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Simple teletraffic model Pure queueing system
Customers arrive at rate A (customers per time unit) * Finite number of servers (n < ), n service places, infinite number of
— 1/\ = average inter-arrival time waiting places (m = )
Customers are served by n parallel servers — If all n servers are occupied when a customer arrives,

it occupies one of the waiting places
— No customers are lost but some of them have to wait before getting served
— l/u= average service time of a customer +  From the customer’s point of view, it is interesting to know e.g.
There are n + m customer places in the system — what is the probability that it has to wait “too long”?
— at least n service places and at most m waiting places
It is assumed that blocked customers (arriving in a full system) are lost

When busy, a server serves at rate p (customers per time unit)
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M/M/1 (1 server, o waiting places)

Application to packet level modelling of data traffic
M/M/n (n servers, « waiting places)

Consider a single server (n = 1) queueing system
Queueing discipline determines the way the server serves the
customers
— lttells
» whether the customers are served one-by-one or simultaneously
— Furthermore, if the customers are served one-by-one, it tells
* in which order they are taken into the service
— And if the customers are served simultaneously, it tells
* how the service capacity is shared among them
Note: In computer systems the corresponding concept is scheduling
A queueing discipline is called work-conserving if customers are
served with full service rate pL whenever the system is non-empty

Work-conserving queueing disciplines

Contents

First In First Out (FIFO) = First Come First Served (FCFS)
— ordinary queueing discipline (“queue”)
« arrival order = service order
— customers served one-by-one (with full service rate L)
— always serve the customer that has been waiting for the longest time
— default queueing discipline in this lecture
Last In First Out (LIFO) = Last Come First Served (LCFS)
— reversed queuing discipline (“stack”)
— customers served one-by-one (with full service rate )
— always serve the customer that has been waiting for the shortest time
Processor Sharing (PS)
— “fair queueing”
— customers served simultaneously
— when i customers in the system, each of them served with equal rate /i
— see Lecture 9. Sharing systems
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M/M/1 queue

Consider the following simple teletraffic model:
— Infinite number of independent customers (k = o)
— Interarrival times are 11D and exponentially distributed with mean 1/A
- so, customers arrive according to a Poisson process with intensity A
— One server (n=1)
— Service times are IID and exponentially distributed with mean 1/p
— Infinite number of waiting places (7 = o)
— Default queueing discipline: FIFO
Using Kendall's notation, this is an M/M/1 queue
— more precisely: M/M/1-FIFO queue
Notation:
— p= A/ = traffic load

Related random variables

* X =number of customers in the system at an arbitrary time
= queue length in equilibrium

» X* = number of customers in the system at an (typical) arrival time
= queue length seen by an arriving customer

* W= waiting time of a (typical) customer
* §=service time of a (typical) customer
« D=W+ §=total time in the system of a (typical) customer = delay

State transition diagram

Let X(#) denote the number of customers in the system at time ¢
— Assume that X(#) = i at some time ¢, and
consider what happens during a short time interval (¢, +h]:
« with prob. A + o(h),
a new customer arrives (state transition i — i+1)
« if i > 0, then, with prob. p/ + o(h),
a customer leaves the system (state transition i — i—1)

Process X(¢) is clearly a Markov process with state transition diagram

Equilibrium distribution (1)
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Note that process X(¢) is an irreducible birth-death process
with an infinite state space S = {0,1,2,...}

* Local balance equations (LBE):
A =T 1 (LBE)
= i1 = %”i = P7T;
= 71;=p'my, i=012,...

* Normalizing condition (N):

2ri=my 2 p =1 (N)
i=0 i=0

-1
0 . 1 ;
= mo=| 2o =(1_1p)> =1-p, if p<l1 ;
i=0




Equilibrium distribution (2) Mean queue length E[X] vs. traffic load p
Thus, for a stable system (p < 1), the equilibrium distribution exists
and is a geometric distribution: .
p<l = X ~Geom(p) 5 /
P X=it=r;=(-p)p', i=0,,2,... :
E[X] 3
E[X]z%, D*[X]=—F— .
(1-p)
1
Remark: 0 L —
- 'Il_'lhl:i;resglt is)valid for any work-conserving queueing discipline (FIFO, 0.2 0.4 0.6 0.8 1
— This result is not insensitive to the service time distribution for FIFO Traffic load p
+ even the mean queue length E[X] depends on the distribution
— However, for any symmetric queueing discipline (such as LIFO or PS)
the result is, indeed, insensitive to the service time distribution 13 14
Mean delay Mean delay E[D] vs. traffic load p
Let D denote the total time (delay) in the system of a (typical) customer
— including both the waiting time 7 and the service time S: D =W+ S 5
Little’s formula: E[X] = A-E[D]. Thus, 5
E[X
E[D]zi[ﬂ1:%.1_f>p=i.1_1p,zrll 4
E[D] 3
Remark: 2
— The mean delay is the same for all work-conserving queueing disciplines 1 — |
(FIFO, LIFO, PS, ...)
. . 0
— But the variance and other moments are different! 0.2 0.4 0.6 0.8 ]
Traffic load p
15 16




