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Abstract— Site multihoming is the process of an end-site,
such as an enterprise, to obtain simultaneous IP connectiv-
ity from multiple ISPs, done for a number of reasons, such
as protection against failures. Commonly deployed IPv4
site multihoming mechanisms, BGP and NAT have not
been available in IPv6. Thus new mechanisms are needed,
and the Internet Engineering Task Force (IETF) has been
working on this problem for some time now. A prevailing
approach, at least for smaller sites, is to deploy multiple
provider-assigned IP address prefixes from multiple ISPs
on the sites.

We analyze the implications of having multiple ad-
dresses from multiple ISPs on a host, and describe and
analyze the IPv6 site multihoming solution called “shim6”.
The design is still in progress so we note and discuss many
open issues. The biggest constraint of the protocol appears
to be the inflexibility of so-called Hash Based Addresses,
which are used to provide the security to the session
survivability.

While the site multihoming solution is being developed,
there is also active discussion on various address allocation
fora on relaxing the globally routable address space crite-
ria; the outcome will certainly be a factor in determining
the practical applicability and deployment of shim6.

I. INTRODUCTION

Site multihoming is the process of an end-site, such
as an enterprise, to obtain simultaneous IP connectivity
from multiple ISPs, done for a number of reasons, such
as protection against failures.

Site multihoming with IPv4 is typically achieved by
routing (with Border Gateway Protocol, BGP) or using
Network Address Translator -based mechanisms [1].
While using BGP might scale up to a certain extent,
it is an unsuitable mechanism for every site’s needs
particularly because it requires that every site is visible
in the global routing table [2], [1].

IPv6 address allocation policies and commonly-
deployed prefix length filters for BGP advertisements
have so far restricted the allocation of address space in

such a manner that BGP-based IPv6 site multihoming
has not been feasible. The hope has been to avoid
creating a similar routing table “swamp” as exists today
with IPv4, and to maintain future scalability.

At the same time, IETF IPv6 Site Multihoming
(multi6) working group [3] has explored the require-
ments [4], threats [5] and architectures at depth. In late
2004, consensus emerged that a particular (beginnings of
a) solution, called shim6, should be developed in a new
dedicated working group.

The reader is assumed to be knowledgeable of identi-
fiers, locators, and the identifier/locator split in general.
[6]

In this paper, we begin by describing the generic is-
sues with hosts having multiple addresses from different
providers. Then we describe the shim6 proposal which
provides a number of scalable site multihoming benefits.
The focus of this paper is providing a concatenated
overview of the proposal, and discussing and analyzing
the most interesting and relevant design choices.

II. MULTIPLE ADDRESSES ON EACH HOST

The shim6 proposal assumes that multihomed sites
obtain multiple IP address prefixes, one from each ISP
the site has connectivity to. These IP addresses are then
deployed on each node which should be capable of
multihoming.

This has a number of important implications which
we need to discuss briefly first. When a failure occurs at
a multihomed site, it would still be desirable:

1) For the site to initiate new sessions (internal or
external),

2) For the hosts in the Internet to initiate new sessions
to the servers and hosts at the site (if any), and

3) For the existing sessions (internal or external)
to continue to work without disruption (“session
survivability”).

We discuss these below.
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A. Ingress Filtering

The host must choose the source and destination
addresses properly and the site’s border routers must
forward the packets appropriately to pass the ISPs’
ingress filtering. That is, packets with the source address
from ISP A’s aggregate prefix must be forwarded on the
link to ISP A, and similarly for ISP B’s prefix. This
implies source-address based policy routing (with a very
simple policy) at the border routers. [7], [1]

When an ISP, a link to an ISP, a border router or some
other network component fails, the prefix assigned from
that ISP’s aggregate route typically ceases to work. This
happens because there is no working connectivity (with
would pass the ingress filtering) for that prefix from the
site to the ISP advertising the aggregate. This problem
can be worked around by using tunnels to build backup
connectivity to each ISP [8], which also obviates the
address selection and session survivability issues.

B. Address Selection

For the hosts at a multihomed site to be able to initiate
new sessions after a failure, the hosts need to be able to
select a source address which works between the source
and the destination. For a typical external failure, it is
enough to pick the source address from the working
ISP’s prefix.

For the hosts in the Internet to be able to initiate new
sessions to the hosts at the no-longer-fully-multihomed
site, (1) they have to find a working destination address
(typically from DNS), and (2) the responding host needs
to be able to pick a working source address in the
response packets. [9]

Sometimes (2) is implied by (1): for example, the
TCP SYN-ACK source address must be the same as the
initiator chose as the destination address; in these cases
the address pairs must be working bidirectionally. Many
protocols do not have this address selection requirement,
and the communication may also work with unidirection-
ally working address pairs. (See Section III-E for more.)

