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Simple teletraffic model

Customers arrive at rate A (customers per time unit)
— 1/A = average inter-arrival time
Customers are served by » parallel servers
When busy, a server serves at rate p (customers per time unit)
— 1/u = average service time of a customer
There are n + m customer places in the system
— at least n service places and at most m waiting places
It is assumed that blocked customers (arriving in a full system) are lost

Infinite system

Ok
A

~ n+m

Q0O

* Infinite number of servers (n = ), no waiting places (m = 0)
— No customers are lost or even have to wait before getting served
* Sometimes,
— this hypothetical model can be used to get some approximate results for a
real system (with finite system capacity)
* Always,
— it gives bounds for the performance of a real system (with finite system
capacity)
— itis much easier to analyze than the corresponding finite capacity models




Pure loss system Contents
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(m=0) * Poisson model (oo customers, « servers)
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it is not served at all but lost
— Some customers may be lost
From the customer’s point of view, it is interesting to know e.g.
— What is the probability that the system is full when it arrives?

« Erlang model (o0 customers, n < o servers)

* Application to telephone traffic modelling in trunk network

+ Binomial model (k < o customers, n = k servers)

» Engset model (k < « customers, n < k servers)
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Poisson model (M/M/o0) State transition diagram
Definition: Poisson model is the following simple teletraffic model: * Let X(#) denote the number of customers in the system at time ¢
— Infinite number of independent customers (k = o) — Assume that X(¢) = i at some time ¢, and
— Interarrival times are 1ID and exponentially distributed with mean 1/& consider what happens during a short time interval (¢, t+A]:
- so, customers arrive according to a Poisson process with intensity A + with prob. A + o(h),

a new customer arrives (state transition i — i+1)
« if i >0, then, with prob. iph + o(h),
a customer leaves the system (state transition i —> i—1)
* Process X(7) is clearly a Markov process with state transition diagram

Infinite number of servers (17 = «)
— Service times are 1D and exponentially distributed with mean 1/p
— No waiting places (m = 0)

Poisson model:

— Using Kendall's notation, this is an M/M/w queue A A A

— Infinite system, and, thus, lossless @’ m 1) 5 (2) Em oo
Notation: "

— a=Mu = traffic intensity » Note that process X(¢) is an irreducible birth-death process

with an infinite state space S = {0,1,2,...}




Equilibrium distribution (1)

Equilibrium distribution (2)

* Local balance equations (LBE):

miA =i i+ 1)u (LBE)

-4 —a o
= Titl _.(i+1)y”’_i+1”’
= m;=%mg, i=012,...

* Normalizing condition (N):

Thus, the equilibrium distribution is a Poisson distribution:
X ~ Poisson(a)
i
g —a o
P{X=i}=m; =%e , i=012,...
E[X]=a, D’[X]=a

Remark: Insensitivity with respect to service time distribution
— The result is insensitive to the service time distribution, that is:

© ®
z ;=7 Z 117: =1 (N) itis Yalid for any service time distribution with mean 1/p
i=0 i=0" — So, instead of the M/M/co model,
1 we can consider, as well, the more general M/G/o model
SO —1 _
= 7= zc;] :(ea) _ o 9 )
i=0
Contents Application to flow level modelling of streaming data traffic
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Poisson model may be applied to flow level modelling of streaming data
traffic

— customer = UDP flow with constant bit rate (CBR)

— A = flow arrival rate (flows per time unit)

— & =1/p = average flow duration (time units)

— a =M\ = traffic intensity

— r = bit rate of a flow (data units per time unit)

— N =nr of active flows obeying Poisson(a) distribution
When the total transmission rate Nr exceeds the link capacity C =nr,
bits are lost

— loss ratio p, .. gives the ratio between the traffic lost and the traffic offered:

E[(Nr-C)"]1 E[(N-n)" > . i
Plosy = AO") [(E[Nn]> I_1 § (—pd e

i=n+1 ' 12




Multiplexing gain

Contents

*  We determine traffic intensity a so that loss ratio p; . < 1%
« Multiplexing gain is described by the traffic intensity per capacity unit,
a/n, as a function of capacity n
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Erlang model (M/M/n/n)

