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Classical model for telephone traffic (1)

• Loss models have traditionally been used to describe (circuit-

switched) telephone networks

– Pioneering work made by Danish mathematician A.K. Erlang (1878-1929)

• Consider a link between two telephone exchanges

– traffic consists of the ongoing telephone calls on the link
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Classical model for telephone traffic (2)

• Erlang modelled this as a pure loss system (m = 0)

– customer = call

• λ = call arrival rate (calls per time unit)

– service time = (call) holding time

• h = 1/µ = average holding time (time units)

– server = channel on the link

• n = nr of channels on the link
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Traffic process

6

5

4

3

2

1

6

5

4

3

2

1

0

time

time

call arrival times

blocked call

channel-by-channel

occupation

nr of channels

occupied

traffic volume

call holding time

c
h
a
n
n
e
ls

n
r 
o
f 
c
h
a
n
n
e
ls

6

3. Examples

Traffic intensity

• The strength of the offered traffic is described by the traffic intensity a

• By definition, the traffic intensity a is the product of the arrival rate λ

and the mean holding time h:

– The traffic intensity is a dimensionless quantity. Anyway, the unit of the 

traffic intensity a is called erlang (erl)

– By Little’s formula: traffic of one erlang means that one channel is occupied 

on average

• Example:

– On average, there are 1800 new calls in an hour, and the average holding 

time is 3 minutes. Then the traffic intensity is

ha λ=

erlang 9060/31800 =∗=a
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Blocking

• In a loss system some calls are lost

– a call is lost if all n channels are occupied when the call arrives

– the term blocking refers to this event

• There are two different types of blocking quantities:

– Call blocking B
c
= probability that an arriving call finds all n channels 

occupied = the fraction of calls that are lost

– Time blocking B
t
= probability that all n channels are occupied at an 

arbitrary time = the fraction of time that all n channels are occupied

• The two blocking quantities are not necessarily equal

– Example: your own mobile

– But if calls arrive according to a Poisson process, then B
c
= B

t

• Call blocking is a better measure for the quality of service experienced 

by the subscribers but, typically, time blocking is easier to calculate
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Call rates

• In a loss system each call is either lost or carried. Thus, there are 

three types of call rates: 

– λ
offered

= arrival rate of all call attempts

– λ
carried

= arrival rate of carried calls

– λ
lost

= arrival rate of lost calls
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Traffic streams

• The three call rates lead to the following three traffic concepts:

– Traffic offered a
offered

= λ
offered

h

– Traffic carried a
carried

= λ
carried

h

– Traffic lost a
lost

= λ
lost

h

• Traffic offered and traffic lost are hypothetical quantities, but 

traffic carried is measurable, since (by Little’s formula) it corresponds 

to the average number of occupied channels on the link
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Teletraffic analysis (1)

• System capacity

– n = number of channels on the link

• Traffic load

– a = (offered) traffic intensity

• Quality of service (from the subscribers’ point of view)

– B
c
= call blocking = probability that an arriving call finds all n channels 

occupied

• Assume an M/G/n/n loss system: 

– calls arrive according to a Poisson process (with rate λ)

– call holding times are independently and identically distributed according to  

any distribution with mean h
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Teletraffic analysis (2)

• Then the quantitive relation between the three factors (system, traffic, 

and quality of service) is given by Erlang’s formula:

• Also called: 

– Erlang’s B-formula

– Erlang’s blocking formula

– Erlang’s loss formula

– Erlang’s first formula
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Example

• Assume that there are n = 4 channels on a link and the offered traffic is 

a = 2.0 erlang. Then the call blocking probability B
c
is

• If the link capacity is raised to n = 6 channels, then B
c
reduces to
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Capacity vs. traffic

• Given the quality of service requirement that B
c
< 1%, the required 

capacity n depends on the traffic intensity a as follows:

}01.0),Erl(|,2,1min{)( <== aiian K

capacity n

traffic a

20 40 60 80 100

20

40

60

80

100

14

3. Examples

Quality of service vs. traffic

• Given the capacity n = 20 channels, the required quality of service 

1 − B
c
depends on the traffic intensity a as follows:
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Quality of service vs. capacity

• Given the traffic intensity a = 15.0 erlang, the required quality of service 

1 − B
c
depends on the capacity n as follows:
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Packet level model for data traffic (1)

• Queueing models are suitable for describing (packet-switched) data 

traffic at packet level

– Pioneering work made by many people in 60’s and 70’s related to 
ARPANET, in particular L. Kleinrock (http://www.lk.cs.ucla.edu/)

