Pricing – part 1

S-38.041 Networking Business
Basic concepts

Competition

• Who sets the price? Basic cases:
 – *Pure monopolist* sets the price to maximize his supplier surplus (i.e. profit)
 – *Regulator* sets the price to maximize social surplus (regulated monopoly)
 – *Pure competition* sets the price to maximize consumer surplus (all players are *price takers*)
 – *Oligopoly* allows the choice of price and quantity which triggers pricing games, and strategies!

• *Tatonnement*, the iterative process where the market equilibrium is achieved via price changes (assuming static utility and cost functions), suffers from
 – Utility and cost functions evolving too fast in innovative markets
 – Some forms of utility functions defying convergence
 – *Untruthful declarations* (i.e. lying can be beneficial)
 – Finite capacity constraints causing delay
Price, tariff, and charges

- Customers pay *charges* computed from *tariffs*
- *Price* is a charge associated with one unit of usage
- Telecom tariffs are typically non-linear and two-part
- Two-part tariffs are of the form $a+bx$
 - a is fixed charge (e.g. monthly GPRS access charge)
 - x is quantity (e.g. number of GPRS megabytes per month)
 - b is unit price (e.g. price per GPRS megabyte)
- Two-part tariff reflects the operator’s cost structure, i.e. fixed vs. variable costs
- How to set optimal tariffs?
 - High fixed charge discourages small customers
 - High unit price discourages large customers
Pure monopoly
Basics

• Monopoly is a situation where a single supplier controls the quantity of production, and thus also the price
• Monopoly is likely when the market involves
 – positive network externality (the average utility per customer increases with larger customer base)
 – economy of scale (the average cost of production decreases with the quantity of good produced)
 – economy of scope (the average cost of production decreases with the number of different goods produced)
• Mathematically, costs are said to be subadditive if $c(x+y) \leq c(x) + c(y)$, when all suppliers share the same cost function $c(\cdot)$
Pure monopoly

Profit maximization

- Monopolist’s problem: maximize $p \left[\sum p_j x_j(p) - c(x) \right]$
- Profit is maximized when marginal revenue equals marginal cost
- Welfare would be maximized if price is set to marginal cost
- Regulator would like to enforce marginal cost pricing
Pure monopoly
Price discrimination

• First degree price discrimination (i.e. personalized pricing)
 – Operator maximizes profit per customer, \(p_i = u_i \)
 – Also called perfect price discrimination
 – All customer surplus turns into operator surplus
• Second degree (i.e. versioning, quantity discrimination)
 – Operator posts a set of volume-based prices
 – Customer self-selects to maximize surplus
 – Optimal volume pricing holds the following properties
 • The highest demand customer chooses the version of lowest price per unit
 • Monopolist takes all surplus of lowest demand customers
 • The higher demand customers receive an informational rent
• Third degree (i.e. market segmentation, group pricing)
 – Grouping based on pre-selection, e.g. student id card
 – Different price elasticities, \(\varepsilon_i = \frac{\Delta x_i}{x_i} / \frac{\Delta p_i}{p_i} \), enable different prices
Pure monopoly

Service bundling and differentiation

• Bundling involves a service package not priced as a sum of the prices of individual services
 – Bundling sometimes enables perfect price discrimination
 – Bundling reduces dispersion in willingness to pay and thus enables greater revenue

• Operator can segment the market via service differentiation
 – Versions of service must not substitute each other (e.g. QoS)
 – Operator must prevent harmful reselling (cmp. wholesale vs. retail)
 – Operator may not be able to price discriminate based on content
 • Operator not allowed to read user-created content
 • Technology-based differentiation difficult (e.g. IP vs. SMS)
 • Operator’s charging can be by-passed (e.g. credit cards)
Perfect competition

• Regulator cannot be satisfied even on a welfare maximizing monopoly since innovation requires competition

• Under perfect competition
 – operators participate if, $py^* \geq F + c_v(y^*)$, where y^* is the optimal service volume and F is fixed cost
 – *market clearance*, i.e. demand = supply, maximizes social surplus
 – operators experience zero *economic profit* in the long-run (*business profit* can be positive)

• Perfect competition may not be achieved due to
 – non-identical service offerings
 – limited visibility to prices of other players
 – high *switching cost* paid by customers for changing operators

• An example of high switching cost is the change of a phone number, which the regulator often solves via number portability
Oligopoly

- Oligopoly is typical in telecommunications: a partly competitive and partly regulated market with a small number of operators
- Operator oligopoly can be seen as a game-theoretic set-up between operators, customers, and the regulator
- Game concepts: zero-sum game, Nash equilibrium, public goods, free rider problem, cartel, one-shot vs. repeated games
- Game models for a small number of operators
 - Cournot (quantities posted, prices adjust, all sold)
 - Bertrand (prices posted, quantities adjusted by customers)
 - Stackelberg (for duopoly, either price or quantity leadership)
Cost-based pricing

Motivation

• Marginal cost pricing maximizes consumer surplus but causes problems to operators
 – Exclusion of fixed costs
 – Prices difficult to compute
 – Prices can be close to zero or infinity

• Operator’s cost recovery can be supported by weighting the social surplus function in favor of operators (Ramsay pricing)

• Two-part tariffs support the two aspects of cost recovery: fixed vs. variable costs, short vs. long-term