State transition diagram

« Definition: Erlang model is the following simple teletraffic model:
— Infinite number of independent customers (k = )

Interarrival times are 11D and exponentially distributed with mean 1/A
« so, customers arrive according to a Poisson process with intensity A

— Finite number of servers (n < )
— Service times are |ID and exponentially distributed with mean 1/p
— No waiting places (m = 0)

« Erlang model:
— Using Kendall's notation, this is an M/M/n/n queue
— Pure loss system, and, thus, lossy

* Notation:
— a=Mu = traffic intensity

* Let X(#) denote the number of customers in the system at time ¢

— Assume that X(#) = i at some time ¢, and
consider what happens during a short time interval (¢, #+h]:
« with prob. A + o(h),
a new customer arrives (state transition i — i+1)
« with prob. ips + o(h),
a customer leaves the system (state transition i —> i—1)
* Process X(7) is clearly a Markov process with state transition diagram

by A A A
@) (1) ces (n—1) (@
p 2p (n=Dp npL

» Note that process X(¢) is an irreducible birth-death process
with a finite state space S = {0,1,2,...,n}




Equilibrium distribution (1)

Equilibrium distribution (2)

Local balance equations (LBE):

mid =i i+ p (LBE)
-4 —a o
= il = Gy T T i T

i
_a 9 —
= ;=570 i=01,...,n

Normalizing condition (N):

* Thus, the equilibrium distribution is a truncated Poisson distribution:

i
a_

P{X=i}=nm;= n" o i=0,l,...,n
)
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L
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* Remark: Insensitivity with respect to the service time distribution
— The result is insensitive to the service time distribution, that is:

n
z ;=7 z ‘L' =1 (N) it is valid for any service time distribution with mean 1/p
i=0 i= — So, instead of the M/M/n/n model,

- we can consider, as well, the more general M/G/n/n model
noj
_ a
= 7y [ zl,] " 18
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Time blocking Call blocking

Time blocking B; = probability that all » servers are occupied at an
arbitrary time = the fraction of time that all » servers are occupied

For a stationary Markov process, this equals the probability rt, of the
equilibrium distribution . Thus,

B, =P{X=ny=rm,=—"1—

* Call blocking B = probability that an arriving customer finds all
n servers occupied = the fraction of arriving customers that are lost

* However, due to Poisson arrivals and PASTA property, the probability
that an arriving customer finds all n servers occupied equals the
probability that all » servers are occupied at an arbitrary time,

* Inother words, call blocking B, equals time blocking B:

n
a

n!

P

J
EL
j=0 "

BCZBtZ

* This is Erlang’s blocking formula
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Erlang model may be applied to modelling of telephone traffic in trunk
network where the number of potential users of a link is large

— customer = call

— )\ = call arrival rate (calls per time unit)

— &= 1/p = average call holding time (time units)

— a= M\ = traffic intensity

— n = link capacity (channels)
A call is lost if all n channels are occupied when the call arrives

— call blocking B_ gives the probability of such an event

n
a

Bo=—1r
C 7 ﬂ
J=0 j!
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Multiplexing gain

Contents

*  We determine traffic intensity a so that call blocking B, < 1%
« Multiplexing gain is described by the traffic intensity per capacity unit,
a/n, as a function of capacity n
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Binomial model (M/M/k/k/k)

On-off type customer (1)

Definition: Binomial model is the following (simple) teletraffic model:
— Finite number of independent customers (k < o)
» on-off type customers (alternating between idleness and activity)
— Idle times are |ID and exponentially distributed with mean 1/v
— As many servers as customers (n = k)
— Service times are IID and exponentially distributed with mean 1/p
— No waiting places (m = 0)
Binomial model:
— Using Kendall's notation, this is an M/M/k/k/k queue
— Although a finite system, this is clearly lossless
On-off type customer:

Let Xj(t) denote the state of customerj (j=1,2,....k ) at time ¢
— State 0 = idle, state 1 = active = in service
— Consider what happens during a short time interval (¢, t+h]:
. ifXj(t) =0, then, with prob. v/ + o(h),
the customer becomes active (state transition 0 — 1)
* ifX;(5) = 1, then, with prob. ph + o(h),
the customer becomes idle (state transition 1 — 0)