Destination address selection [10] goes through all the
IP addresses in a certain order if the application has
been developed in a proper manner; almost all the IPv6-
capable applications do so, due to having to support both
IPv4 and IPv6 [11].

So, the specific requirements are:
• Destination address selection, to cycle through all

the addresses, needs to be quick and reliable, and
• Source address selection must try multiple ad-

dresses, instead of using just one.
Unfortunately, the fallback to the next address is not

necessarily quick nor reliable. Network elements may

end up discarding packets without sending any indication
to the affected hosts that the particular address (through
this path) does not work. In fact, this is rather common –
we observe that ingress filtering typically does not send
packets because failing packets assumably have a forged
source address so it would be counter-productive; and
an ISP’s aggregate prefix is often installed as a discard
route, and when a more specific site prefix goes missing,
the packets are just silently discarded. Sometimes, how-
ever, an ICMP unreachable message is sent, but while
the mechanisms exist to take these into considerations,
a subset of errors often aren’t [12]. So, the application
would have to rely on the transport protocol timeouts to
notice that the communication did not start properly, and
this can take even minutes per tried address.

There are proposals to improve source address selec-
tion to retry [9], but such a mechanism will need to deal
with the same situation as destination address selection
that there may not be any feedback from the network on
failing attempts.

Another mitigation technique is trying to withdraw
the non-working prefixes from being used as soon as
possible; for source address selection, they might be
marked Deprecated thus being less preferred; for desti-
nation address selection, they might be removed from the
DNS. However, we note that these have some obvious
issues: marking a source address requires information
that it no longer works, and it is not clear how to obtain
that reliably especially without new mechanisms; and
updating DNS dynamically for temporary failures might
be very impractical and the old data would still persist
for in the DNS caches for the lifetime of the record’s
previous TTL.

C. Session Survivability

Session survivability is a more difficult problem be-
cause the existing protocols such as TCP and UDP can-
not switch to using different addresses while preserving
the session.

Stream Control Transmission Protocol (SCTP) pro-
vides this functionality but would have significant de-
ployment hurdles for the generic use; in any case, the
IETF multi6 WG decided that the right place to fix this
is below the transport layer. [1]

Once switching a session to use a new address, address
selection must also be performed. The fact that the
session has already been successfully established before
the failure mitigates the generic selection issues slightly.
In particular, we conclude:

• Already having an established session allows pre-
emptively probe or test alternative address pairs, and
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• Such testing does not need to be done for short-lived
sessions, meaning less packets and bytes sent.

We will next look at the security issues of session
survivability.

1) Security of the Session Survivability: Being able to
redirect a session between two addresses to use different
addresses has significant security threats [5].

Because a global trust infrastructure does not exist, the
designs have had to cope with a different trust model.
The analysis has studied how plaintext communications
may be disrupted as of today. The current level of
security is that if the attacker is on the path between
a source and the destination (or attached to the same
link at either end), the attacker can typically eavesdrop
and likely redirect communications. The security must
not be worse than that; therefore the designs find the
risk of permanent on-the-path attackers acceptable.

In the examples below, we have hosts A and B, and
an attacker X. The main redirection threats are similar
to Mobile IPv6 (MIPv6) binding update security, but in
general caused by the identifier/locator separation. The
threats and some fixes are [5]:

1) The attacker could claim that A’s new location
is at his address or at an unroutable address; the
ownership and reachability of the IP address must
be verified first,

2) The attacker can redirect packets if it can be on the
path for a while and then move out; there must be
an upper limit how long on-the-path verification is
valid, and

3) The attacker on a slow link could subscribe a large
transmission from A to himself, then redirect it
to B; one must not use a new locator until its
ownership is verified first.

Mobile IPv6 design introduced a periodical return
routability test: by sending a nonce to the correspondent
node (CN), and being able to show in the further
messages that the mobile node has received a reply (with
a secret nonce of CN’s choosing), the mobile node is
able to prove that it has an address or is at least on
the path where the secret was exchanged. Sending a
similar packet to the CN through Home Agent proves the
relationship and ownership of the home address, because
otherwise the home agent would not forward the mobile
node’s packets.

