International Interconnecting Charging

Simo Sorvari
simo.sorvari@hut.fi
Headlines

- Existing Relationships
- Charging Schemes
- Sharing of Costs
- Suggestion of Cost Sharing
Existing Relationships

- Practical Internet interconnection model
 - hierarchy with peering
Existing relationships

- Public/Private peering
- Asymmetric way
Charging Schemes

- Telephony Industry
 - Bilateral Settlements
 - Sender Keep All (SKA)
 - Transit fees
Charging Schemes

- Internet Settlements
 - Differences to telephony:
 - Packet based
 - Packet may be dropped
 - Packet header manipulation
 - Routing information not uniformly available
Charging Schemes

- Packet Cost Accounting
 - Each router adds cost
 - packets are sold to next one
 - Strengths:
 - ISP gets revenue upon delivery
 - Pressure to competitive pricing
 - Weaknesses
 - Packet drop
 - Mechanism open to abuse

- TCP Session Accounting
 - Weaknesses
 - Diversity of pricing
 - Technical problems
Charging Scheme.

- No Settlement No Interconnection
- SKA Settlement
- Financial Settlement
Sharing of Costs

- National level: example FICIX ry.
- Problem: 90% of traffic through US
 - All other subsidizes US ISPs

Figure 5: Old Model: Non-U.S. ISP paid

Hubbing through US

Hosting

Asia-Pacific ISP

Europe ISP

Hosting

Hosting

Hosting

Figure 5: Old Model: Non-U.S. ISP paid

Hubbing through US

NAP

Hosting

Asia-Pacific ISP

Europe ISP

Hosting
Sharing of Costs

- US has dominance in Internet users, content providers, secure services
- This dominance is decreasing
- Problem of inequitability may be temporary one
Suggestions

- LIANG et all:
 - US carriers share the cost
 - Calculation model

\[
C_i = \frac{t_{1a} \times TA_i + t_{2c} \times TC_i + \frac{1}{2}(1-t_{1a} - t_{2a}) \times TA_i + \frac{1}{2}(1-t_{1c} - t_{2c}) \times TC_i}{TA_i + TC_i} \times (CA_i + CC_i) - CC_i
\]

- ITU Recommendation 2000:
 - Mutual agreement
 - No formula
 - Freedom of the forms
- US do not apply Recommendation