Mean waiting time

Waiting time distribution (1)

Let W denote the waiting time of a (typical) customer
Since W=D - S, we have

+ Let W denote the waiting time of a (typical) customer
» Let X* denote the number of customers in the system at the arrival time
+ PASTA P{X*=i} =P{X=1i}=m,

— _ 1 1 1_1. P
E[W]—E[D]_E[S]—;'l_p_;—;'l_p » Assume now, for a while, that X* =i
— Service times S,,...,S; of the waiting customers are 1ID and ~ Exp(1)
— Due to the memoryless property of the exponential distribution,
the remaining service time S;* of the customer in service also follows
Exp(p)-distribution (and is independent of everything else)
— Due to the FIFO queueing discipline, W'=S;* + S, + ... + S,
— Construct a Poisson (point) process 1, by defining t, =S, * and
T, =S*+8,+...+S,n>2 Now (since X* =i): W>t1,>¢
LSS S : Sin S
17 l LI} T3 Tic I Ti 18
Waiting time distribution (2) Waiting time distribution (3)
e Since W=0< X*=0, we have * By combining the previous formulas, we get
PW =0=P{X*=0}=mg=1-p > i
! PV >t} = 3 P{r; >1}(1- p)p
0 i=1
PW >ty=SPW >t| X*=P{X*=i} i
i=1 _ (#f) —ut i
: =X X e -pp
O & 5 i=1;=0 J
=Y Plr;>tjm; = Y P{r; >t}(1-p)p
i=1 i=1 (/ﬂp) t i—(j+1
. _ Py i e (1= p) ¥ pimUD
+ Denote by A(f) the Poisson (counter) process corresponding to t,, j=0 i=j+1
— ltfollows that: 7,> t < A(f) < i-1
— On the other hand, we know that A(f) ~ Poisson (1.f). Thus, Z (,U’p)J pe,utpe—,ut _ pe—,u(l—p)t

P{r; >t} =P{A(t)<i—1} = Z(w)
Jj=0
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Waiting time distribution (4)

Contents

Waiting time W can thus be presented as a product W = JD of two
independent random variables J ~ Bernoulli(p) and D ~ Exp(u(1-p)):

PW >ty=PJ=1D>t=p-e =P 50
P

e ﬂ(ll—p) - i 1-p

21_ — 21_ 2 _ 1. 2
EW?|=P{J=LED*|=p 2 5="L. 2~
u-(1=p)= w= (A-p)

DW= EW?]-Ew = L2220
u- (1-p)
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Application to packet level modelling of data traffic

Multiplexing gain

M/M/1 model may be applied (to some extent) to packet level modelling
of data traffic

— customer = IP packet

— )\ = packet arrival rate (packets per time unit)

— 1/p = average packet transmission time (aikayks.)

—  p =M = traffic load
Quality of service is measured e.g. by the packet delay

— P, = probability that a packet has to wait “too long”, i.e. longer than a given

reference value z

B, = P{W >z} = pe~#(1=P)z

23

+  We determine load p so that prob. P, < 1% for z =1 (time units)

* Multiplexing gain is described by the traffic load p as a function of the
service rate p

l —
0.8 / —
0.6—+
load p /
0.4
0.2/
20 40 60 80 100

service rate
24
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M/M/n (n servers, o waiting places)

» Consider the following simple teletraffic model:
— Infinite number of independent customers (k = o)
— Interarrival times are 1ID and exponentially distributed with mean 1/A
* so, customers arrive according to a Poisson process with intensity A
— Finite number of servers (n < )
— Service times are IID and exponentially distributed with mean 1/p
— Infinite number of waiting places (7 = o)
— Default queueing discipline: FCFS
+ Using Kendall’s notation, this is an M/M/n queue
— more precisely: M/M/n-FCFS queue
* Notation:
- p=A(np) = traffic load
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State transition diagram Equilibrium distribution (1)
+ Let X(#) denote the number of customers in the system at time ¢ * Local balance equations (LBE) for i < n:
— Assume that X(#) = i at some time ¢, and 2 .
consider what happens during a short time interval (z, t+4]: ﬂ-lﬂ’ =i+l i+ 1u (LBE)
« with prob. A + o(h), = Wiyl =7 A ﬂiZQﬂi
a new customer arrives (state transition i — i+1) (+D)u i+1
+ if i > 0, then, with prob. min{i,n}-uh + o(h), (np)i
a customer leaves the system (state transition i — i—1) = ;= ] 70, = 0,1, coog
* Process X(7) is clearly a Markov process with state transition diagram . ’ .
* Local balance equations (LBE) for i > n:
A A A A A
@) (1) oo (n) (n+1) oo A =T ny (LBE)
U 2p np nu np a
. . . . i1 =—T; = PTT;
» Note that process X(¢) is an irreducible birth-death process = Tl nu”t P
with an infinite state space S = {0,1,2,...} (1p)" w5
j— i—n (n n .
27 = g=p "m,=p "2y =22 gy, i=nn+l,.

n! n!