While the MIPv6 security design could address the
redirection threats, unfortunately it does not quite work
with multihoming. MIPv6 relies on home agent and
home address always being reachable – multihoming
design cannot assume that. All the prefixes used by the
site are equal, and any of them could fail. Periodical

return routability tests could guarantee the safe redi-
rection until the maximum return routability lifetime1

expires (7 minutes), but most multihoming outages last
much longer than that. As the return routability would
no longer work after the failure, even extending that
maximum would not solve the most fundamental long-
term failure scenarios.

Additionally, to ensure privacy, it is important for
the hosts to be able to have multiple identifiers. The
protocol itself must also be resistant to denial-of-service
attacks, i.e., defer creating state or performing expensive
operations until the sender has proved its genuine desire
to communicate.

D. Conclusions

We draw some conclusions at this point, as these have
impact on the shim6 design:

• If tunneling [8] can be used, session survivability
and address selection work; only ingress filtering
requires configuration at the border routers. How-
ever, we do not assume this solution is present.

• The applications and stacks need more robust mech-
anisms to fall back to the next address which also
work when there is no feedback from the network
[13]. Source address selection must support retries
as well. Otherwise reliable address selection is
impossible.

• Mechanisms to remove or deprefer the non-working
choices would be very useful as they avoid most of
the fallback problem; however, these have certain
big issues such as the infeasibility of using DNS
for quick updates.

• As a result, address selection (and to a much lesser
degree, ingress filtering) is very difficult problem
for a host to solve entirely on its own. However,
hosts being able to have “dialogue”, possibly in
conjunction with session survivability, with other
network elements or their correspondents might
help them in isolating the problem and doing better
selection.

III. A HOST-BASED SHIM LAYER

The proposal defines a new virtual layer, “shim”,
at the IP layer, below Fragmentation, Reassembly and
IPsec processing (see Figure 1). When a failure occurs,
the IP addresses used by the applications (ULIDs) stay
the same, while the shim translates the packets to use

1The lifetime ensures that if an attacker manages to be on the
same LAN or on the path between the sender and the receiver, but
then moves elsewhere, after the maximum lifetime it can no longer
redirect communications.
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different addresses at egress and rewrites them back at
ingress (see Figure 2; the mapping is therefore reversible.
[14]

multi6 shim layer

IP routing
sub−layerIP

AH ESP
Frag/

Reass.
Dest

Options

Transport protocols (TCP, UDP,...)

IP endpoint
sub−layer

Fig. 1. The placement of the Shim [14]

Our analysis is that Shim6 only provides session
survivability, while making address selection simpler.
The solution does not provide provider independence
(and consequently, does not eliminate the renumbering)
or traffic engineering [1]. This is discussed at more
length in Section IV-C.

src ULID(A)=L1(A)
dst ULID(B)=L1(B)

src L2(A)
dst L3(B)

src ULID(A)=L1(A)
dst ULID(B)=L1(B)

src L2(A)
dst L3(B)

Upper layer protocol

multi6 shim multi6 shim

IP IP

Sender A

Internet

path over the

Upper layer protocol

Receiver B

Fig. 2. The shim mapping with changed locators [14]

A. Interaction with Applications

An important fundamental design choice of shim6 has
been that it requires no changes in most applications,
even when the session survivability is needed.

Applications use IP addresses as identifiers in many
ways: client/server (short- or long-lived), referrals (host
A contacts host B, which says to talk to host C),
callbacks (Host A contacts B, B sometime later contacts
A using the same identifier), or for identity comparison
(Host A contacts B, B stores A’s identity; later when a

host contacts A, B compares the identities to see if they
are the same). [15]

There are multiple choices on what the applications
could use as identifiers of a session [15]:

• An IP address (like today),
• A special non-routable identifier, from a different

name space (like in Host Identity Protocol),
• A hostname or some other identifier string, or
• (Somehow compiled) list of all the possible IP

addresses.
The key difference lies in how the application can

handle referrals and callbacks. If the identifier is a
routable IP address, these could work just fine, as long as
the IP address works. On the other hand, if the identifier
comes from a different kind of name space, there would
have to be a way to map both ways between locators
and identifiers; this is challenging especially if the name
space is flat like in HIP.

The use of hostnames or similar rendezvous tags could
be beneficial because it would ensure applications know
all the locators of a host, thus requiring no mapping
functions (in addition to the resolution of names itself)
at all. The list of all IP addresses would have similar
benefits, although the list would not have temporal flexi-
bility in case the list of locators changes often. However,
as these would require application modifications, we do
not consider these approaches very attractive in general.