Process X]-(t) is clearly a Markov process with state transition diagram

0==0

Note that process X (¢) is an irreducible birth-death process

service
J
(1) idleness L] with a finite state space S = {0,1}
25 26
On-off type customer (2) State transition diagram
Local balance equations (LBE): Let X(#) denote the number of active customers
E(])V — ”(J),u — 71(]) — L”(]) — Assume that X(#) = i at some time ¢, and
0 1 1 y7i 0 consider what happens during a short time interval (¢, #+h]:
Normalizing condition (N): * ifi <k, then, with prob. (k—i)vh + o(h),
. . . . . idle customer becomes active (state transition i — i+1)
D)) (D vy () _ # () _ v ant
zn) +7Tl =7 (1+;)—1 = un _m) 73 —m . if i > 0, then, with prob. ipi + o(h),
So, the equilibrium distribution of a single customer is the Bernoulli an active customer becomes idle (state transition / — i-1)
distribution with success probability v/(v+1) Process X(¢) is clearly a Markov process with state transition diagram
— offered traffic is v/(v+pL) kv (k=1)v 2v v
From this, we could deduce that the equilibrium distribution of the state @) m \L— °ec =m 1) o (@
of the whole system (that is: the number of active customers) is the H
binomial distribution Bin(k, v/(v+L)) Note that process X(¢) is an irreducible birth-death process
with a finite state space S = {0,1,...,k}
27 28




Equilibrium distribution (1)

Equilibrium distribution (2)

* Local balance equations (LBE):

k=i =7 i+ D (LBE)
_ (k=i
= T4 = (i+1)u i

. k q .
= ;= i!(]fil')!(i)lﬂ-o :(i )(i)lﬂ-O’ i=0,,...k

* Normalizing condition (N):
b b k i
S =mo X)) =1 N)
i=0 i=0
-1

k .
= mo=| ZOGY | =0 =G

Thus, the equilibrium distribution is a binomial distribution:

in(k. Y
X ~Bin(k, v+,u)

PIX =iy =m =G AT 100k

B[X]= kv, DAX]=f Lo o
V+u V+u v+u (V+ﬂ)2

Remark: Insensitivity w.r.t. service time and idle time distribution
— The result is insensitive both to the service and the idle time distribution,
that is: it is valid for any service time distribution with mean 1/p and any idle
time distribution with mean 1/v
— So, instead of the M/M/k/k/k model,

we can consider, as well, the more general G/G/k/k/k model 30
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Definition: Engset model is the following (simple) teletraffic model:
— Finite number of independent customers (k < )
» on-off type customers (alternating between idleness and activity)
— Idle times are |ID and exponentially distributed with mean 1/v
— Less servers than customers (n < k)
— Service times are IID and exponentially distributed with mean 1/p

— No waiting places (m = 0) Note: If the system is
full when an idle cust.

Engset model: .
. . . tries to become an
— Using Kendall’'s notation, this is an M/M/n/n/k queue ceive auE. & new e
— This is a pure loss system, and, thus, lossy period starts.
On-off type customer:

service blocking!

(1) idleness | ] | e Tidle[ |

32




State transition diagram

* Let X(7) denote the number of active customers
— Assume that X(¥) = i at some time ¢, and
consider what happens during a short time interval (¢, +h]:
« if i < n, then, with prob. (k—i)vh + o(h),
an idle customer becomes active (state transition i — i+1)
+ if i > 0, then, with prob. iph + o(h),
an active customer becomes idle (state transition i — i—1)

* Process X(7) is clearly a Markov process with state transition diagram

Equilibrium distribution (1)

kv (k=1)v (k=n+2) v —~_ (k=n+1)v
p 2p (n=Dp npL

» Note that process X(¢) is an irreducible birth-death process
with a finite state space S = {0,1,...,n}

33

Local balance equations (LBE):

7i(k =iy =i (i+1)p (LBE)
_ (k=0)v
= T4l = (i+1)u i

= ;= i!(kkil')!(i)iﬂo = ({?)(ﬁ)iﬂ-()’ i=0L...,n

Normalizing condition (N):

