Pricing – part 2
S-38.041 Networking Business

Service life cycle phases

Impact on pricing

- Introduction: early adopters, skimming vs. aggressive growth
- Growth: increasing demand, little competition, high margins
- Maturity: differentiation pressure, tough competition, low margins
- Decline: cost cutting, harvesting niche segments, high margins
Backbone services
Impact of IP

Growth of IP traffic involves evolution
- from inelastic to elastic applications (e.g. video, audio and voice coding)
- from guaranteed to best-effort services
- from deterministic to statistical multiplexing (ref. effective bandwidth)
- from bottleneck control to over-dimensioning
- from layer 2 VPN to layer 3 IP VPN

Key issue: demand vs. supply of backbone capacity?

Backbone services
Wholesale of capacity between pre-defined similar end-points

- Customers are other operators or individual firms
- Portfolio of services
 - point-to-point vs. multipoint
 - basic (dark fiber) vs. value-added (managed IP router service)
 - voice vs. data vs. video
- ATM being gradually replaced by Ethernet and MPLS
- Pricing based on Service Level Agreements (SLA) and traffic parameters (peak rate, mean rate, data loss probability, max delay, mean delay, etc)
Backbone services
Service Level Agreement (SLA)

- **Service level agreement**: a documented result of a negotiation between a customer and a provider of a service that specifies the levels of availability, performance, operation and other attributes of the service

- **Static SLA management**: SLA contract is made between two human parties and its terms cannot be changed without human intervention

- **Dynamic SLA management**: SLAs are negotiated and contracted automatically using some signaling procedures

- **SLA trading**: dynamic SLA management where information on service provisioning, routing, and pricing are exchanged between providers

Backbone services
SLA evolution scenario

1. Static SLA management in telecom networks and dedicated data networks
2. Static SLA management in IP-based best effort networks
3. Static SLA management in IP differenc (DS) networks ?
4. Dynamic SLA management in IP DS networks ?

DS has the following SLA characteristics
- Large *traffic aggregates* (as opposed to ATM SVC)
- Typical traffic aggregates are VoIP, WWW, specific routes
- Aggregates appear as *Traffic Conditioning Agreements* (TCA)
- Traffic flows through DS domains (*via ingress/egress nodes*)
- Standardized *Per-Hop-Behaviors* (PHB) for c2e pricing?
 - *Expedited Forwarding* (EF)
 - *Assured Forwarding* (AF)
Backbone services

SLA traders

Legend
- SLA trader
- Static SLA
- Dynamic SLA

- Dynamic SLAs between peer ISPs
- Static SLAs for end-users

Summary of SLA trading

- SLA trading has not been tested in real deployments
- SLA trading suits best for large networks and ISPs
- Transition from static to dynamic SLA trading is a major management challenge
- Based on simulation results, SLA trading can improve network utilization by up to 40% compared to a traditional, shortest-path routed inter-domain network
- The residual bandwidth pricing strategy is a suitable candidate for SLA trading since it ensures that prices increase with SLA or link load
Internet access services

Congestion control

- The end-to-end bottleneck may occur at different points
 - In dedicated access:
 - Increase the dedicated per subscriber access speed (e.g. ADSL)
 - Push bandwidth sharing closer to subscribers (e.g. HomePNA)
 - In shared access/backbone/server: apply congestion control

- The level of congestion needs to be optimized
 - Too much congestion ⇒ negative network externality
 - Too little congestion ⇒ waste of network capacity

- Options for congestion control
 - Over-dimensioning (wasting of network capacity)
 - Call admission control, e.g. RSVP blocking (latest customers suffer)
 - Automatic flow control, e.g. TCP (all customers suffer)
 - Human fairness control, e.g. HomePNA (local group discipline)
 - Congestion pricing (maximal social surplus?)