Shim6 does not introduce a separate identifier name
space, but uses the IP addresses (locators) of the host
as upper-layer identifiers (ULIDs). Therefore applica-
tions using referrals and callbacks require no up-front
modifications prior to shim6 deployment. However, to
be able to use such applications in the event of a
failure, the nodes may need to find a way to obtain a
listing of alternative locators. This requires enhancing
the Application Programming Interface (API), and a way
to perform this mapping; as IP addresses are used as
ULIDs, and they are allocated in a structured manner,
obtaining the list using a reverse and forward DNS
lookup might be possible (see Section IV-D); there may
be other alternatives [15].

A relatively small drawback of using existing locators
as ULIDs is issues with mobility and renumbering, as
described in Section IV-A.

B. Capability Detection and Multihoming Timing

Detecting shim6 capability and establishing the mul-
tihoming state (e.g., the information about locators) are
very important and somewhat interreleted topics.

The naive approach for detection and establishment
would be to insert a special DNS records for ULID or
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locators; the resolver would first try to look up those,
and if successful, start the shim6 negotiation.

While this is necessary for approaches using sepa-
rate name spaces such as HIP, shim6 gets away with
just using the AAAA records because the locators and
identifiers are indistinguishable and there is no particular
reason to be able to tell them apart.

Therefore there is no need to detect shim6 capabilities
or establish any multihoming state prior to starting com-
munications with a node. We explore this issue below.

1) When to Detect or Establish Multihoming: With
shim6, the hosts can start sessions as if they were sin-
glehomed or didn’t implement shim6 at all – the shim6
protocol negotiation can happen later in the lifetime of
a session, measured based on some policy (for example,
number of minutes connected, bytes transferred, etc.).

That is, in most cases it may not be worth the
packet exchanges and added overhead to negotiate shim6
capability for all the sessions (including, e.g., quick one
round-trip UDP messages) as the chance that a failure
occurs during such exchanges and is serious enough to
be protected against is very small.

Being able to delay the set-up of multihoming state
thus enables policy control on how aggressively the site
wants to protect against failures. We consider this a
unique property in the sense all the other protocols for
session survivability seem to require up-front negotiation
of the state and/or application modifications.

The state needs to be established before failure occurs,
though. This is required to ensure security between the
initial and additional locators, as described in Section III-
D.

C. Establishing the Multihoming State

The multihoming state needs to be exchanged in a
secure manner. A four-way handshake allows protecting
the receiver against denial-of-service attacks [16].

It is still an open issue how to actually design the
exchange – whether as an extension header, destination
option in the packets, or using TCP, UDP or some other
protocol. The former two could be carried inside the data
frames, with the cost of decreasing the MTU for the
“piggybacked” packets. In addition to the packet size
issues, there are various other concerns, mainly:

• How well the packet can be processed by interme-
diate nodes, e.g., firewalls (the firewalls may not
know the format of the extension header, but the
destination options format is predefined),

• How simple it is to implement and use; destination
options can be placed in many places in the IPv6
header chain, and the ordering of options inside the
options header is not specified.

The protocol obviously has to exchange the list of
additional locators. These locators need to be secured,
e.g., using means described in Section III-D.

There are a couple of interesting open design points
about the state exchange:

• Whether to always exchange all the locators or just
some (differential vs atomic)? – We think that the
host should not tell all the locators if the list is
long, so they should probably all be exchanged at
once; this also avoids synchronization issues with
differential exchanges.

• Does the list need to be periodically refreshed?
– We believe that is not necessary, as only the
endpoints share the state. If the peer reboots, the
multihoming state is no good either.

• Are there any considerations for adding new loca-
tors on the fly? – We currently lack the security
mechanisms to do this properly but otherwise it
would seem doable (see Section IV-E).

• How does one close the multihoming state (inform
the peer vs quietly)? – While quiet removal might
allow the peer to relinquish some state (e.g., flow
label reservations), there does not seem to be a
particular need to ensure that the state should be
dismantled. However, closing the state explicitly
might be useful if the previous locator ends up being
given to someone else, and that host would try to
establish communications with the peer.

We summarize the different data that may need to be
passed in the multihoming protocol in Table I.

TABLE I
SUMMARY OF MULTIHOMING STATE

State Size Section
List of host’s locators at least 32 bytes III-C
Security data structure at least 100 bytes III-D
HBA Signature at least 40-50 bytes III-D
Address pair pref. (if needed) 1 bytes III-E
Context tag (if needed) 4-6 bytes? III-F
Flow label to be used2 4 bytes III-F.1

D. Secure Locator Exchange

In Section II-C.1 we described generic threats with
multiple locators and why just using return routability is
not sufficient to obtain security of locator changes.

