Host Identity Protocol

Fayez Al-Shraideh

Abstract

Host Identity Protocol proposes a new name space; Host Identity and this name can be any globally unique name but it has been chosen to be the Public Key of a Public/Private Key pair.

This paper can be seen as HIP tutorial since it provides an insight view HIP Architecture, HIP Base Exchange, Encapsulated Security Payload (ESP) Security Association Setup, mobility and multi-homing, and some early experiences about HIP.

1 Introduction

The current Internet is based on two main namespaces, the Domain Name Service (DNS) names and the Internet Protocol (IP) addresses. DNS namespace has enriched the Internet by helping its users to use the net more easily by allowing them to specify meaningful names to web sites and/or other users they want to communicate with. The role of the DNS is derived from the difference between humans and computers.

IP addresses namespace describes both the host topological location in the network, and the host identity. If the host changes its location, it has to change its IP address, but since it is used as the host identity; mobility problems will show up and the host will be not reachable. It is clearly visible that the IP address is overloaded. [1]

Host Identity Protocol (HIP) calls for the separation between the host identity and location identity. The IP address will continue to be the location identity, while HIP will carry the host identification function.

In the next chapters, I will discuss the HIP Architecture Overview, more details about HIP as a Protocol, how HIP can support mobility and multi-homing, and some experiences about HIP.

2 HIP Architecture Overview

2.1 Host Identity Namespace

Host Identifier (HI) is a name in the Host Identity namespace. A public key of a “public key pair” is a statically globally unique name and it has been chosen by HIP Specification as an HI. Authentication and protection of man-in-the-middle attacks is possible using a public key based HI. Rivest Shamir Adelman (RSA) public key algorithm must be supported by all HIP hosts and the Digital Signature Algorithm (DSA) should be supported also.

Host Identity Tag (HIT) is a 128-bit statically globally unique cryptographic SHA-1 hash over the HI. There are two types of HIT, type 1 is generated by taking the least significant 128-bits of the SHA-1 hash of the HI, while type 2 consists of a Host Assigning Authority Field (HAA) concatenated with the least significant 64-bits of SHA-1 hash of HI. The HIT type is defined in both Sender HIT Type (SHT) and Destination HIT Type (DHT) fields in HIP controls. HIT has a fixed length regardless of the cryptographic algorithm used to generate the public key (i.e. HI), and the usage of HIT will ease protocol encoding.

Local Scope Identifier (LSI) is 32-bit or 128-bit local representation of HI. LSI is meant for IPv4 or IPv6 based applications. 32-bit and 128-bit LSIs are allocated from a TBD IPv4 subnet and a TBD IPv6 subnet respectively. The low order 24-bits of HIT represents the low order 24-bits of IPv4-compatible LSI, while The low order TBD-bits of HIT represents the low order TBD-bits of IPv6-compatible LSI.

2.2 New Stack

HIP introduces a new layer in the internetwork stack, Host Identity Layer between the internetworking layer and the transport layer as shown in Fig 1.

 Sockets

 <HIT, port|> pairs

 Host Identifier

 Translation

 IP Address

 Translation

 Link Layer Address

Figure 1: New Stack [14]&[11]&[8]

With this new approach, the application process is bound to a socket that consists of the HIT and port pair [12] regardless of any IP address the host is using in the Internetworking layer. The application process will not deal with destination IP addresses any more and it has to use destination HIT instead.

Mapping of HIT to IP address should happen to facilitate locating the destination in the network topology, DNS might be used to accomplish this task. Then the well-known mapping from IP address to Link Layer Address (i.e. Address Resolution Protocol ARP in Ethernet) should be done in each network segment in the path. The decoupling between Transport and Internetworking layers will help in the evolution of any of them separately from the other.

So IP address role is a pure locator and the HI role is a pure Identifier. If the destination host is moving to another network segment, it has to change its IP address only and this new address has to be communicated to source host using HIP. Chapter 6, Mobility and multi-homing, will discuss further how HIP handles host mobility.

When a source host wants to send some traffic to destination host, the application process in the sender has to resolve the destination FQDN by DNS query, and the DNS replies with the corresponding destination HIT and IP address of the receiver, then the sender and receiver have to assure that each other has the correct private key corresponding to their HIs (public keys), and they have to create a pair of IPSec ESP security associations (SAs), one in each direction. The previous process is called HIP Base Exchange and it will be discussed in chapter 3.

