TKK HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking
S-38.1145 Introduction to Teletraffic Theory, Spring 2008

Demonstrations
Lecture 3
24.1.2008

D3/1 Consider telephone traffic carried by a 5 -channel link in the telephone network. Use the pure loss system model. New calls arrive according to a Poisson process at rate 2 calls $/ \mathrm{min}$, and call holding times are independently and identically distributed with mean 3 min . Determine the following traffic intensities:
(a) the traffic offered,
(b) the traffic carried, and
(c) the traffic lost.

D3/2 Consider the processor of a packet router in a packet switched data network. Traffic consists of data packets to be processed. Use the pure waiting system model with a single server. New packets arrive according to a Poisson process at rate 2 packets $/ \mathrm{ms}$, and packet processing times are independently and exponentially distributed with mean 0.4 ms .
(a) What is the traffic load?
(b) What is the probability that an arriving packet will be processed immediately after the arrival (without any waiting)?
(c) What is the probability that a packet has to wait longer than 2 ms ?

D3/3 Consider elastic data traffic carried by a 100 Mbps link in a packet switched data network. Use the pure sharing system model with a single server. New flows arrive according to a Poisson process at rate 6 flows/s, and the average size of the files to be transferred is 15 Mb . Determine
(a) the traffic load,
(b) the throughput of a flow, and
(c) the average file transfer time.

D3/4 Consider telephone traffic carried by a link in a packet switched data network. A single call is modelled as a streaming CBR flow with a fixed transmission rate of 64 kbps . The link speed is $5 * 64 \mathrm{kbps}$. Use the infinite system model. New calls arrive according to a Poisson process at rate 2 calls $/ \mathrm{min}$, and the average flow duration is 3 minutes. Determine
(a) the traffic offered,
(b) the traffic carried, and
(c) the loss ratio.

D3/1 The model is a pure loss system of type M/G/n/n with $n=5$ (L3/4,10). Since $\lambda=$ 2 calls $/ \mathrm{min}$ and $h=3 \mathrm{~min}$, the traffic intensity ($\mathrm{L} 3 / 6$) is

$$
a=\lambda h=2 \cdot 3=6 \mathrm{erl}
$$

and the call blocking probability (L3/11)

$$
B_{\mathrm{C}}=\operatorname{Erl}(n, a)=\operatorname{Erl}(5,6)=\frac{\frac{6^{5}}{120}}{1+6+\frac{6^{2}}{2}+\frac{6^{3}}{6}+\frac{6^{4}}{24}+\frac{6^{5}}{120}} \stackrel{\text { num. }}{=} 0.36
$$

(a) The traffic offered (L3/9):

$$
a_{\text {offered }}=a=6 \mathrm{erl}
$$

(b) The traffic carried (L3/9):

$$
a_{\text {carried }}=a\left(1-B_{\mathrm{C}}\right)=6 \cdot(1-0.36)=3.84 \mathrm{erl}
$$

(c) The traffic lost (L3/9):

$$
a_{\text {lost }}=a B_{\mathrm{C}}=6 \cdot 0.36=2.16 \mathrm{erl}
$$

D3/2 The model is a pure single server queueing system of type $\mathrm{M} / \mathrm{M} / 1$ (L3/18,23) with parameters $\lambda=2$ packets $/ \mathrm{ms}$ and $1 / \mu=0.4 \mathrm{~ms}$. Thus, the probability that a packet has to wait longer than $z \mathrm{~ms}$ is (L3/24)

$$
P_{z}=\rho e^{-\mu(1-\rho) z},
$$

where $\rho=\lambda / \mu$ is the system load. Note, in particular, that $P_{0}=\rho$.
(a) The system load (L3/20):

$$
\rho=\frac{\lambda}{\mu}=2 \cdot 0.4=0.8
$$

(b) The probability that an arriving packet will be processed immediately after the arrival (without any waiting) is (L3/24):

$$
P\{\text { "no waiting" }\}=1-P_{0}=1-\rho=1-0.8=0.2
$$

(c) the probability that a packet has to wait longer than 2 ms is (L3/24):

$$
P\{\text { "waiting longer than } 2 \mathrm{~ms} "\}=P_{2}=\rho e^{-\mu(1-\rho) 2}=0.8 \cdot e^{-1.0} \stackrel{\text { num. }}{=} 0.29
$$

D3/3 The model is the pure single server sharing system of type M/G/1-PS (L3/31,36) with parameters $\lambda=6$ flows $/ \mathrm{s}, S=15 \mathrm{Mb}$, and $C=100 \mathrm{Mbps}$. The average file transfer time with full rate C is thus $1 / \mu=S / C=15 / 100=0.15 \mathrm{~s}$.
(a) The traffic load (L3/33):

$$
\rho=\frac{\lambda}{\mu}=6 \cdot 0.15=0.90
$$

(b) The throughput of a flow (L3/37):

$$
\theta=C(1-\rho)=100 \cdot(1-0.9)=10.0 \mathrm{Mbps}
$$

(c) The average file transfer time (L3/35):

$$
D=\frac{S}{\theta}=\frac{15}{10}=1.5 \mathrm{~s}
$$

D3/4 The model is the infinite system of type $\mathrm{M} / \mathrm{G} / \infty(\mathrm{L} 3 / 44,48)$ with with the same parameters as in (a), $\lambda=2$ calls $/ \mathrm{min}$ and $h=3 \mathrm{~min}$. The link capacity is $C=$ $5 \cdot 64 \mathrm{kbps}$, and the bit rate of a single CBR flow $r=64 \mathrm{kbps}$. Thus, $n=C / r=5$.
(a) The traffic offered (in erlangs)

$$
a_{\text {offered }}=a=\lambda h=2 \cdot 3=6 \mathrm{erl}
$$

and as a bit rate (L3/46):

$$
R_{\text {offered }}=R=a r=6 \cdot 64=384 \mathrm{kbps}
$$

(b) Let us utilize the loss ratio (determined below in (c)) to find out the traffic lost as a bit rate:

$$
R_{\text {loss }}=p_{\text {loss }} R_{\text {offered }}=0.25 \cdot 384=96 \mathrm{kbps} .
$$

The traffic carried (as a bit rate) is thus

$$
R_{\text {carried }}=R_{\text {offered }}-R_{\text {loss }}=384-96=288 \mathrm{kbps}
$$

(c) The loss ratio (L3/49):

$$
p_{\operatorname{loss}}=\operatorname{LR}(n, a)=\operatorname{LR}(5,6)=\frac{1}{6} \sum_{i=6}^{\infty}(i-5) \frac{6^{i}}{i!} e^{-6} \stackrel{\text { num. }}{=} 0.25
$$

(The infinite sum is approximated by a finite sum with about 20 terms, which gives a sufficient accuracy.)

