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Announcement

• Aim of the lecture

– To present simulation as one of the tools used in teletraffic theory

– To give a brief overview of the different issues in simulation

• The advanced studies module on Teletraffic theory has also a 

specialized course on simulation

– S-38.3148 Simulation of data networks

– Mandatory course in the Teletraffic theory advanced studies module

– Pre-requisite info: S-38.1145 and programming skills (C/C++)

– Lectured only every other year (take this into consideration when planning 

your studies!)

– Lectured next time in fall 2006
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What is simulation?

• Simulation is (at least from the teletraffic point of view) 

a statistical method to estimate the performance 

(or some other important characteristic) 

of the system under consideration.

• It typically consists of the following four phases: 

– Modelling of the system (real or imaginary) as a dynamic stochastic process

– Generation of the realizations of this stochastic process (“observations”)

• Such realizations are called simulation runs

– Collection of data (“measurements”)

– Statistical analysis of the gathered data, and drawing conclusions
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Alternative to what?

• In previous lectures, we have looked at an alternative way to determine 

the performance: mathematical analysis

• We considered the following two phases:

– Modelling of the system as a stochastic process. 

(In this course, we have restricted ourselves to birth-death processes.)

– Solving of the model by means of mathematical analysis

• The modelling phase is common to both of them

• However, the accuracy (faithfulness) of the model that these methods 

allow can be very different

– unlike simulation, mathematical analysis typically requires (heavily) 

restrictive assumptions to be made
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Performance analysis of a teletraffic system

Mathematical model

(as a stochastic process)

Real/imaginary system

Performance analysis

Mathematical

analysis
Simulation

modelling

validation of the model
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Analysis vs. simulation (1)

• Pros of analysis

– Results produced rapidly (after the analysis is made)

– Exact (accurate) results (for the model)

– Gives insight

– Optimization possible (but typically hard)

• Cons of analysis

– Requires restrictive assumptions 

⇒ the resulting model is typically too simple 

(e.g. only stationary behavior)

⇒ performance analysis of complicated systems impossible

– Even under these assumptions, the analysis itself may be (extremely) hard
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Analysis vs. simulation (2)

• Pros of simulation

– No restrictive assumptions needed (in principle)

⇒ performance analysis of complicated systems possible

– Modelling straightforward

• Cons of simulation

– Production of results time-consuming 

(simulation programs being typically processor intensive)

– Results inaccurate (however, they can be made as accurate as required by 

increasing the number of simulation runs, but this takes even more time) 

– Does not necessarily offer a general insight

– Optimization possible only between very few alternatives (parameter 

combinations or controls)
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Steps in simulating a stochastic process

• Modelling of the system as a stochastic process

– This has already been discussed in this course. 

– In the sequel, we will take the model (that is: the stochastic process) for 
granted. 

– In addition, we will restrict ourselves to simple teletraffic models.

• Generation of the realizations of this stochastic process

– Generation of random numbers

– Construction of the realization of the process from event to event 
(discrete event simulation)

– Often this step is understood as THE simulation, however this is not 
generally the case

• Collection of data

– Transient phase vs. steady state (stationarity, equilibrium)

• Statistical analysis and conclusions

– Point estimators

– Confidence intervals
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Implementation

• Simulation is typically implemented as a computer program

• Simulation program generally comprises the following phases 
(excluding modelling and conclusions)

– Generation of the realizations of the stochastic process

– Collection of data

– Statistical analysis of the gathered data

• Simulation program can be implemented by 

– a general-purpose programming language

• e.g. C or C++

• most flexible, but tedious and prone to programming errors

– utilizing simulation-specific program libraries

• e.g. CNCL

– utilizing simulation-specific software

• e.g. OPNET, BONeS, NS (in part based on p-libraries)

• most rapid and reliable (depending on the s/w), but rigid
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Other simulation types

• What we have described above, is a discrete event simulation

– the simulation is discrete (event-based), dynamic (evolving in time) and 

stochastic (including random components)

– i.e. how to simulate the time evolvement of the mathematical model of the 

system under consideration, when the aim is to gather information on the 

system behavior 

– We consider only this type of simulation in this lecture

• Other types:

– continuous simulation: state and parameter spaces of the process are  

continuous; description of the system typically by differential equations, 

e.g. simulation of the trajectory of an aircraft

– static simulation: time plays no role as there is no process that produces 

the events, e.g. numerical integration of a multi-dimensional integral by 

Monte Carlo method

– deterministic simulation: no random components, e.g. the first example 

above
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Generation of traffic process realizations

• Assume that we have modelled as a stochastic process the evolution of 

the system

• Next step is to generate realizations of this process. 

