Auctioning of Link Capacity

Zheng Yan
April 1st, 2003
Motivation

- Increased requirements on large bandwidth
- Adequate supply of network resources by competitive network providers
- An interest in dynamic bandwidth broker mechanism that can be flexibly applied to network resource allocation

Pricing mechanism: auction

- Merits: simplicity to determine market price and efficiency to achieve best market value.
Auction

- Typical types
 - Ascending auction
 - Descending auction
 - Sealed bidding
 - Open bidding
 - Examples:
 - English auction: open outcry, ascending auction
 - Dutch auction: open descending auction

- Auction for network resource allocation
 - Offline auction: traditional methods
 - Online auction: reexamined, improved hybrid methods
Issues

- Auction model
- Price rules of auction
- Payment rules of auction

- User auction strategies
- Provider auction strategies
- Performance evaluation rules
Related work - MIDAS

- Consists of a set of simultaneous multi-unit Dutch auctions, one per link.
- Users simultaneously bid for the quantity demanded at all relevant auctions in order to immediately allocate bandwidth.
- The bidders’ strategies are based on the feedback on spare capacities and prices.
- A special feature of the MIDAS is the prices at various links are reduced at different rate for reflecting the different demand at different links.
- According to the experimental evaluation of two price reduction policies, the authors argued the efficiency of the mechanism in terms of social welfare associated with the resulting bandwidth allocation.
MIDAS – pricing reduction policies

- **Variable reduction rates (VRR):** Price reduction rate per link depends on spare capacity
 - Reduction rates of different links are ordered inversely that spare capacities
 - Faster decrease for lower demand

- **Price freezing policy (PF):** price per link reduces at fixed rate, but after an allocation occurs, the price “freezes” for time proportional to the size of the allocation
 - Price of different links are ordered inversely than spare capabilities except for periods of freezing
Proposal

- **MIDAS**
 - Not a complete self-regulating solution dynamically changed according to demand and supply, only consider descending-price auction
 - Did not consider how to apply it into networking mechanisms

- **A self-regulating auction for intelligent routing in terms of the bandwidth allocation as an important aspect for achieving intelligence**
 - The existing study on the auctioning of link capacity is still based on the simple auction models. The network topology and capacity relationship are quite complicated.
 - Lack a common self-regulating auction mechanism to manage and maintain the network resource that could benefit both the providers and the users in various scenarios.
 - Establish a policy based automatic auction mechanism at the network decision point for intelligent network resources allocation.
Auction structure & procedure

Network Auction Unit
Discussion

- Questions on whether the proposal
 - worth studying
 - significant for intelligent network resource management
 - beneficial for both the users and providers
 - practical to be embedded into network routing and other mechanisms that are related to bandwidth allocation

- Other issues
 - Trust billing
 - Routing Embedment