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Sample space, sample points, events

Sample space Q is the set of all possible sample points ® €

— Example 0. Tossing a coin: Q = {H,T}

— Example 1. Casting a die: Q = {1,2,3,4,5,6}

— Example 2. Number of customers in a queue: Q = {0,1,2,...}

— Example 3. Call holding time (e.g. in minutes): Q = {x € R |x> 0}
Events 4,B,C,... ¢ Q are measurable subsets of the sample space Q

— Example 1. “Even numbers of a die”: 4 = {2,4,6}

— Example 2. “No customers in a queue™ 4 = {0}

— Example 3. “Call holding time greater than 3.0 (min)”: 4= {x € R | x> 3.0}
Denote by J the set of all events 4 € ¢

— Sure event: The sample space Q € § itself

— Impossible event: The empty set & € J

Combination of events

Union “A or B”™: AUB={oeQ|loedoro e B}
Intersection “A and B”: ANnB={o e Q|w e dand » € B}
Complement “not A™: A={oeQ|o ¢ 4}

Events 4 and B are disjoint if

- ANnB=0

A set of events {B}, B,, ...} is a partition of event 4 if
- () BinB;=Qforalli#j
- (i)\U;B,=4 4
— Example 1. Odd and even numbers of a die

constitute a partition of the sample space:
B, =1{1,3,5} and B, = {2,4,6}




Probability

Conditional probability

Probability of event 4 is denoted by P(4), P(4) € [0,1]

— Probability measure P is thus

a real-valued set function defined on the set of events 7, P: § — [0,1]

Properties:

() 0<PU<1
(i) P(@)=0

(i) P(Q)=1

(V) PA%=1-P(4)
() P(4U B)=P(4)+P(B)— P4 N B) B
i) AnB=@ = P(4U B)=P(4)+ P(B)

(vii) {B,} is a partition of 4 = P(4) = X, P(B))

(viiiy A c B = P(4) < P(B)

A

Assume that P(B) > 0

Definition: The conditional probability of event A
given that event B occurred is defined as

P(ANB)

It follows that

P(ANB)=P(B)P(A|B)=P(A)P(B| A4)

Theorem of total probability

Bayes’ theorem

+ Let {B;} be a partition of the sample space Q
+ ltfollows that {4 N B,} is a partition of event A. Thus (by slide 5)

(vii)
P(4) = ZiP(A('\BZ-)

+ Assume further that P(B;) > 0 for all i. Then (by slide 6)

» This is the theorem of total probability

P(A)=3; P(B;)P(4]| B;)

Let {B,} be a partition of the sample space Q
Assume that P(4) > 0 and P(B;) > 0 for all i. Then (by slide 6)

P(AnB;) _ P(B;)P(4|B;)
P(4) — P(A)

P(B; | 4) =
Furthermore, by the theorem of total probability (slide 7), we get

P(B;)P(A|B;)
P(B: | A) = =L 17
(B;14) >/ P(B;)P(AB;)
This is Bayes’ theorem
— Probabilities P(B)) are called a priori probabilities of events B;

— Probabilities P(B;| 4) are called a posteriori probabilities of events B,
(given that the event 4 occured)




Statistical independence of events

Random variables

Definition: Events 4 and B are independent if

It follows that

P(ANB) = P(4)P(B)

P(ANB) _ P(A)P(B) _

Definition: Real-valued random variable X is a real-valued and
measurable function defined on the sample space 2, X: Q —> R

— Each sample point ® € Q is associated with a real number X(®)
Measurability means that all sets of type

{(X<x}:={weQ| X(@)<x}cQ

P(A | B) = P(B) P(B) = P(A) belong to the set of events 4, that is
* Correspondingly: {Xg x} cd
P(ANB) _ P(A)P(B)
P(B|A4)= = =P(B
(B14) P(4) P(4) (B) The probability of such an event is denoted by P{X < x}
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Example Indicators of events

A coin is tossed three times
Sample space:

Q={(a)1,a)2,a)3) | ; E{H,T},i=1,2,3}

Let X be the random variable that tells the total number of tails
in these three experiments:

(@)

HHH

HHT

HTH

THH

HTT

THT

TTH

TTT

X(o)

0

2

2

2

Let 4 € 7 be an arbitrary event

Definition: The indicator of event A is a random variable defined as
follows:

(@)= {1, we A
0, wgAd
Clearly:
P{l , =1} = P(A)

P{l =0} = P(A°) =1- P(A)




Cumulative distribution function

Statistical independence of random variables

» Definition: The cumulative distribution function (cdf) of a random
variable X'is a function F'y: R — [0,1] defined as follows:

Fy(x)=P{X <x}

* Cdf determines the distribution of the random variable,

— that is: the probabilities P{X € B}, where Bc Rand {X € B} € §
* Properties:

— (i) Fyis non-decreasing

— (ii) Fyis continuous from the right Fy(x)
- (iii) Fy(—0)=0

~ (V) Fy(@)=1

Definition: Random variables X and Y are independent if
for all x and y

P{X <x,Y<y}=P{X <x}P{Y <y}

Definition: Random variables Xj,..., X, are totally independent if
forall i and x;

P{Xl le,...,Xn an}ZP{XI le}"'P{Xn an}

Maximum and minimum of independent random variables

Contents

* Letthe random variables X|,..., X, be totally independent
+ Denote: X := max{X,..., X,,}. Then

PX"™ <x}=P{X|<x,...,X, <x}
=P{X|<x}---P{X,<x}
+  Denote: X™in ;= min{Xp,...,X,}. Then

P{X™M 5 )= PUX| > x,..., X, > x}
=P{X|>x}---P{X,, >x}
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Discrete random variables

Point probabilities

Definition: Set 4 — R is called discrete if it is
— finite, 4 = {x,,..., x,}, or
— countably infinite, 4 = {x|, x,,...}
Definition: Random variable X is discrete if
there is a discrete set Sy < R such that

P{XeSy}=1
It follows that
- P{X=x}20 forallx € Sy

- P{X=x}=0 forallx ¢ Sy
The set Sy is called the value set

* Let X' be a discrete random variable
+ The distribution of X'is determined by the point probabilities p,,

pi=PX=x3, xeSx

» Definition: The probability mass function (pmf) of X is a function
Py- R — [0,1] defined as follows:

px(x)=P{X =x}= {
» Cdfis in this case a step function:

Fy(x)=P{X<x}= 2 p;

IX;<x

Di» x=x €S8y
0, XESX

Independence of discrete random variables

Example
O 1 O 1
| I x | | | | X
x| Xy X3Xy x‘l x; x‘3x‘4
probability mass function (pmf) cumulative distribution function (cdf)

Sy = {x1, X9, X3, X4}

» Discrete random variables X and Y are independent if and only if
forallx; € Syandy; € Sy

PX=x,Y=y;}=PX=x}P{Y =y}
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Expectation

Definition: The expectation (mean value) of X is defined by

py =EX]= Y PX =x}x= Xpx()x=Xpx

xeSX xeSX

— Note 1: The expectation exists only if 2, plx| <o

- Note 2: If X, p,x; = o0, then we may denote E[X] = o

Properties:

(i) ¢ € R = E[cX] = cE[X]
(i) E[X+ Y] = E[X] + E[Y]
(iif) X and Y independent = E[XY] = E[X]E[Y]
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Variance

Definition: The variance of X is defined by

0% =D*[X]:= Var[X]:= E[(X - E[X])*]

Useful formula (prove!):

D’[X]=E[X?]-E[X]?

Properties:
- (i) ceR=DYcX]=c*DX]
— (i) Xand Yindependent = D?[X + Y] = D*[X] + D?[Y]

Covariance

Definition: The covariance between X and Y is defined by

6%y =Cov[X,Y]:= E[(X - E[X])(Y — E[Y])]

Useful formula (prove!):

Cov[X,Y]= E[XY]- E[X]E[Y]

Properties:

(i) Cov[X,X] = Var[X]

(i) Cov[X,Y] = Cov[T,X]

(iii) Cov[X+Y,Z] = Cov[X,Z] + Cov[Y,Z]
(iv) X and Y independent = Cov[X,Y] =0
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Other distribution related parameters

Definition: The standard deviation of X is defined by
oy =D[X]=D[X]

Definition: The coefficient of variation of X is defined by

D[ X
ex = CLX1= 35

Definition: The kth moment, k=1,2, ..., of X'is defined by

) = BLXH]

24




Average of IID random variables

Law of large numbers (LLN)

Let Xj,..., X, be independent and identically distributed (lID)
with mean p and variance o2
Denote the average (sample mean) as follows:

Let Xj,..., X, be independent and identically distributed (lID)
with mean p and variance o2

Weak law of large numbers: for all € > 0

X, =1y x, P{X,-ul>e >0
n’
i=1 Strong law of large numbers: with probability 1
Then (prove!) _
— X, > u
E[X,]=u n
5 }i 5 It follows that for large values of n
D [Xn] = 0-7 X ~ U
n =
Y 1= 9
D[X,]=%
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X ~Beroulli(p), pe(0,1)