– For this, we have to: 

• Generate a realization (value) for all the random variables affecting the 

evolution of the process (taking properly into account all the (statistical) 

dependencies between these variables)

• Construct a realization of the process (using the generated values)

– These two parts are overlapping, they are not done separately

– Realizations for random variables are generated by utilizing 

(pseudo) random number generators

– The realization of the process is constructed from event to event 

(discrete event simulation)
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Discrete event simulation (1)

• Idea: simulation evolves from event to event

– If nothing happens during an interval, we can just skip it!

• Basic events modify (somehow) the state of the system

– e.g. arrivals and departures of customers in a simple teletraffic model

• Extra events related to the data collection

– including the event for stopping the simulation run or collecting data

• Event identification:

– occurrence time (when event is handled) and 

– event type (what and how event is handled)
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Discrete event simulation (2)

• Events are organized as an event list

– Events in this list are sorted in ascending order by the occurrence time

• first: the event occurring next

– Events are handled one-by-one (in this order) while, at the same time,  

generating new events to occur later

– When the event has been processed, it is removed from the list

• Simulation clock tells the occurrence time of the next event

– progressing by jumps

• System state tells the current state of the system
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Discrete event simulation (3)

• General algorithm for a single simulation run:

1 Initialization

• simulation clock = 0

• system state = given initial value

• for each event type, generate next event (whenever possible)

• construct the event list from these events

2 Event handling

• simulation clock = occurrence time of the next event

• handle the event including 

– generation of new events and their addition to the event list

– updating of the system state

• delete the event from the event list

3 Stopping test

• if positive, then stop the simulation run; otherwise return to 2
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Example (1)

• Task: Simulate the M/M/1 queue (more precisely: the evolution of the

queue length process) from time 0 to time T assuming that the queue is 

empty at time 0 and omitting any data collection

– System state (at time t) = queue length X
t

• initial value: X
0
= 0

– Basic events:

• customer arrivals

• customer departures

– Extra event:

• stopping of the simulation run at time T

• Note: No collection of data in this example
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Example (2)

• Initialization: 

– initialize the system state: X
0
= 0

– generate the time till the first arrival from the Exp(λ) distribution

• Handling of an arrival event (occurring at some time t):

– update the system state: X
t
= X

t
+ 1

– if X
t
= 1, then generate the time (t + S) till the next departure, where S is 

from the Exp(µ) distribution

– generate the time (t + I) till the next arrival, where I is from the Exp(λ)
distribution

• Handling of a departure event (occuring at some time t):

– update the system state: X
t
= X

t
− 1

– if X
t
> 0, then generate the time (t + S) till the next departure, where S is 

from the Exp(µ) distribution

• Stopping test: t > T

19

11. Simulation

Example (3)

arrival and departure times

4
3
2
1
0

time

generation of the events

queue length

time

0 T
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Generation of random variable realizations

• Based on (pseudo) random number generators

• First step:

– generation of independent uniformly distributed random variables 

between 0 and 1 (i.e. from U(0,1) distribution) by using random number 

generators

• Step from the U(0,1) distribution to the desired distribution:

– rescaling (⇒ U(a,b))

– discretization (⇒ Bernoulli(p), Bin(n,p), Poisson(a), Geom(p))

– inverse transform (⇒ Exp(λ))

– other transforms (⇒ N(0,1) ⇒ N(µ,σ2))

– acceptance-rejection method (for any continuous random variable defined 

in a finite interval whose density function is bounded)

• two independent U(0,1) distributed random variables needed
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Random number generator

• Random number generator is an algorithm generating (pseudo) 

random integers Z
i
in some interval 0,1,…, m −1

– The sequence generated is always periodic 

(goal: this period should be as long as possible)

– Strictly speaking, the numbers generated are not random at all, 

but totally predictable (thus: pseudo)

– In practice, however, if the generator is well designed, the numbers 

“appear” to be IID with uniform distribution inside the set {0,1,…,m−1}

• Validition of a random number generator can be based on empirical 

(statistical) and theoretical tests:

– uniformity of the generated empirical distribution

– independence of the generated random numbers (no correlation)
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Random number generator types

• Linear congruential generator

– the simplest one

– next random number is based on just the current one: Z
i+1

= f(Z
i
)

⇒ period at most m

• Multiplicative congruential generator

– even simpler

– a special case of the first type

• Others:

– Additive congruential generators, shuffling, etc.
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• Linear congruential generator (LCG) uses the following algorithm to 

generate random numbers belonging to {0,1,…, m−1}:

– Here a, c and m are fixed non-negative integers (a < m, c < m)

– In addition, the starting value (seed) Z
0
< m should be specified

• Remarks:

– Parameters a, c and m should be chosen with care, 

otherwise the result can be very poor

– By a right choice of parameters, 

it is possible to achieve the full period m

• e.g. m = 2b, c odd, a = 4k +1 (b often 48)