Hash Based Addresses (HBAs) [17], an extension of
Cryptographically Generated Addresses (CGAs) come to
the rescue. The list of prefixes (along with a public key
or a random number) is cryptographically encoded in the
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64-bit interface identifier of the IPv6 address, so when
a prefix is added3, all the addresses need to be changed.

The strength of HBAs is O(259+16∗Sec), where Sec
is a security value, 0-7. An attacker would need to
launch a brute-force attack to find a data structure which
include the hijacked and target prefixes. This would
allow redirection of an IP address to a (random) HBA
address in the target prefix. [17]

It is assumed that HBAs are sufficiently strong; while
we assume that Sec=0 would be typically used initially, if
the users become aware of attack attempts, higher values
would start to be used. In the following analysis, we
assume that HBAs are sufficiently strong.

HBA does not prevent Man-in-the-Middle (MITM)
attacks, but requires that the attacker must be on the path
when the data structure is exchanged and stay on the path
for the duration of the attack. That is, the attacker must
be able to change the interface identifiers of addresses
used in the session (in addition to the data structures and
signatures). [17]

HBAs do not provide protection against third party
bombing against a subnet. That is, the attacker X can
initiate communications with host A, generating HBA
addresses including the prefixes of both X and target B,
and redirect the a (random) HBA address of prefix B
[17]. Addressing third party bombing requires either a
return routability check before the locator is used for
communications [17], or requiring that the sender of the
locator update shows a certificate (that the recipient can
verify) that the sender “owns” the prefix. As the latter
requires a significant trust infrastructure, using return
routability is likely going to be a simpler choice.

Securing exchanging the list of locators (or securing a
later change of locators) requires that the shim6 protocol
is used to pass the data structure, and the message is
signed using a CGA signature. The receiver has to store
the data structure for as long as the multihoming state
persists between the prefixes, and verify the signature.
All the further locator changes must similarly include
the data structure and must be signed.

An open question is how the message is signed and
the message is sent, as CGAs are specified only for link-
local Neighbor Discovery. If building an ad-hoc IPv6-
in-IPv6 tunnel between the endpoints is not an option,
the CGA mechanism would need to be retrofitted to
a destination option, extension header, or some other
means of communications. This requires changes to the
code though – and has potential for an IPR issue: there
have been patents on CGAs, but free use has been

3It is not strictly required to change the addresses at prefix deletion,
because leaving it in is doing no particular harm.

granted for the current specifications. Augmenting CGAs
to use something other than Neighbor Discovery might
get these issues back on the surface.

E. Network Failure Detection and Reaction

As we described in Section II-B, depending on the
input from the network to achieve quick and reliable
address selection did not seem like a good idea. Simi-
larly, when a failure occurs, depending on the network
to somehow “report” the error (instead of just discarding
the packets) to the session endpoints is not robust. These
can still work as optimizations, but more generic failure
detection and reaction methods are needed.

The proposal [18] is to select one primary address
pair for each session. Presumably this is the one used to
set up the session, before the multihoming context has
been set up. However, it is possible that the multihoming
state is created between hosts, and later additional ses-
sions would need to be established. Would the address
selection data, if transferred in the shim6 exchange, be
somehow used here as to prefer a particular address pair;
that is, is it necessary for the peer to be able to tell which
addresses it would prefer to be used? If so, some kind
of interface to the default address selection rules would
be needed. We do not see this as a strict requirement:
if the host would have so many addresses that choosing
among them would be difficult, the simplest approach
might be not telling the peer about a subset of addresses
[18].

There is plenty of reachability information available
scattered through the protocol stack. At least the follow-
ing information could be used to monitor the operational
address pairs [18]:

• Positive feedback from the upper layers; for exam-
ple, TCP connection is progressing.

• Negative feedback from the upper layers; for exam-
ple, TCP is not getting ACKs.

• Lower layer information; as this information is not
end-to-end, it can only provide reliable negative
feedback about sessions using a failed local com-
ponent.

• Reachability tests; mechanisms done by the failure
detection protocol.

• ICMP error messages; for example, certain ICMP
errors designate persistent failure scenarios.

A good question is which part of the protocol stack
should deal with the end-to-end failure detection. It
would seem best to make the shim6 failure detection
aware of the transport protocol specific information, in
the same way that lower-layer local indications (link
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up/down, IP address operational, etc.) can be used as
input.

