}[Z]=D^{2}[a X+b Y] \stackrel{(\mathrm{ii})}{=} D^{2}[a X]+D^{2}[b Y] \stackrel{(\mathrm{i})}{=} a^{2} D^{2}[X]+b^{2} D^{2}[Y]
$$

(b) Assume that $a=b=10$. Since $E[X]=3.0$ and $E[Y]=1.75$, we have

$$
E[Z] \stackrel{(\text { a) }}{=} a E[X]+b E[Y]=10 \cdot 3.0+10 \cdot 1.75=47.5
$$

In addition, since X and Y are nonnegative and $a, b>0, Z=a X+b Y=0$ if and only if $X=0$ and $Y=0$. Therefore

$$
\begin{array}{rcl}
P\{Z=0\} & = & P\{X=0, Y=0\} \\
& \stackrel{\mathrm{L} 4 / 20}{=} & P\{X=0\} P\{Y=0\} \\
& \stackrel{\mathrm{L} 4 / 33}{=} & e^{-3.0} e^{-1.75}=e^{-4.75} \stackrel{\text { num. }}{=} 0.009
\end{array}
$$

(c) Assume now that $a=b=100$. It follows that the expectation becomes tenfold,

$$
E[Z] \stackrel{(\mathrm{a})}{=} a E[X]+b E[Y]=100 \cdot 3.0+100 \cdot 1.75=475.0,
$$

but the probability $P\{Z=0\}$ remains the same:

$$
P\{Z=0\}=P\{X=0, Y=0\} \stackrel{(\mathrm{b})}{=} e^{-4.75} \stackrel{\text { num. }}{=} 0.009
$$

D4/2 (a) As in the previous problem, we have (L4/21)

$$
E[Z]=E[a X+b Y] \stackrel{(\mathrm{ii})}{=} E[a X]+E[b Y] \stackrel{(\mathrm{i})}{=} a E[X]+b E[Y]
$$

Note that it is not required here that the variables be independent (which they are not in this case).
(b) Assume that $a=b=10$ and $n=2$. Now $E[X]=3.0$ and

$$
\begin{array}{rll}
E[Y] & = & E[\min \{X, 2\}] \\
& \stackrel{\mathrm{LL} / 21}{=} & P\{X=1\}+2 P\{X \geq 2\}=P\{X=1\}+2(1-P\{X<2\}) \\
& \stackrel{\mathrm{L} / 333}{=} & 3.0 \cdot e^{-3.0}+2 \cdot\left(1-e^{-3.0}-3.0 \cdot e^{-3.0}\right)=2-5 \cdot e^{-3.0} \stackrel{\text { num. }}{=} 1.75
\end{array}
$$

Thus,

$$
E[Z]=a E[X]+b E[Y]=10 \cdot 3+10 \cdot 1.75=47.5
$$

Again, as in the previous problem, $Z=a X+b Y=0$ if and only if $X=0$ and $Y=0$. On the other hand, $Y=\min \{X, n\}=0$ if and only if $X=0$. It follows that

$$
P\{Z=0\}=P\{X=0, Y=0\}=P\{X=0\} \stackrel{\mathrm{L} 4 / 33}{=} e^{-3.0} \stackrel{\text { num. }}{=} 0.050
$$

D4/3 (a) Since

$$
P\{X \leq 10.0\} \stackrel{\mathrm{L} 4 / 42}{=} 1-e^{-10.0 \cdot \lambda}=0.8,
$$

we have

$$
\lambda=-\frac{1}{10.0} \log (1-0.8)=-\frac{1}{10.0} \log (0.2) \stackrel{\text { num. }}{=} 0.16
$$

(b) Mean value:

$$
E[X] \stackrel{\mathrm{L} 4 / 42}{=} \frac{1}{\lambda}=6.21
$$

(c) Since

$$
P\{X \leq t\} \stackrel{\mathrm{L} 4 / 42}{=} 1-e^{-\lambda t}=\frac{1}{2},
$$

we have

$$
t=-\frac{1}{\lambda} \log \left(1-\frac{1}{2}\right)=10.0 \cdot \frac{\log (0.5)}{\log (0.2)} \stackrel{\text { num. }}{=} 4.31
$$

(d) For any exponential distribution, the coefficient of variation is the same (independent of the parameter λ):

$$
C[X] \stackrel{\mathrm{L} 4 / 24}{=} \frac{D[X]}{E[X]} \stackrel{\mathrm{L} 4 / 24}{=} \frac{\sqrt{D^{2}[X]}}{E[X]} \stackrel{\mathrm{L} 4 / 42}{=} \frac{1 / \lambda}{1 / \lambda}=1 .
$$

D4/4 (a) Let us first determine the density function for the Pareto distribution:

$$
f_{X}(x) \stackrel{\mathrm{L} 4 / 37}{=} F_{X}^{\prime}(x)=b \beta\left(\frac{1}{1+b x}\right)^{\beta+1} .
$$

Mean value:

$$
\begin{aligned}
E[X] & \stackrel{\mathrm{L} 4 / 39}{=} \int_{0}^{\infty} x f_{X}(x) d x \\
& =\int_{0}^{\infty} x b \beta\left(\frac{1}{1+b x}\right)^{\beta+1} d x \\
& \stackrel{\text { os.int. }}{=} \int_{0}^{\infty}\left(\frac{1}{1+b x}\right)^{\beta} d x=\frac{1}{b(\beta-1)}
\end{aligned}
$$

The mean value is finite only for $\beta>1$.

Second moment:

$$
\begin{aligned}
E\left[X^{2}\right] & \stackrel{\mathrm{L} / / 39}{=} \int_{0}^{\infty} x^{2} f_{X}(x) d x \\
& =\int_{0}^{\infty} x^{2} b \beta\left(\frac{1}{1+b x}\right)^{\beta+1} d x \\
& \stackrel{\text { os.int. }}{=} \frac{2}{b(\beta-1)} \int_{0}^{\infty}\left(\frac{1}{1+b x}\right)^{\beta-1} d x=\frac{2}{b^{2}(\beta-1)(\beta-2)}
\end{aligned}
$$

The second moment is finite only for $\beta>2$.
Variance:

$$
\begin{aligned}
D^{2}[X] & \stackrel{\mathrm{L} 4 / 22}{=} E\left[X^{2}\right]-E[X]^{2} \\
& =\frac{2}{b^{2}(\beta-1)(\beta-2)}-\frac{1}{b^{2}(\beta-1)^{2}}=\frac{\beta}{b^{2}(\beta-1)^{2}(\beta-2)}
\end{aligned}
$$

The variance is finite only for $\beta>2$.
(b) Coefficient of variation (for $\beta>2$):

$$
C[X] \stackrel{\mathrm{L} 4 / 24}{=} \frac{D[X]}{E[X]} \stackrel{\mathrm{L} 4 / 24}{=} \frac{\sqrt{D^{2}[X]}}{E[X]} \stackrel{(\text { a) }}{=} \sqrt{\frac{\beta}{\beta-2}}>1
$$

Thus, for the $\operatorname{Pareto}(\beta, b)$ distribution, the coefficient of variation depends only on the shape parameter β. In addition, it is always greater than the coefficient of variation 1 of any exponential distribution.