Linear congruential generator (LCG)

mcaZZ ii  mod )(1 +=
+
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• Multiplicative congruential generator (MCG) uses the following 

algorithm to generate random numbers belonging to {0,1,…, m−1}:

– Here a and m are fixed non-negative integers (a < m)

– In addition, the starting value (seed) Z
0
< m should be specified

• Remarks:

– MCG is clearly a special case of LCG: c = 0

– Parameters a and m should (still) be chosen with care

– In this case, it is not possible to achieve the full period m

• e.g. if m = 2b, then the maximum period is 2b−2

– However, for m prime, period m−1 is possible (by a proper choice of a)

• PMMLCG = prime modulus multiplicative LCG

• e.g. m = 231−1 and a = 16,807 (or 630,360,016)

Multiplicative congruential generator (MCG)

maZZ ii  mod )(1 =+
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U(0,1) distribution

• Let Z denote a (pseudo) random number belonging to {0,1,…, m−1}

• Then (approximately)

)1,0U( ≈=
m

Z
U
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U(a,b) distribution

• Let U ∼ U(0,1)

• Then

• This is called the rescaling method

),U( )( baUabaX ∼−+=
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Discretization method

• Let U ∼ U(0,1)

• Assume that Y is a discrete random variable

– with value set S = {0,1,…,n} or S = {0,1,2,…}

• Denote: F(x) = P{Y ≤ x}, then

• This is called the discretization method 

– a special case of the inverse transform method

• Example: Bernoulli(p) distribution

YUxFSxX  })(|min{ ∼≥∈=

)Bernoulli(
1 if   ,1

1 if   ,0
p

pU

pU
X ∼





−>

−≤
=
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Inverse transform method

• Let U ∼ U(0,1)

• Assume that Y is a continuous random variable

• Assume further that F(x) = P{Y ≤ x} is strictly increasing 

• Let F−1(y) denote the inverse of the function F(x), then

• This is called the inverse transform method

• Proof: Since P{U ≤ u} = u for all u ∈ (0,1), we have 

YUFX  )(1 ∼=
−

)()}({})({}{ 1
xFxFUPxUFPxXP =≤=≤=≤

−
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Exp(λ) distribution

• Let U ∼ U(0,1)

– Then also 1−U ∼ U(0,1)

• Let Y ∼ Exp(λ)

– F(x) = P{Y ≤ x} = 1−e−λx is strictly increasing

– The inverse transform is F−1(y) = −(1/λ) log(1−y)

• Thus, by the inverse transform method, 

)Exp( )log()1( 11
λ

λ
∼−=−=

−

UUFX
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N(0,1) distribution

• Let U
1
∼ U(0,1) and U

2
∼ U(0,1) be independent

• Then, by so called Box-Müller method, 

the following two (transformed) random variables are independent and 

identically distributed obeying the N(0,1) distribution:

)1,0( )2sin()log(2 211 NUUX ∼−= π

)1,0( )2cos()log(2 212 NUUX ∼−= π
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N(µ,σ2) distribution

• Let X ∼ N(0,1)

• Then, by the rescaling method, 

),( 2
σµσµ NXY ∼+=
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Collection of data

• Our starting point was that simulation is needed to estimate the value, 

say α, of some performance parameter

– This parameter may be related to the transient or the steady-state

behaviour of the system.

– Examples 1 & 2 (transient phase characteristics)

• average waiting time of the first k customers in an M/M/1 queue 

assuming that the system is empty in the beginning

• average queue length in an M/M/1 queue during the interval [0,T] 
assuming that the system is empty in the beginning

– Example 3 (steady-state characteristics)

• the average waiting time in an M/M/1 queue in equilibrium

• Each simulation run yields one sample, say X, describing somehow the 

parameter under consideration

• For drawing statistically reliable conclusions, 

multiple samples, X
1
,…,X

n
, are needed (preferably IID)
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Transient phase characteristics (1)

• Example 1:

– Consider e.g. the average waiting time of the first k customers in an M/M/1 

queue assuming that the system is empty in the beginning

– Each simulation run can be stopped 

when the kth customer enters the service

– The sample X based on a single simulation run is in this case:

• Here W
i
= waiting time of the ith customer in this simulation run

• Multiple IID samples, X
1
,…,X

n
, can be generated by the 

method of independent replications:

– multiple independent simulation runs (using independent random numbers)

∑
=

=

k

i

ik
WX

1

1
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Transient phase characteristics (2)

• Example 2:

– Consider e.g. the average queue length in an M/M/1 queue during the 

interval [0,T] assuming that the system is empty in the beginning

– Each simulation run can be stopped at time T (that is: simulation clock = T)

– The sample X based on a single simulation run is in this case:

• Here Q(t) = queue length at time t in this simulation run

• Note that this integral is easy to calculate, since Q(t) is piecewise 
constant

• Multiple IID samples, X
1
,…,X

n
, can again be generated by the method 

of independent replications

∫=

T

T
dttQX

0

1 )(
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Steady-state characteristics (1)

• Collection of data in a single simulation run is in principle similar to that 

of transient phase simulations 

• Collection of data in a single simulation run can typically (but not 

always) be done only after a warm-up phase (hiding the transient 

characteristics) resulting in 

– overhead =“extra simulation”

– bias in estimation

– need for determination of a sufficiently long warm-up phase

• Multiple samples, X
1
,…,X

n
, may be generated by the following three 

methods:

– independent replications

– batch means
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Steady-state characteristics (2)

• Method of independent replications:

– multiple independent simulation runs of the same system (using 

independent random numbers)

– each simulation run includes the warm-up phase ⇒ inefficiency

– samples IID ⇒ accuracy

• Method of batch means:

– one (very) long simulation run divided (artificially) into one warm-up phase 

and n equal length periods (each of which represents a single simulation 

run)

– only one warm-up phase ⇒ efficiency

– samples only approximately IID ⇒ inaccuracy, 

• choice of n, the larger the better
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Parameter estimation

• As mentioned, our starting point was that simulation is needed to 

estimate the value, say α, of some performance parameter 

• Each simulation run yields a (random) sample, say X
i
, 

describing somehow the parameter under consideration

– Sample X
i
is called unbiased if E[X

i
] = α

• Assuming that the samples X
i
are IID with mean α and variance σ2

– Then the sample average

– is unbiased and consistent estimator of α, since 
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Example

• Consider the average waiting time of the first 25 customers in an M/M/1 

queue with load ρ = 0.9 assuming that the system is empty in the 

beginning

– Theoretical value: α = 2.12 (non-trivial)

– Samples X
i
from ten simulation runs (n = 10): 

• 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31

– Sample average (point estimate for α):

98.1)31.144.605.1(
10

1

1

1 =+++=∑=
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K

n
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Confidence interval (1)

• Definition: Interval (Xn − y, Xn + y) is called the confidence interval

for the sample average at confidence level 1 − β if 

– Idea: “with probability 1 − β, the parameter α belongs to this interval”

• Assume then that samples Xi, i = 1,…,n, are IID with unknown mean α

but known variance σ2

• By the Central Limit Theorem (see Lecture 5, Slide 48), for large n, 

)1,0N(:
/

≈=

−

n

X
n

Z
σ

α

βα −=≤− 1} |{| yXP
n
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Confidence interval(2)

• Let zp denote the p-fractile of the N(0,1) distribution

– That is: P{Z ≤ z
p
} = p, where Z ∼ N(0,1)

– Example: for β = 5% (1 − β = 95%) ⇒ z1−(β/2) = z0.975 ≈ 1.96 ≈ 2.0

• Proposition: The confidence interval for the sample average at 

confidence level 1 − β is

• Proof: By definition, we have to show that 

n
n

zX
σ
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Confidence interval (3)

• In general, however, the variance σ2 is unknown 

(in addition to the mean α)

• It can be estimated by the sample variance:

• It is possible to prove that 

the sample variance is an unbiased and consistent estimator of σ2:
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Confidence interval (4)

• Assume that samples Xi are IID obeying the N(α,σ
2) distribution 

with unknown mean α and unknown variance σ2

• Then it is possible to show that 

• Let tn−1,p denote the p-fractile of the Student(n−1) distribution

– That is: P{T ≤ tn−1,p} = p, where T ∼ Student(n−1)

– Example 1: n = 10 and β = 5%, tn−1,1−(β/2) = t9,0.975 ≈ 2.26 ≈ 2.3

– Example 2: n = 100 and β = 5%, tn−1,1−(β/2) = t99,0.975 ≈ 1.98 ≈ 2.0

• Thus, the conf. interval for the sample average at conf. level 1 − β is
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Example (continued)

• Consider the average waiting time of the first 25 customers in an M/M/1 

queue with load ρ = 0.9 assuming that the system is empty in the 
beginning

– Theoretical value: α = 2.12

– Samples Xi from ten simulation runs (n = 10): 

• 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31

– Sample average = 1.98 and the square root of the sample variance: 

– So, the confidence interval (that is: interval estimate for α) at confidence 

level 95% is

78.1))98.131.1()98.105.1(( 22
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Observations

• Simulation results become more accurate (that is: the interval estimate 

for α becomes narrower) when 

– the number n of simulation runs is increased, or 

– the variance σ2 of each sample is reduced

• by running longer individual simulataion runs

• variance reduction methods

• Given the desired accuracy for the simulation results, 

the number of required simulation runs can be determined dynamically
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