Problems 3, 4 and 6 are homework exercises. Return your answers into the course box of the laboratory (G-wing, 2. floor) latest at 10.00 on Tuesday 31.1.

1. Demo

Consider telephone traffic carried by a 5 -channel link in the telephone network. Use a pure loss system model. New calls arrive according to a Poisson process at rate 2 calls per minute, and call holding times are independently and identically distributed with mean 3 minutes. Compute
(a) offered traffic,
(b) carried traffic, and
(c) lost traffic.
2. Demo

Consider the processor of a packet router in a packet switched data network. Traffic consists of data packets to be processed. Use a pure waiting system model with a single server. New packets arrive according to a Poisson process at rate 2 packets per ms, and packet processing times are independently and exponentially distributed with mean 0.4 ms .
(a) What is the traffic load?
(b) What is the probability that an arriving packet will be processed immediately after the arrival (without any waiting)?
(c) What is the probability that a packet has to wait longer than 2 ms ?
3. Homework exercise

Consider elastic data traffic carried by a $100-\mathrm{Mbps}$ link in a packet switched network. Use a pure sharing system model with a single server. New flows arrive according to a Poisson process at rate 6 flows per second, and the average size of the files to be transferred is 15 Mbit .
(a) What is the traffic load?
(b) What is the throughput of a flow?
(c) What is the average file transfer time?

4. Homework exercise

Consider telephone traffic carried by a link in a packet switched network. A single call is modelled as a streaming CBR flow with a fixed transmission rate of 64 kbps . The link speed is $5 * 64 \mathrm{kbps}$. Use the infinite system model. New calls arrive according to a Poisson process at rate 2 calls per minute, and the average flow duration is 3 minutes. Compute
(a) offered traffic,
(b) carried traffic, and
(c) loss ratio.
5. Demo

Let X and Y be independent random variables. Consider then the random variable $Z=a X+b Y$, where a, b are real numbers.
(a) Determine the mean and variance of Z.
(b) Assume that $X \sim \operatorname{Poisson}(3)$ and $Y \sim \operatorname{Poisson}(2), a=b=5$. What is the probability $P\{Z=0\}$?
6. Homework exercise

Suppose that the lifetime X of a fuse (in kilohours) is exponentially distributed with $P\{X \leq 10\}=0.8$.
(a) Determine the rate parameter λ.
(b) Determine the mean and variance of X.
(c) Determine the median of the lifetime, i.e. such t for which $P\{X \leq t\}=0.5$.