• Consider a link between two packet routers

– traffic consists of data packets transmitted along the link

R
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Packet level model for data traffic (2)

• This can be modelled as a pure queueing system with a single server 

(n = 1) and an infinite buffer (m = ∞)

– customer = packet

• λ = packet arrival rate (packets per time unit)

• L = average packet length (data units)

– server = link, waiting places = buffer

• C = link speed (data units per time unit)

– service time = packet transmission time

• 1/µ = L/C = average packet transmission time (time units)

λ
µ
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Traffic process
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Traffic load

• The strength of the offered traffic is described by the traffic load ρ

• By definition, the traffic load ρ is the ratio between the arrival rate λ

and the service rate µ = C/L:

– The traffic load is a dimensionless quantity

– By Little’s formula, it tells the utilization factor of the server, which is the 

probability that the server is busy
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Example

• Consider a link between two packet routers. Assume that, 

– on average, 50,000 new packets arrive in a second, 

– the mean packet length is 1500 bytes, and 

– the link speed is 1 Gbps.

• Then the traffic load (as well as, the utilization) is 

%6060.0000,000,000,1/81500000,50 ==∗∗=ρ
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Delay

• In a queueing system, some packets have to wait before getting served

– An arriving packet is buffered, if the link is busy upon the arrival

• Delay of a packet consists of 

– the waiting time, which depends on the state of the system upon the 

arrival, and 

– the transmission time, which depends on the length of the packet and the 

capacity of the link

• Example: 

– packet length = 1500 bytes

– link speed = 1 Gbps

– transmission time = 1500*8/1,000,000,000 = 0.000012 s = 12 µs
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Teletraffic analysis (1)

• System capacity

– C = link speed in kbps

• Traffic load

– λ = packet arrival rate in pps (considered here as a variable)

– L = average packet length in kbits (assumed here to be constant 1 kbit) 

• Quality of service (from the users’ point of view)

– P
z
= probability that a packet has to wait “too long”, i.e. longer than a given 

reference value z (assumed here to be constant z = 0.00001 s = 10 µs)

• Assume an M/M/1 queueing system: 

– packets arrive according to a Poisson process (with rate λ)

– packet lengths are independent and identically distributed according to the 

exponential distribution with mean L
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• Then the quantitive relation between the three factors (system, traffic, 

and quality of service) is given by the following formula: 

• Note:

– The system is stable only in the former case (ρ < 1). Otherwise the number 
of packets in the buffer grows without limits.

Teletraffic analysis (2)
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Example

• Assume that packets arrive at rate λ = 600,000 pps = 0.6 packets/µs 

and the link speed is C = 1.0 Gbps = 1.0 kbit/µs.

• The system is stable since

• The probability P
z
that an arriving packet has to wait too long (i.e. 

longer than z = 10 µs) is
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Capacity vs. arrival rate

• Given the quality of service requirement that P
z
< 1%, the required link 

speed C depends on the arrival rate λ as follows:
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Quality of service vs. arrival rate

• Given the link speed C = 1.0 Gbps = 1.0 kbit/µs, the quality of service 

1 − P
z
depends on the arrival rate λ as follows:
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Quality of service vs. capacity

• Given the arrival rate λ = 600,000 pps = 0.6 packets/µs, the quality of 

service 1 − P
z
depends on the link speed C as follows:
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Flow level model for elastic data traffic (1)

• Sharing models are suitable for describing elastic data traffic at flow 

level

– Elasticity refers to the adaptive sending rate of TCP flows

– This kind of models have been proposed, e.g., by J. Roberts and his 
researchers  (http://perso.rd.francetelecom.fr/roberts/)

• Consider a link between two packet routers

– traffic consists of TCP flows loading the link
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Flow level model for elastic data traffic (2)

• The simplest model is a single server (n = 1) pure sharing system

with a fixed total service rate of µ

– customer = TCP flow = file to be transferred

• λ = flow arrival rate (flows per time unit)

• S = average flow size = average file size (data units)

– server = link

• C = link speed (data units per time unit)

– service time = file transfer time with full link speed

• 1/µ = S/C = average file transfer time with full link speed (time units)

λ
µ

∞
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Traffic process
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Traffic load

• The strength of the offered traffic is described by the traffic load ρ

• By definition, the traffic load ρ is the ratio between the arrival rate λ

and the service rate µ = C/S:

– The traffic load is (again) a dimensionless quantity

– It tells the utilization factor of the server
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λ
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Example

• Consider a link between two packet routers. Assume that, 

– on average, 50 new flows arrive in a second, 

– average flow size is 1,500,000 bytes, and 

– link speed is 1 Gbps.