— describes a simple random experiment with two possible outcomes:
success (1) and failure (0); cf. coin tossing

— success with probability p (and failure with probability 1 — p)
Value set: Sy = {0,1}
Point probabilities:

P{X=0}=1-p, P{X=1}=p

Mean value: E[X]=(1 —p)0+p-1=p
Second moment: E[X2] = (1 — p)-02 + p-12=p
Variance: D[X] = E[X2] - E[X]>=p - p?> = p(1 - p)




Binomial distribution

X ~Bin(n, p), ne{l,2,...}, pe(0,1)

— number of successes in an independent series of simple random
experiments (of Bernoulli type); X =X + ... + X, (with X; ~ Bernoulli(p))

Geometric distribution

— n = total number of experiments |
_ . . . ) nij_ _n!
— p = probability of success in any single experiment (Z )— N(n—i)!
. Va!ue set: SX. : {0,1,...,n} nen(n—1)-+-21
« Point probabilities:

P =iy =(7)p' - py'
* Mean value: E[X] = E[X|] + ... + E[X,] =np
*  Variance: D’[X] = D’[X{] + ... + D’[X,] =np(1 — p) (independence!)
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X ~Geom(p), pe(0.])

— number of successes until the first failure in an independent series of simple
random experiments (of Bernoulli type)

— p = probability of success in any single experiment
+ Value set: Sy = {0,1,...}
* Point probabilities:

P{X =i}y=p'(1-p)

* Mean value: E[X] =Y, ip(1 - p)=p/(1 - p)
+ Second moment: E[X?] =Y, /(1 - p) = 2(p/(1 — p))* + p/(1 - p)
« Variance: D[ X] = E[X?] — E[X]? = p/(1 - p)?
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Memoryless property of geometric distribution

« Geometric distribution has so called memoryless property:
for all ij € {0,1,...}

P{X>i+j|X2it=P{X2}

* Provel!
— Tip: Prove first that P{X > i} = p’

31

Minimum of geometric random variables

+ LetX; ~ Geom(p;) and X, ~ Geom(p,) be independent. Then
XM = min{Xy, X, } ~ Geom(py p2)
and

pexmin _ 5 :l, e (1,2
{ i} = pupa ie{l,2}

* Prove!
— Tip: See slide 15
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Poisson distribution

X ~Poisson(a), a>0

— limit of binomial distribution as # — o and p — 0 in such a way that np — a
Value set: Sy = {0,1,...}
Point probabilities:

P{X =i}=%¢ "

Mean value: E[X] =a

Example

Assume that

— 200 subscribers are connected to a local exchange

— each subscriber’s characteristic traffic is 0.01 erlang
— subscribers behave independently

Then the number of active calls X ~ Bin(200,0.01)
Corresponding Poisson-approximation X ~ Poisson(2.0)
Point probabilities:

0 1 2 3 4 5
Second moment: E[X(X —1)] = > = E[X}]=d® +a
Variance: D2[X] = E[X2] - E[X]> = a Bin(200,0.01)| 1326 | 2679 | 2693 | .1795 | .0893 | .0354
Poisson(2.0) | .1353 | 2701 | .2701 | .1804 | .0902 | .0361
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Properties Contents

'|€:1) Sum: Let X; ~ Poisson(a;) and X, ~ Poisson(a,) be independent.
en

X1+ X, ~Poisson(a; +a)

(ii) Random sample: Let X ~ Poisson(a) denote the number of
elements in a set, and Y denote the size of a random sample of this set
(each element taken independently with probability p). Then

Y ~ Poisson( pa)

(ii7) Random sorting: Let X'and Y be as in (ii), and Z=X—Y. Then
Y and Z are independent (given that X is unknown) and

Z ~ Poisson((1— p)a)

35
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Continuous random variables

Example

Definition: Random variable X is continuous if

there is an integrable function fy: ‘R — R such that for all x € R

Fy(x)=P{X <x}= [fxy(»)dy

—0

The function fy is called the probability density function (pdf)

— The set Sy, where /> 0, is called the value set
Properties:

- (i) P{X=x}=0 forallxe R

- (i) Pla<X<b}=P{la<X<b} =[P fx)dx

Jx)

probability density function (pdf) cumulative distribution function (cdf)

— (i) P{X € A} = |, fi(x) dx Sy =[x}, x3]
- v Pxeny= o f de= 5, Sl de=1 - s
Expectation and other distribution related parameters Contents

Definition: The expectation (mean value) of X is defined by

py =E[X]= [fx(x)xdx

— Note 1: The expectation exists only if f_w”fX(x)|x\ dx <

— Note 2: If ,[_wwa(x)x =0, then we may denote E[X] = o
— The expectation has the same properties as in the discrete case