It is important to realize that some address pairs may
only work in one direction, i.e., being able to receive
with (src=A1, dst=B1) does not mean that responses
would necessarily get back; they might need to use
a different address pair, like (B2, A1) (see Figure 3).
This needs to be taken into account when designing the
failure detection protocol. The case when there exists
only unidirectionally operational address pairs is also
theoretically possible, but in that environment one could
not even establish new TCP sessions, so it may be
situation the shim6 protocol might have to be able to use
for session survivability, but not in the stable conditions.
[18]

X

X

Poll 1 (src=A1, dst=B1)

Poll 2 (src=B1, dst=A1) OK=1

Poll 3 (src=A2, dst=B1)

Poll 4 (src=B2, dst=A1) OK=1

Poll 5 (src=A1, dst=B1) OK=4

Peer A Peer B

Fig. 3. Detecting unidirectional failures [18]

An important consideration is how the secondary
address pairs should be selected. Assuming two hosts
A and B had two addresses each, one could consider the
following:

1) Try the address pair that diverges the most from
the currently used first; this should be able to deal
with a failure at either end.

2) If there is indication that most sessions still work,
the failure has typically been at the remote site.

3) Otherwise, the local locator should typically be
changed first; this addresses cases such as source
address selection not being able to retry (see
Section II-B), ingress filtering, or an address no
longer being locally operational (e.g., link down).

F. Multiplexing and Demultiplexing

When a failure occurs, the IP addresses used by the
applications (ULIDs) stay the same, while the shim
translates the packets to use different addresses at egress
and rewrites them back at ingress. This is called multi-
plexing and demultiplexing. [14]

This is challenging because the parties must ensure
the mapping is reversible; in particular, the receiving

host must the able to distinguish which multihoming
context (between the host and different peers, or multiple
contexts between the same peers) each packet belongs
to. At worst, inappropriate demultiplexing could result
in corrupting the data stream with unrelated packets, so
it must be avoided. [14]

Two main approaches have been proposed: using the
Flow Label field (in one of several ways) or defining a
specific destination option or extension header to carry
an identifier. We’ll explore these below.

There are also some packets, specifically ICMP pack-
ets, which are sent in the network in response to a data
packet, including the rewritten IP addresses in the pay-
load. The demultiplexing function must therefore capture
such ICMP messages, translate them accordingly, and
pass them up in the stack. [14]

The typical assumption in the design has been that
the peer must be notified prior to starting to use a
different locator, so that the demultiplexing can succeed.
However, we could imagine that it would be possible to
“piggyback” that notification on the packet sent using the
new locator as long as that packet includes (1) sufficient
security information, and (2) carries the multihoming
state update (see Section IV-E).

1) Flow Label vs Explicit Tag: Obviously, identifying
is trivial when no multihoming context has been set up.
As a host cannot know when a failure occurs, it needs
to be ready at all times after the multihoming state has
been established. Thus the labels/tags need to be agreed
on, even if they would not need to be used, prior to the
failure.

It is also important to remember that the operating sys-
tem kernel already knows how to demultiplex (non-shim)
packets; this is done by IP addresses and TCP/UDP port
numbers, and in some cases, using other mechanisms.
These could potentially used as a help as well. However,
this does not help in cases where such information is not
available. We also note that this assumes that the port
number space is unique across all the IP addresses: on a
signle host, application 1 cannot use the IP address A1

with the same port as application 2 with IP address A2.
If flow label (which is unique across {src, dst, flow})

could be used, it would have two main advantages:

• no packet size increase, which could have poten-
tially led to fragmentation and PMTUD problems,
and

• no complications with firewalls or packet filters,
which might not be able to parse or jump over a
new header or option.

On the other hand, using an explicit tag would also
have advantages:
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• potentially simpler design because the tag allocation
mechanisms can be defined as deemed fit, and

• would not overload the flow label field; if flow label
would need to be used for some other important
application, it would still be possible.

For Flow Labels, the design is still open, but there are
at least two main candidates:

1) Sender-based allocation and reservation, and
2) Receiver-based allocation for backup locator pairs.
In the former, proposed by us, when the flow label

is chosen, the particular label is reserved until the host
runs out of flow labels. In particular, the label must be
reserved so that it won’t be used to communicate with
the other addresses in the peer’s locator set (current or
future). Thus when the failure occurs, the sender can
just switch to using different source and destination
locators while preserving the flow label. The receiver
may have other peers which have chosen (at random) to
use the same flow label, but as the receiver knows the
locators of the sender through the shim6 protocol, it can
unambiguously demultiplex the packets. Hence, the flow
label for shim6 would need to be unique across {source
locator set, destination locator set, flow label}. The main
issue with this appears to be whether we need to deal
with the case of running out of the 20-bit flow label
space; it may or may not be feasible to assume a host
would need to have a million concurrent sessions, but
even then, it would be possible to reserve the flows per
locator set so that a host could have at most a million
concurrent sessions between each host. That should be
enough, at least.

