HELSINKI UNIVERSITY OF TECHNOLOGY

Networking Laboratory
S-38.1145 Introduction to Teletraffic Theory, Spring 2007
Problems 3, 4 and 6 are homework exercises. Return your answers into the course box of the laboratory (G-wing, 2. floor) latest at 10.00 on Tuesday 30.1.

1. Demo

Consider telephone traffic carried by a 5 -channel link in the telephone network. Use a pure loss system model. New calls arrive according to a Poisson process at rate 2 calls per minute, and call holding times are independently and identically distributed with mean 3 minutes. Compute
(a) offered traffic,
(b) carried traffic, and
(c) lost traffic.

2. Demo

Consider telephone traffic carried by a link in a packet switched network. A single call is modelled as a streaming CBR flow with a fixed transmission rate of 64 kbps . The link speed is $5 * 64 \mathrm{kbps}$. Use the infinite system model. New calls arrive according to a Poisson process at rate 2 calls per minute, and the average flow duration is 3 minutes. Compute
(a) offered traffic,
(b) carried traffic, and
(c) loss ratio.

3. Homework exercise

Consider the processor of a packet router in a packet switched data network. Traffic consists of data packets to be processed. Use a pure waiting system model with a single server. New packets arrive according to a Poisson process at rate 2000 packets/second, and packet processing times are independently and exponentially distributed with mean 0.4 ms .
(a) What is the traffic load?
(b) What is the probability that a packet has to wait longer than 2 ms ?
(c) Assume that the traffic arrival rate increases to 3000 packets/second. How big should the service rate μ of the processor be, if we require that with probability 0.1 packets should not wait longer than 2 ms .

4. Homework exercise

Consider elastic data traffic carried by a $100-\mathrm{Mbps}$ link in a packet switched network. Use a pure sharing system model with a single server. New flows arrive according to a Poisson process at rate 9 flows per second, and the average size of the files to be transferred is 10 Mbit .
(a) What is the traffic load?
(b) What is the throughput of a flow and the average file transfer time?
(c) Assume that flow arrival rate λ increases to 15 flows per second. How much capacity is needed on the link if we require that the per-flow throughput $\theta=5 \mathrm{Mbps}$?
5. Demo

Let X and Y be independent random variables. Consider then the random variable $Z=a X+b Y$, where a, b are real numbers.
(a) Determine the mean and variance of Z.
(b) Assume that $X \sim \operatorname{Poisson}(3)$ and $Y \sim \operatorname{Poisson}(2), a=b=5$. What is the probability $P\{Z=0\}$?
6. Homework exercise

Let X denote call holding time in minutes. Assume that $X \sim \operatorname{Exp}(\lambda)$ and $P\{X>3\}=$ $1 / 2$.
(a) Determine parameter λ.
(b) What is the average holding time?
(c) What is the probability that the call duration is more than 6 minutes?