(see slide 21)

The other distribution parameters (variance, covariance,...) are defined

just as in the discrete case

— These parameters have the same properties as in the discrete case

(see slides 22-24)
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Uniform distribution

X ~U(a,b), a<b

— continuous counterpart of “casting a die”
Value set: Sy = (a,b)
Probability density function (pdf):

fX(x)zﬁs xe(a,b)

Cumulative distribution function (cdf):

Fy(x) :=P{X£x}=ﬁ, x € (a,b)

Mean value: E[X] = [,? x/(b — a) dx = (a + b)2
Second moment: E[X?] = [,? x*/(b - a) dx = (a® + ab + b*)/3

Variance: D?[X] = E[X?] — E[X]* = (b — a)*/12
41

Exponential distribution

X ~Exp(1), 4>0

— continuous counterpart of geometric distribution (“failure” prob. ~ Adt)
— P{X e (tt+h] | X >t} = Ah + o(h), where o(h)/h > 0as h — 0

+ Value set: Sy = (0,0)

* Probability density function (pdf):

fi(x)=2e™, x>0
* Cumulative distribution function (cdf):
F,(x)=P{X<x}=1-¢™, x>0
+ Mean value: E[X] = [ Ax exp(=Ax) dx = 1/A

« Second moment: E[X?] = [ Ax? exp(—Ax) dx = 2/A?
«  Variance: D?[X] = E[X?] - E[X]? = 1/A2

42

Memoryless property of exponential distribution

Exponential distribution has so called memoryless property:
for all x,y € (0,0)

P{X>x+y|X>x}=P{X >y}

Prove!
— Tip: Prove first that P{X > x} = e
Application:

— Assume that the call holding time is exponentially distributed with
mean s minutes.

— Consider a call that has already lasted for x minutes.
Due to memoryless property, this gives no information about the length of
the remaining holding time: it is distributed as the original holding time
and, on average, lasts still /2 minutes!

43

Minimum of exponential random variables

+ LetX] ~Exp(4,) and X, ~ Exp(4,) be independent. Then
X™ = min{X}, X5} ~Exp(4 + 1)
and

* Prove!
— Tip: See slide 15
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Standard normal (Gaussian) distribution

X ~N(0,1)
— limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1
(cf. slide 48)
+ Value set: Sy = (—0,0)
* Probability density function (pdf):
1,2

_ — 1 2
X)=@(x) = e
Sx (@) =)=
* Cumulative distribution function (cdf):

Fy(x):=P{X <x}=0(x)= [ p(»)dy
* Mean value: E[X] =0 (symmetric pdf)
« Variance: DZ[X] =1 45

Normal (Gaussian) distribution

X~N(,u,0'2), HER, >0

- if (X — w/o ~ N(,1)
Value set: Sy = (—0,)
Probability density function (pdf):

()= Fy ()= L ol=2)
Cumulative distribution function (cdf):
- _ piX-# M}_ (ﬂ]
FX(X)—P{XSX}—P{?S p =0 o
Mean value: E[X] = pu + oE[(X — w)/c] = pn (symmetric pdf around )
Variance: D?[X] = 62D?[(X — p)/o] = 62
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Properties of the normal distribution

* (i) Linear transformation: Let X ~ N( o%) and o, € R. Then
Y=aX+ [~ N(a,u+,6’,a202)

* (i) Sum: Let X| ~ N(,ul,alz) and X, ~ N(u, 022) be independent.
Then

5. 9
X1+ Xy ~N(y + pp,01 +03)

+  (iii) Sample mean: Let X; ~ N(y, 6%),i=1,...n, be independent and
identically distributed (IID). Then (cf. slide 25)

n
v 2
X, =12 X~ N Lo?)
i=1
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Central limit theorem (CLT)

Let X|,..., X, be independent and identically distributed (lID)
with mean p and variance 62 (and the third moment exists)
Central limit theorem:
| - i.d.
— (X, - N(0,1
0'/\/;( n 1) —>N(O,1)

It follows that for large values of n

A2 2
X, = N(u,Lo”)
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Basic concepts * In addition to discrete and continuous random variables,
Discrete random variables there are so called mixed random variables

Discrete distributions (nbr distributions) — containing some discrete as well as continuous portions
Continuous random variables + Example:

— The customer waiting time W in an M/M/1 queue has an atom at zero

Continuous distributions (time distributions) (P{W =0} =1 - p > 0) but otherwise the distribution is continuous

Other random variables
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