In the latter, establishing the multihoming context
triggers the reservation of a flow label for the backup
address pairs. This allocation would be done by the
receiver, because the receiver just needs to choose it
so that it is able to perform the demultiplexing. The
flow label reservation would be communicated in the
multihoming exchange, and would be used by the shim
only if a failure occurs when rewriting the packets at
either end.

A minor downside with all the session survivability
approaches is that if flow label would also used in
Quality of Service or some other use, the signalling for
a different treatment of (src, dst, flow label) would need
to be done again. With the former approach, the routers
could, if they were shim6-cognizant, snoop the shim
exchanges and set up the state automatically as well,
but this would probably be architecturally a bad idea.

IV. ANALYSIS AND DISCUSSION

Previous Sections already include quite a bit of anal-
ysis and discussion, but a few lengthier topics deserve

to be analyzed separately, in subsections below.

A. Multihoming vs Mobility

The multihoming and IP mobility both require session
survivability, and the question is often raised why not
create a solution that solves both the problems at the
same time.

We believe that the differences and similarities of
these two problems and the assumptions have not been
sufficiently well understood to make such a decision now.

We analyze the main differences between multihoming
and mobility to be:

• Mobile nodes cannot know when they will move;
sites will know beforehand if/when they will need
to change the providers and have time to prepare.
Therefore when an unexpected move occurs, it’s
already too late to start quick preparation as the
mobile node has lost its connectivity to the old IP
address.

• Mobile nodes move or must be prepared to move
much more frequently (even once a second) than
sites renumber (typically at most once a year).

• Mobile node is not expected to return to using the
old address when moving; the multihomed site’s
addresses are going to be valid again after a failure
has been corrected.

• Mobile nodes typically have a helper ”home agent”
which is assumed to be always on; there is no such
thing for multihoming. However, there is desire to
find a mobility solution that would not have such a
dependency, or at least narrow the responsibilities
to just be a “my current location” referral service.

These seem to have the following implications:

• As HBA address set must be changed if there is any
change in the prefix set, HBAs are not usable for
frequent renumbering or mobility. Another solution
for securing against the attacker being briefly on the
path would need to be designed.

• Shim6 uses locators as ULIDs. These change
rapidly, and applications keep using them even
after the IP address is removed from the host.
Using a separate name space would be better for
mobility. This seems to break (1) referral/callback
lookup mechanisms (at least forward+reverse DNS
no longer works), and (2) connectivity if the appli-
cation would want to talk to a new host which has
been given the same IP address as the already used
ULID.

• Shim6 could not be designed so that enabling ses-
sion survivability requires the nodes to signal the IP



9

addresses before the addresses are used; such design
has a number of benefits for demultiplexing.

We conclude that these differences seem to be suf-
ficiently constraining not to overload the timing-critical
multihoming with the mobility problem as well. How-
ever, it might still be a good idea to figure out an
alternative to HBAs if HBAs turn out to be impractical
(e.g., the IPR concerns or too frequent renumbering).

B. IPv6 vs IPv4

As the site multihoming issues apply to both IPv6 and
IPv4, the question is sometimes raised why not design a
solution for both IPv4 and IPv6?

The explicit choice has been to avoid having to make
tradeoffs for keeping IPv4 compatibility. The specific
reasons have never been documented, but we believe
focusing on IPv6 is reasonable for the following reasons:

• IPv6 has more bits in the address. This allows
creating designs which are impossible or would
have to be done differently with IPv4. For example,
HBAs use the 64-bit interface identifier for obtain-
ing sufficient cryptographic strength.

• IPv6 has 20-bit Flow Label. The flow label field
could be used in one of several ways (see Sec-
tion III-F) as a multihoming context tag, requiring
no packet overhead; adding packet overhead com-
plicates fragmentation/reassembly and Path MTU
Discovery, and these do not work very well in IPv4
as it is [19].

• Small IPv4 sites can multihome using NATs, re-
ducing their need for a multihoming solution; as
IPv6 does not have NATs, these people have no
corresponding IPv6 multihoming solution though
their IPv4 needs have been roughly satisfied.