Equilibrium distribution (2)

Normalizing condition (N):

> —ﬂ[Z(” vy ,ff’}l N)
i=0 i=n

gy, o) 2 in)
= mo=| Xyt XP

i=0 i=n

= nz_:l(np)i+(”p)n _lz—l if p<1
i ! nl(1-p) 0£+ﬂ’
(np) _ (mp)”

Notation: a = lz‘b ; 'B_n!(l—p)
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Equilibrium distribution (3)

* Thus, for a stable system (p < 1, that is: A < np), the equilibrium
distribution exists and is as follows:

p<l =

(n/.))i‘ L, i=0,,...,n
PX=i=m;=q ! P

1
Py T i=nn+l1
n a=1, B -5 0= 41 P
_2: a=1+2p, B=2£ _L__Lp
n=ssa= o> p T0=a4B " T+p
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Probability of waiting

Let py, denote the probability that an arriving customer has to wait
Let X* denote the number of customers in the system at an arrival time

An arriving customer has to wait whenever all the servers are occupied
at her arrival time. Thus,

pw =P{X*>n}

PASTA: P{X* = i} = P{X =i} = m, Thus,

— * > pl — < _OO ”npi — (np)” B
pw =P{X*2n}= Y7 =3 7mp-— =7 n(1-p) ~ a+p
n=1: py=p
P Pw = 2'0 31

I+p

Mean number of waiting customers

* Let X, denote the number of waiting customers in equilibrium
* Then

E[X Z(Z n)ﬂ-l_”ony(l ,0) Z(Z—I’Z) (1- ,0),0
i=n
:pW'ﬁ
p_p°
n=1: E[Xy]=py T i

32




Mean waiting time

Mean delay

Let W denote the waiting time of a (typical) customer
Little’s formula: E[X};] = L-E[W]. Thus,

ElXy] 1 P _1._Pw _ 1
B == = PW 5= e p) = PV mia
=1: Epwl=L.PWw _1. P

" i ul-p pl-p
2
—21EW=L- Pw _ 1, P
" g u21=p) pop?
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Let D denote the total time (delay) in the system of a (typical) customer
— including both the waiting time 7 and the service time S: D =W+ S
Then,

34

Mean queue length

Waiting time distribution (1)

Let X denote the number of customers in the system (queue length) in
equilibrium
Little’s formula: E[X] = A-E[D]. Thus,

_ . S R S
E[X]|=4-E[Dl=py =7+ = PW ;1P
_ ) _ P _p

n=l: ElXl=pw -1 +pP=pP i ,tP=1,

202 2
=2 E[X]= P 19y =P P Ly “P
n [X] Pw - +2p 1+p 1—,0+ P 1—,02
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Let W denote the waiting time of a (typical) customer
Let X* denote the number of customers in the system at the arrival time
The customer has to wait only if X* > n. This happens with prob. py-
Under the assumption that X* = i > n, the system, however, looks like
an ordinary M/M/1 queue with arrival rate A and service rate np.
— Let W’ denote the waiting time of a (typical) customer in this M/M/1 queue
— Let X*’ denote the number of customers in the system at the arrival time

It follows that
PW =0} =1-py
P{W >t} = P{X*>n}P{W >t| X*>n}
=pw -PW'>t| X*21} = py ~e_n”(1_p)t, t>0
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Waiting time distribution (2)

Example (1)

* Waiting time W can thus be presented as a product W =JD’ of two
indep. random variables J ~ Bernoulli(py,) and D’ ~ Exp(nu(1-p)):

P =0y = P{J =0y =1- py

BV )= ELELD' )= py ol = 1 mies)

2 2 2 1 2py
E[W=]=P{J =1}E[D" ]= py - =—3
it (1-p)?  u? n?(1-p)?

Printer problem
— Consider the following two different configurations:
+ One rapid printer (IID printing times ~ Exp(211))
+ Two slower parallel printers (IID printing times ~ Exp(u))
— Criterion: minimize mean delay E[D]
 One rapid printer (M/M/1 model with p = A/(2p)):

E[D1]=ﬁ'ﬁ

» Two slower printers (M/M/2 model with p = A/(2)):

_ =1 1 _ 1, 2 - A
D)= EWw)- By = L. 2w Crw) E[Dr]=, R T (7 (7 E[Dy]- 12> E[Dy]
u- n=(l-p)
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Example (2)

1
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Traffic load p
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