7= m 2 =1 N)
i=0 i=0

1
_ L kovyi
= ”0—[56(1' )(ﬂ)]

Equilibrium distribution (2)

* Thus, the equilibrium distribution is a truncated binomial distribution:

kv kv v i k—i
GG O GED

PX=i}=m;=

. ,i=0,...,n

EH@ % GG G
=0 =0

v+u’ vtu

» Offered traffic is kv/(v+p)

* Remark: Insensitivity w.r.t. service time and idle time distribution
— The result is insensitive both to the service and the idle time distribution,
that is: it is valid for any service time distribution with mean 1/ and any
idle time distribution with mean 1/v
— So, instead of the M/M/n/n/k model,

we can consider, as well, the more general G/G/n/n/k model 35

Time blocking

Time blocking B, = probability that all » servers are occupied at an
arbitrary time = the fraction of time that all » servers are occupied

For a stationary Markov process, this equals the probability «t, of the
equilibrium distribution . Thus,

()"
By =P{X=n}=rm,=

o
2616
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Call blocking (1)

Call blocking (2)

Call blocking B, = probability that an arriving customer finds all
n servers occupied = the fraction of arriving customers that are lost
— In the Engset model, however, the “arrivals” do not follow a Poisson
process. Thus, we cannot utilize the PASTA property any more.
— In fact, the distribution of the state that an “arriving” customer sees differs
from the equilibrium distribution. Thus, call blocking B, does not equal time
blocking B, in the Engset model.

Let n;* denote the probability that there are i active customers when an
idle customer becomes active (which is called an “arrival”)

Consider a long time interval (0,7):
— During this interval, the average time spent in state i is ©,7
— During this time, the average number of “arriving” customers (who all see
the system to be in state i) is (k—i)v-n,T
— During the whole interval, the average number of “arriving” customers is
Zj (kfj)v~an

« Thus,
k—iyw-x;T k—i) 7; .
¥ = n( weml n( )7 , i=01,...,n
X (k=jyv-m;T 3 (k=))7;
J=0 J=0
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Call blocking (3) Call blocking (4)
* It can be shown (exercise!) that « By choosing i = n, we get the following formula for the call blocking
probability:
TG Bo(k) = 7, * (k) = 7, (k = 1) = By(k—1)
U . =TT =T — = —
LT R ¢ " ! :
Z (k—.l )(L)] » Thus, for the Engset model, the call blocking in a system with £
J . L . i
j=0 H customers equals the time blocking in a system with k—1 customers:
. - . k=1\,v\n
« If we write explicitly the dependence of these probabilities on the total ( n )(;)
number of customers, we get the following result: B.(k)=Bi(k-1)= "
. k-1 j
7 (k) =m(k=1), i=0,1,...,n > G0
J=0
« In other words, an “arriving” customer sees such a system where there
is one customer less (itself!) in equilibrium . This is Engset’s blocking formula
40
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Contents Application to telephone traffic modelling in access network

+ Refresher: Simple teletraffic model » Engset model may be applied to modelling of telephone traffic in
access network where the nr of potential users of a link is moderate
— customer = call

« Poisson model (oo customers, « servers)

* Application to flow level modelling of streaming data traffic
« Erlang model (o0 customers, n < o servers)

* Application to telephone traffic modelling in trunk network

— v = call arrival rate per idle user (calls per time unit)
— 1/p = average call holding time (time units)

. . — k= number of potential users

* Binomial model (k < o customers, n = k servers) — 1= link capacity (channels)
* Acallis lost if all n channels are occupied when the call arrives

— call blocking B_ gives the probability of such an event
k-1 AL
()

3 hey
jo T

» Engset model (k < « customers, n < k servers)
» Application to telephone traffic modelling in access network
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Multiplexing gain

+  We assume that an access link is loaded by £ = 100 potential users
*  We determine traffic intensity kv/(v+u) so that call blocking B, < 1%
» Multiplexing gain is described by the traffic intensity per capacity unit,
kv/(n(v+W)) , as a function of capacity »
1
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