• Then the traffic load (as well as, the utilization) is 

%6060.0000,000,000,1/8000,500,150 ==∗∗=ρ
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Throughput

• In a sharing system the service capacity is shared among all active

flows. It follows that all flows get delayed (unless there is only a single 

active flow)

• By definition, the ratio between the average flow size S and the average 

total delay D of a flow is called throughput θ, 

• Example: 

– S = 1 Mbit

– D = 5 s

– θ = S/D = 0.2 Mbps

DS /=θ
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Teletraffic analysis (1)

• System capacity

– C = link speed in Mbps

• Traffic load

– λ = flow arrival rate in flows per second (considered here as a variable)

– S = average flow size in kbits (assumed here to be constant 1 Mbit) 

• Quality of service (from the users’ point of view)

– θ = throughput

• Assume an M/G/1-PS sharing system: 

– flows arrive according to a Poisson process (with rate λ)

– flow sizes are independent and identically distributed according to any 

distribution with mean S
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• Then the quantitive relation between the three factors (system, traffic, 

and quality of service) is given by the following formula: 

• Note:

– The system is stable only in the former case (ρ < 1). Otherwise the number 
of flows as well as the average delay grows without limits. In other words, 

the throughput of a flow goes to zero.

Teletraffic analysis (2)
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Example

• Assume that flows arrive at rate λ = 600 flows per second and the link 

speed is C = 1000 Mbps = 1.0 Gbps.

• The system is stable since

• Throughput is 

Gbps 4.0Mbps 4006001000)1;600,1000Xput( ==−==θ

16.0
1000

600
<===

C

Sλ
ρ

39

3. Examples

Capacity vs. arrival rate

• Given the quality of service requirement that θ ≥ 400 Mbps, the 

required link speed C depends on the arrival rate λ as follows:
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Quality of service vs. arrival rate

• Given the link speed C = 1000 Mbps, the quality of service θ depends 

on the arrival rate λ as follows:
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Quality of service vs. capacity

• Given the arrival rate λ = 600 flows per second, the quality of service θ 

depends on the link speed C as follows:
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Flow level model for streaming CBR traffic (1)

• Infinite system is suitable for describing streaming CBR traffic at flow 

level

– The transmission rate and flow duration of a streaming flow are insensitive

to the network state

– This kind of models applied in 90’s to the teletraffic analysis of CBR traffic in 

ATM networks

• Consider a link between two packet routers

– traffic consists of UDP flows carrying CBR traffic (like VoIP) and loading the 

link
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Flow level model for streaming CBR traffic (2)

• Model: an infinite system (n = ∞)

– customer = UDP flow = CBR bit stream

• λ = flow arrival rate (flows per time unit)

– service time = flow duration

• h = 1/µ = average flow duration (time units)

• Bufferless flow level model:

– when the total transmission rate of the flows exceeds the link capacity, bits

are lost (uniformly from all flows)
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Traffic process
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Offered traffic

• Let r denote the bit rate of any flow

• The strength of offered traffic is described by average total bit rate R

– By Little’s formula, the average number of flows is  

– This may be called traffic intensity (cf. telephone traffic)

– It follows that

hrarR λ==

ha λ=
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Loss ratio

• Let N denote the number of flows in the system

• When the total transmission rate Nr exceeds the link capacity C, bits
are lost with rate

• The average loss rate is thus

• By definition, the loss ratio p
loss

gives the ratio between the traffic lost

and the traffic offered: 
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Teletraffic analysis (1)

• System capacity

– C = nr = link speed in kbps

• Traffic load

– R = ar = offered traffic in kbps

– r = bit rate of a flow in kbps.

• Quality of service (from the users’ point of view)

– p
loss

= loss ratio

• Assume an M/G/∞ infinite system: 

– flows arrive according to a Poisson process (with rate λ)

– flow durations are independent and identically distributed according to any 

distribution with mean h
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• Then the quantitive relation between the three factors (system, traffic, 

and the  quality of service) is given by the following formula

• Example: 

– n = 20

– a = 14.36

– p
loss

= 0.01

Teletraffic analysis (2)
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Capacity vs. traffic

• Given the quality of service requirement that p
loss

< 1%, the required 

capacity n depends on the traffic intensity a as follows:
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Quality of service vs. traffic

• Given the capacity n = 20, the required quality of service 1 − p
loss

depends on the traffic intensity a as follows:
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Quality of service vs. capacity

• Given the traffic intensity a = 15.0 erlang, the required quality of service 

1 − p
loss

depends on the capacity n as follows:
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