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7. Loss systems

Simple teletraffic model

• Customers arrive at rate λ (customers per time unit)

– 1/λ = average inter-arrival time

• Customers are served by n parallel servers

• When busy, a server serves at rate µ (customers per time unit)

– 1/µ = average service time of a customer

• There are n + m customer places in the system

– at least n service places and at most m waiting places

• It is assumed that blocked customers (arriving in a full system) are lost
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7. Loss systems

Infinite system

• Infinite number of servers (n = ∞), no waiting places (m = 0)

– No customers are lost or even have to wait before getting served

• Sometimes, 

– this hypothetical model can be used to get some approximate results for a 

real system (with finite system capacity)

• Always, 

– it gives bounds for the performance of a real system (with finite system 

capacity)

– it is much easier to analyze than the corresponding finite capacity models
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7. Loss systems

Pure loss system

• Finite number of servers (n < ∞), n service places, no waiting places 

(m = 0)

– If the system is full (with all n servers occupied) when a customer arrives, 

it is not served at all but lost

– Some customers may be lost

• From the customer’s point of view, it is interesting to know e.g. 

– What is the probability that the system is full when it arrives?
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7. Loss systems

Poisson model (M/M/∞)

• Definition: Poisson model is the following simple teletraffic model:

– Infinite number of independent customers (k = ∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ

• so, customers arrive according to a Poisson process with intensity λ

– Infinite number of servers (n = ∞)

– Service times are IID and exponentially distributed with mean 1/µ

– No waiting places (m = 0)

• Poisson model:

– Using Kendall’s notation, this is an M/M/∞ queue

– Infinite system, and, thus, lossless

• Notation:

– a = λ/µ = traffic intensity
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7. Loss systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h), 

a new customer arrives (state transition i→ i+1)

• if i > 0, then, with prob. iµh + o(h), 

a customer leaves the system (state transition i→ i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process 

with an infinite state space S = {0,1,2,...}
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7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a Poisson distribution:

• Remark: Insensitivity with respect to service time distribution

– The result is insensitive to the service time distribution, that is: 

it is valid for any service time distribution with mean 1/µ

– So, instead of the M/M/∞ model, 

we can consider, as well, the more general M/G/∞ model

)Poisson(aX ∼

aXDaXE

ieiXP
a

i

a
i

i

==

====
−

][   ,][

,2,1,0   ,}{

2

!
Kπ

11

7. Loss systems

Contents

• Refresher: Simple teletraffic model

• Poisson model (∞ customers, ∞ servers)

• Application to flow level modelling of streaming data traffic

• Erlang model (∞ customers, n < ∞ servers)

• Application to telephone traffic modelling in trunk network

• Binomial model (k < ∞ customers, n = k servers)

• Engset model (k < ∞ customers, n < k servers)

• Application to telephone traffic modelling in access network

12

7. Loss systems

Application to flow level modelling of streaming data traffic

• Poisson model may be applied to flow level modelling of streaming data 

traffic

– customer = UDP flow with constant bit rate (CBR)

– λ = flow arrival rate (flows per time unit)

– h = 1/µ = average flow duration (time units)

– a = λ/µ = traffic intensity

– r = bit rate of a flow (data units per time unit)

– N = nr of active flows obeying Poisson(a) distribution

• When the total transmission rate Nr exceeds the link capacity C = nr, 
bits are lost

– loss ratio p
loss

gives the ratio between the traffic lost and the traffic offered: 

∑
∞

+=

−−−
−===

++

1
!

1
][

])[(

][

])[(
loss )(

ni

a

i

a

aNE

nNE

NrE

CNrE
enip

i

12



13

7. Loss systems

Multiplexing gain

• We determine traffic intensity a so that loss ratio p
loss

< 1%

• Multiplexing gain is described by the traffic intensity per capacity unit, 

a/n, as a function of capacity n

normalized traffic

a/n

capacity n
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7. Loss systems

Erlang model (M/M/n/n)

• Definition: Erlang model is the following simple teletraffic model:

– Infinite number of independent customers (k = ∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ

• so, customers arrive according to a Poisson process with intensity λ

– Finite number of servers (n < ∞)