• IPv4 has a lot more legacy; for example, 70% of
web sites are not accessible if a new IP option is
added to the packet [19]; this would constrain the
design.

• IPv4 has NATs and they would need to be traversed
and the state kept alive. The design would likely be
quite a bit different.

All of these would be resolvable (if a sufficient alterna-
tive to HBAs can be found) with a more complex design
that does not optimize where IPv6 could be optimized.
We still conclude that it makes sense to focus on the IPv6
designs only, and possibly later create an IPv4 adaptation
of the protocol if deemed appropriate.

C. Independence and Traffic Engineering

Shim6 does not solve the sites’ desire to be indepen-
dent of their ISPs; especially larger sites want to avoid

service provider lock-in, and want to be able to switch
providers without having to renumber their network [1].
In other words, the sites want provider independent (PI)
addresses.

Large, multi-national sites also have desires to en-
gineer the (incoming) traffic flows. This is required
especially if they have a single address assignment – so
they would like to advertise subprefixes from different
geographical locations; if they have no PI addresses, this
should be no problem. Small sites may want to load-
balance the traffic over several links, but this could be
achievable.

We have observed that the pressure has been building
in 2005 in Regional Internet Registries, at least ARIN
and RIPE, to allow PI allocations to a wider audience
(e.g., all the member organizations or any site at all).
This has not been considered scalable as all of these
need to be routed [1], but there are also disagreements
over whether that’s the case or not.

As unfortunate as it may be for better technical
development, we assume that sooner or later the al-
location policies will get relaxed, and some sites will
get PI addresses. However, hopefully these come with a
sufficient cost to discourage those that don’t really need
them. We expect that small and medium-sized sites could
very well use shim6 and provider-based addressing, and
for SME and SOHO enterprises shim6 would be an
ideal and architecturally sound solution. These small-
to-medium sites should not get provider independent
globally routable addresses as it would discourage them
from using shim6.

D. Reverse and Forward DNS for Locator Search

Section III-A quickly described applications that do
referrals and callbacks. Especially for these applications
it is important to be able to find the other locators, given
just one address.

One proposed way to do so is to look up the PTR
record in the reverse DNS for the address, and look up
the addresses from the forward DNS name the pointer
refers to. [15]

This assumes that forward and reverse DNS trees are
managed sufficiently well, so that all the addresses have
a reverse record that points to a name which lists all the
addresses of a node.

The critical assumptions are therefore:
• The ISPs allow the sites to manage the reverse DNS

entries of the addresses they use (this may be a
stretch for home and similar users), and

• The sites control a provider-independent domain
name under which they can record the hostnames
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and addresses (this may be a stretch for home
users).

We conclude that reverse and forward lookups for
searching the locators has a chance of succeeding in
well-managed sites, but we fear that sites most interested
in shim6 may not be sufficiently well-managed. Luckily
enough, the support for locator search is not needed with
classical applications.

E. Adding a New Locator

Adding new locators afterwards is relatively simple.
However, HBAs make that a bit more difficult, as the
whole HBA set would need to be regenerated at such
an event. As it is, adding locators to the existing set is
not possible without alternative security mechanisms to
verify the address. One possibility would be using CGA-
only addresses, but then the public key would need to
be verified, which might not always be possible.

However, let us assume a solution for this could be
found. Let us consider the case where a host would
like to immediately send from a new address, without
prior coordination, piggybacking a locator update. This
would seem to require that when the packet is first
processed by the host, the destination option or extension
header is processed to find the locator update (and other
multihoming state). Only then the packet can be injected
to the shim, as otherwise the state would not be up-to-
date.

V. CONCLUSIONS

While the debates in various address allocation fora
about provider independent address allocations for sites
still rage on, shim6 is being designed to provide redun-
dancy in a scalable manner. It is expected that shim6
will be of most interest for small and middle-sized sites,
but the outcome is likely linked with the decisions to be
made about address assignments; if getting PI addressing
is easier and cheaper than deploying and maintaining
a shim6-based site multihoming solution, the sites are
going to go for their own addresses.

We described and analyzed the shim6 proposal. In
general, the design so far seems to be reasonable. There
are obviously many areas which still need work. The
most urgently work seems to be needed in securing the
locator exchange, in particular, figuring out an acceptable
way to add locators (e.g., add a prefix) without disturbing
the existing sessions; an alternative for HBAs might be
useful for other reasons as well.

It seems to be widely accepted that the focus is on
IPv6, but there is still debate about to which degree one
should look at mobility as well as multihoming.
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