Internet access services

Congestion pricing - theory

- Congestion price is two-part: normal + externality, \(p + p_E \)
 - Social surplus maximization
 \[\max \sum u_i(x_i,y)-c(k), \text{ where } y=\sum x_i/k, \text{ total fixed capacity} \]
 \[\Rightarrow p_E=-(1/k)\sum du/\sum x_i, \text{ where } \sum x_i=\text{socially optimal demand} \]
 - Individual maximization of surplus for consumer \(i \)
 \[(2) \max[u_i(x_i,y)-p_Ex_i], \text{ if number of users is large} \]
 - Social and individual optimas are the same, Nash equilibrium!
 - Congestion price converges to optimal price via tatonnement:
 network determines \(p_E \) using step (1) and publishes it, then each
 consumer \(i \) solves step (2) to find \(x_i \), and so on
 - \(u_i \) are unknown ⇒ network must vary \(p_E \) until finding equilibrium
 - \(y \) is unknown to consumers ⇒ consumers estimate it via congestion
 - Congestion pricing suits for expensive bottlenecks like radio
 - Congestion pricing facilitates automatic optimal capacity
 planning via the customer feedback loop
Internet access services
Congestion pricing - practice

- Time-of-day pricing (e.g. fixed-price tickets in Internet Café)
- Pricing per application & traffic type
 - Types pre-defined using diffserv, e.g. www, VoIP, etc
 - Automatic traffic classification and resource re-allocation
- Pricing per user’s willingness-to-pay
 - Price-driven separation of service classes (e.g. Paris Metro Pricing)
 - Priority service classes based on relative quality (e.g. via diffserv)

Note that flat-rate pricing well reflects the operator’s large share of fixed cost, but cannot efficiently tackle the problem of temporary congestion!

Content services
Private vs. public goods

<table>
<thead>
<tr>
<th>Private good (e.g. candy bar)</th>
<th>Public good (e.g. radio broadcast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• You consume one, there is one less for others - depletetable</td>
<td>• Nondepletable – when used by one, the same amount is available to others.</td>
</tr>
<tr>
<td>• If consumed – no one else can - excludable</td>
<td>• Nonexcludable – Use by one does not exclude others from using the good.</td>
</tr>
<tr>
<td>• Marginal cost > 0</td>
<td>• Marginal cost ≈ 0</td>
</tr>
<tr>
<td>• Price = marginal cost. Achieved on ideal market when supply = demand</td>
<td>• Price ≈ 0 → fixed cost is not recovered → taxation, non-usage based fees</td>
</tr>
</tbody>
</table>
Content services
Evolution examples

- **Best-effort IP service**: Initially public good → Flat monthly fee → Congestion → Private good externality.
- **Telephone call**: In PSTN and over radio interface = private good (“candy bar”) → price/unit.
- **Value-added IP service, e.g. VoIP**: Initially usage fee. CPU and memory getting cheaper (Moore’s law) → Marginal cost of new customer = 0 → Flat-rate.
- **Digital Content**: Marginal cost = 0 → Copyright and IPR control enable both private and public goods. Copyright violations, e.g. peer-to-peer traffic → development of digital rights management (DRM) or bundling with other private goods!

Service bundling
Vertical vs. horizontal bundling in GSM

- **Vertical bundling**
 - Bundling of access with content
 - For instance weather report over SMS
- **Horizontal bundling**
 - Bundling of access services (e.g. multiple radios, circuit vs. packet-switched, voice vs. data)
 - Bundling of vertically bundled services (e.g. weather report over SMS vs. WAP)
- **Bundling enables**
 - Cross-subsidies and service differentiation
 - Value-based pricing, i.e. flexible testing of subscriber’s willingness-to-pay
Service bundling
Roll-out of new services

- Cross-subsidies enable early roll-out of still non-profitable services
- Operator can also take risk of new handsets via handset subsidies

Case: DoCoMo i-mode pricing

Unofficial content providers (53 000)
- Content-based fee (possibly free)
- 70% free content
- Premium content: 0.39-2.34e/service/month

Official content providers (3000)
- Fixed fee
- 2.34e/month
- Premium content: 0.0023e/packet (128B) = 18e/MB
- 9% of content fee

End-user

1. Accounts for 87% of the i-mode ARPU
2. Accounts for less than 1% of the I-mode ARPU

Source: Sandro Grech, 2003 (prices 2002)
Pricing of telecom equipment

- Traditionally pricing is based on hardware capacity (e.g. switching centers, routers, base stations), which hides software R&D costs → pressure to price software
- Capacity pricing is adapted per type of capacity
 - GSM MSC switching capacity (number of simultaneous calls)
 - GSM HLR storage capacity (number of subscribers)
 - GSM BTS radio transmission capacity (number of TRXs)
 - IP router capacity (bits/sec, packets/sec, number of ports, etc)
 - Server transaction capacity (SMS/sec, locations/sec, etc)
- Growing exploitation of general purpose operating systems and hardware (e.g. Unix) in network elements is likely to gradually un-bundle the pricing of software and hardware