• Burden of fixed costs can also be reduced by cutting capacity via peak-load pricing
 – Traffic load is moved from busy hour to other time periods
 – Traffic loss vs. capacity savings?
Cost-based pricing

"Fair" prices

- Cost-based pricing assumes that costs are shared in a "fair" way among customers
 - *sustainable prices* reflect actual costs and discourage inefficient 'hit-and-run' competition
 - *subsidy-free prices* reduce churn of subsidizing customers
- Conditions for subsidy-free pricing are
 - charge made to any subset T of customers N is no more than the stand-alone cost of providing services to those customers
 \[\sum_{j \in T} c_j \leq c(T), \text{ for all } T \subseteq N \]
 - charge made to any subset of customers is at least the incremental cost of providing services to those customers
 \[\sum_{j \in T} c_j \leq c(N) - c(N \setminus T), \text{ for all } T \subseteq N \]
 - assuming a set of n customers $N = \{1,2...,n\}$, subadditive cost function, charges c_j, cost recovery $\sum_{j \in N} c_j = c(N)$
Cost-based pricing
Implemention issues

- Problem of knowing the real costs per service
 - Future is less known than history (plus accounting delays)
 - Cost structures keep changing because of technology evolution
 - Common costs dominate
- Solutions for allocating costs to services
 - Top-down approaches (based on historic costs)
 - Fully Distributed Costs, FDC (flat, coefficients, ad hoc?)
 - Activity-Based Costing (e.g. hierarchical process)
 - Bottom-up approaches (based on current costs)
 - Efficient Component Pricing Rule, ECPR
 - Long-Run Incremental Cost, LRIC(+)
- LRIC+ is complex, but favored by regulators because of subsidy-free prices, legacy-free costs, and the right competitive signals to the market (fairness toward incumbents?)
Flat-rate pricing

- Price is set a priori, but the real cost can only be known a posteriori, e.g. broadband Internet access

- Pros
 - Simple and cheap to implement for operators
 - Predictable to customers

- Cons
 - High social cost because of waste of resources (obs. cost savings!)
 - Unfair because of subsidies (only if customers know and care!)

- How to improve flat-rate?
 - Divide flat-rates in intervals, e.g. ADSL with multiple speeds
 - Add usage-based tariff for extra usage, e.g. GPRS block pricing
Access vs. backbone transport

• Tough competition in backbone
 – Capacity-based wholesale pricing dominates
 – Service differentiation difficult
 – Prices close to marginal cost of competition
 – Marginal cost of new traffic getting close to zero because the excess fiber capacity becomes sunk cost

• Monopolies and oligopolistic competition in access
 – Operators capable of bundling and differentiating
 – Evolving technology maintains dynamics in pricing
 – Regulators pushing cost-based pricing and LRIC+
Price impact of competition

<table>
<thead>
<tr>
<th>Year</th>
<th>Mobile calls</th>
<th>Local services</th>
<th>Long-distance calls</th>
<th>International calls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1996</td>
<td>85,3</td>
<td>103,5</td>
<td>92,4</td>
<td>87,8</td>
<td>93</td>
</tr>
<tr>
<td>1997</td>
<td>78,8</td>
<td>108,2</td>
<td>92,1</td>
<td>86,1</td>
<td>90,7</td>
</tr>
<tr>
<td>1998</td>
<td>73,4</td>
<td>121,1</td>
<td>92,8</td>
<td>69,4</td>
<td>88,7</td>
</tr>
<tr>
<td>1999</td>
<td>68,4</td>
<td>126,1</td>
<td>97,5</td>
<td>62,8</td>
<td>85,8</td>
</tr>
<tr>
<td>2000</td>
<td>66,1</td>
<td>135,5</td>
<td>101,3</td>
<td>59</td>
<td>85,6</td>
</tr>
<tr>
<td>2001</td>
<td>64,2</td>
<td>141,8</td>
<td>105</td>
<td>57,7</td>
<td>85,2</td>
</tr>
<tr>
<td>2002</td>
<td>62</td>
<td>147,6</td>
<td>108,8</td>
<td>57,7</td>
<td>84,6</td>
</tr>
</tbody>
</table>

Source: Ministry of Transport and Communications/Price level of the Finnish telecommunications charges 2002, 15/2003
Willingness to pay per bit

<table>
<thead>
<tr>
<th></th>
<th>Volume or bit rate</th>
<th>Acceptable price</th>
<th>Value (€/Mbyte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMS</td>
<td>160 bytes</td>
<td>0.16 €/message</td>
<td>1000</td>
</tr>
<tr>
<td>Voice</td>
<td>16 kbit/s</td>
<td>0.12 €/min</td>
<td>1</td>
</tr>
<tr>
<td>Movie</td>
<td>2 Mbit/s</td>
<td>0.9 €/h</td>
<td>0.001</td>
</tr>
</tbody>
</table>

There are 6 orders of magnitude differences in willingness to pay for existing services! How to maintain the value of service differentiation?
3G unbundling?
Person-to-person via SIP

New Opportunity for SPs

- Services are always provided by the home domain Proxy and Application Server
- Media plane routing and service routing are independent
- SIP service routing allows attaching any Application Server to any call, be the AS private or owned by an operator => Future service market is very competitive! => Consumer surplus increasing
Pricing in practice?

Systematic use of pricing theory?

OR

Artistic innovation by trial and error?

Yes, both, continuously!