– Service times are IID and exponentially distributed with mean 1/µ

– No waiting places (m = 0)

• Erlang model:

– Using Kendall’s notation, this is an M/M/n/n queue

– Pure loss system, and, thus, lossy

• Notation:

– a = λ/µ = traffic intensity
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7. Loss systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h), 

a new customer arrives (state transition i → i+1)

• with prob. iµh + o(h), 

a customer leaves the system (state transition i → i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process 

with a finite state space S = {0,1,2,…,n}
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7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a truncated Poisson distribution:

• Remark: Insensitivity with respect to the service time distribution

– The result is insensitive to the service time distribution, that is: 

it is valid for any service time distribution with mean 1/µ

– So, instead of the M/M/n/n model, 

we can consider, as well, the more general M/G/n/n model
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7. Loss systems

Time blocking

• Time blocking B
t
= probability that all n servers are occupied at an 

arbitrary time = the fraction of time that all n servers are occupied

• For a stationary Markov process, this equals the probability π
n
of the 

equilibrium distribution π. Thus,
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7. Loss systems

Call blocking

• Call blocking B
c
= probability that an arriving customer finds all 

n servers occupied = the fraction of arriving customers that are lost

• However, due to Poisson arrivals and PASTA property, the probability 

that an arriving customer finds all n servers occupied equals the 

probability that all n servers are occupied at an arbitrary time, 

• In other words, call blocking B
c
equals time blocking B

t
:

• This is Erlang’s blocking formula
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7. Loss systems

Application to telephone traffic modelling in trunk network

• Erlang model may be applied to modelling of telephone traffic in trunk

network where the number of potential users of a link is large

– customer = call

– λ = call arrival rate (calls per time unit)

– h = 1/µ = average call holding time (time units)

– a = λ/µ = traffic intensity

– n = link capacity (channels)

• A call is lost if all n channels are occupied when the call arrives

– call blocking B
c
gives the probability of such an event
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7. Loss systems

Multiplexing gain

• We determine traffic intensity a so that call blocking B
c
< 1%

• Multiplexing gain is described by the traffic intensity per capacity unit, 

a/n, as a function of capacity n
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7. Loss systems

Binomial model (M/M/k/k/k)

• Definition: Binomial model is the following (simple) teletraffic model:

– Finite number of independent customers (k < ∞)

• on-off type customers (alternating between idleness and activity)

– Idle times are IID and exponentially distributed with mean 1/ν

– As many servers as customers (n = k)

– Service times are IID and exponentially distributed with mean 1/µ

– No waiting places (m = 0)

• Binomial model:

– Using Kendall’s notation, this is an M/M/k/k/k queue

– Although a finite system, this is clearly lossless

• On-off type customer: 
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On-off type customer (1)

• Let Xj(t) denote the state of customer j ( j = 1,2,…,k ) at time t

– State 0 = idle, state 1 = active = in service

– Consider what happens during a short time interval (t, t+h]:

• if Xj(t) = 0, then, with prob. νh + o(h), 

the customer becomes active (state transition 0 → 1)

• if Xj(t) = 1, then, with prob. µh + o(h), 

the customer becomes idle (state transition 1 → 0)

• Process Xj(t) is clearly a Markov process with state transition diagram

• Note that process Xj(t) is an irreducible birth-death process 

with a finite state space S = {0,1}
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7. Loss systems

On-off type customer (2)

• Local balance equations (LBE):

• Normalizing condition (N):

• So, the equilibrium distribution of a single customer is the Bernoulli 

distribution with success probability ν/(ν+µ)

– offered traffic is ν/(ν+µ)

• From this, we could deduce that the equilibrium distribution of the state 

of the whole system (that is: the number of active customers) is the 

binomial distribution Bin(k, ν/(ν+µ))
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7. Loss systems

State transition diagram

• Let X(t) denote the number of active customers 

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• if i < k, then, with prob. (k−i)νh + o(h), 

an idle customer becomes active (state transition i→ i+1)

• if i > 0, then, with prob. iµh + o(h), 

an active customer becomes idle (state transition i→ i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process 

with a finite state space S = {0,1,…,k}
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7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a binomial distribution:

• Remark: Insensitivity w.r.t. service time and idle time distribution

– The result is insensitive both to the service and the idle time distribution, 

that is: it is valid for any service time distribution with mean 1/µ and any idle 

time distribution with mean 1/ν

– So, instead of the M/M/k/k/k model, 

we can consider, as well, the more general G/G/k/k/k model
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Engset model (M/M/n/n/k)

• Definition: Engset model is the following (simple) teletraffic model:

– Finite number of independent customers (k < ∞)

• on-off type customers (alternating between idleness and activity)

– Idle times are IID and exponentially distributed with mean 1/ν

– Less servers than customers (n < k)

– Service times are IID and exponentially distributed with mean 1/µ

– No waiting places (m = 0)

• Engset model:

– Using Kendall’s notation, this is an M/M/n/n/k queue

– This is a pure loss system, and, thus, lossy

• On-off type customer: 
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7. Loss systems

State transition diagram

• Let X(t) denote the number of active customers 

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]:

• if i < n, then, with prob. (k−i)νh + o(h), 

an idle customer becomes active (state transition i→ i+1)

• if i > 0, then, with prob. iµh + o(h), 

an active customer becomes idle (state transition i→ i−1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process 

with a finite state space S = {0,1,…,n}
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7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a truncated binomial distribution:

• Offered traffic is kν/(ν+µ)

• Remark:  Insensitivity w.r.t. service time and idle time distribution

– The result is insensitive both to the service and the idle time distribution, 

that is: it is valid for any service time distribution with mean 1/µ and any

idle time distribution with mean 1/ν

– So, instead of the M/M/n/n/k model, 

we can consider, as well, the more general G/G/n/n/k model
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7. Loss systems

Time blocking

• Time blocking B
t
= probability that all n servers are occupied at an 

arbitrary time = the fraction of time that all n servers are occupied

• For a stationary Markov process, this equals the probability πn of the 

equilibrium distribution π. Thus,
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7. Loss systems

Call blocking (1)

• Call blocking B
c
= probability that an arriving customer finds all 

n servers occupied = the fraction of arriving customers that are lost

– In the Engset model, however, the “arrivals” do not follow a Poisson 

process. Thus, we cannot utilize the PASTA property any more.

– In fact, the distribution of the state that an “arriving” customer sees differs 

from the equilibrium distribution. Thus, call blocking B
c
does not equal time 

blocking B
t
in the Engset model.

38

7. Loss systems

Call blocking (2)

• Let π
i
* denote the probability that there are i active customers when an 

idle customer becomes active (which is called an “arrival”)

• Consider a long time interval (0,T):

– During this interval, the average time spent in state i is πiT

– During this time, the average number of “arriving” customers (who all see 

the system to be in state i) is (k−i)ν⋅πiT

– During the whole interval, the average number of “arriving” customers is 

Σj (k−j)ν⋅πjT

• Thus,
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7. Loss systems

Call blocking (3)

• It can be shown (exercise!) that

• If we write explicitly the dependence of these probabilities on the total 

number of customers, we get the following result:

• In other words, an “arriving” customer sees such a system where there 

is one customer less (itself!) in equilibrium
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7. Loss systems

Call blocking (4)

• By choosing i = n, we get the following formula for the call blocking 

probability:

• Thus, for the Engset model, the call blocking in a system with k

customers equals the time blocking in a system with k−1 customers:

• This is Engset’s blocking formula
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7. Loss systems

Application to telephone traffic modelling in access network

• Engset model may be applied to modelling of telephone traffic in 

access network where the nr of potential users of a link is moderate

– customer = call

– ν = call arrival rate per idle user (calls per time unit)

– 1/µ = average call holding time (time units)

– k = number of potential users

– n = link capacity (channels)

• A call is lost if all n channels are occupied when the call arrives

– call blocking B
c
gives the probability of such an event
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7. Loss systems

Multiplexing gain

• We assume that an access link is loaded by k = 100 potential users

• We determine traffic intensity kν/(ν+µ) so that call blocking B
c
< 1%

• Multiplexing gain is described by the traffic intensity per capacity unit, 

kν/(n(ν+µ)) , as a function of capacity n

capacity n

normalized traffic

kν/(n(ν+µ))
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