3 HIP Protocol

Before going into the details of the HIP Base Exchange protocol, it is time to introduce the HIP Format. It would be easier to understand the details of HIP Base Exchange if the HIP packets format is in mind all the time, but I will not go into the very details of HIP Parameters.

3.1 HIP Packets Format

	HIP Header
	Next Header

8-bits
	Payload Len

8-bits
	Type

8-bits
	VER

4-bits
	RES

4-bits

	
	Controls

16-bits
	Checksum

16-bits

	
	Sender’s HIT

128-bits

	
	Receiver’s HIT

128-bits

	HIP Parameters (in TLV Format)

Max length 2008 bytes

Figure 2: HIP Packets Format [2]

The common HIP header for all packets, as shown in figure 2, contains the fields:

1. Next Header: it is not utilized in current HIP specification and its value is Decimal 59, which corresponds to no next header in IPv6 specification.

2. Payload Length: it determines the total length of HIP packet starting from the Sender’s HIT field (Sender’s HIT, Receiver’s HIT, and HIP Parameters) in 8-bytes unit. If the Payload Length is Decimal 4, that means the HIP packet does not contain any HIP parameters; so value 4 is the minimum value the Payload Length can have.

3. Type: this value determines HIP packet type. (i.e. I1 is type 1, R1 is type 2, I2 is type 3, and R2 is type 4)

4. Version: it determines the version number of HIP; its current value is 1.

5. Reserved: it is reserved for future use.

6. Controls: in this field the Sender’s HIT and Receiver’s HIT types are specified. This field is used to signal some information to the peer HIP node, like Certificate or more are following this packet, or my HI is anonymous.

7. Checksum: this field has to be recomputed for different lower layer protocol (i.e. IPv6 or IPv4).

8. Sender’s HIT and Receiver’s HIT are 128-bits each and either type 1 or 2 according to HIP Controls field.

HIP Parameters follow the common header, and they define HIP-signaling information that is exchanged between HIP peers. They are encoded in Type Length Value (TLV) format. What HIP Parameters really mean, can been seen clearly when introducing the details of HIP Base Exchange.

3.2 HIP Base Exchange

Initiator

Responder

I1

R1

I2

R2

Figure 3: HIP Base Exchange [2]
Figure 3 shows the four-way handshake between two hosts wanting to start communication. This is called HIP Base Exchange and it can be viewed as a lightweight version of IKE [9]. I1 packet is the first packet sent in the handshake and it is clear packet (no encryption) and it just means that the initiator would like to talk HIP with the Responder. The Responder IP address can be derived from DNS.

I1 is a HIP type 1 packet, as shown in figure 4, and it is very simple one with no HIP Parameters. Responder is protected from I1 replays by the use of pre-computed R1s as will be discussed later.

I1

 Header:

 Packet Type = 1

 SRC HIT = Initiator's HIT

 DST HIT = Responder's HIT, or NULL

 IP(HIP())

Figure 4: I1 [2]

R1 is a HIP type 2 packet, as shown in figure 5, and comes as a reply to I1 packet. The main functions of R1 packet are

1. The Puzzle Challenge

2. Diffie-Hellman key agreement

3. Encryption and Integrity protection capability exchange

HIP Parameters that can be used in R1 packet are shown in figure 5. (i.e. R1_COUNTER, …, ECHO_REQUEST)

The responder can optionally specify the current generation of the valid puzzles (R1_COUNTER is used for this purpose), which means that the solution to old generation puzzles is not valid anymore. So the Initiator has to include a copy of this counter in the I2 packet to show that it has used the current valid puzzle.

The Puzzle consists of random number #I and difficulty K. The Diffie-Hellman key agreement is a protocol for exchanging a secret key over an insecure medium without any prior secrets. This shared secret will be used in the Encryption Algorithms. DIFFIE_HELLMAN Parameter defines the Diffeie-Hellman parameters (i.e p, g, and Diffeie-Hellman public key that equals to “gResponderSecret mod p”). The values of p and g are specified through the chosen Modular Exponential Group (MODP) ID and both the Initiator and the Responder have to agree on those values.

HIP_TRANSFORM Parameter defines the Encryption and Integrity protection algorithms supported by Receiver.

The Host Identity, including the used algorithm (RSA or DSA), and the FQDN are defined in the HOST_ID Parameter.

The Receiver has the possibility to request an echo back to some data it is sending. ECHO_REQUEST Parameter is used for this purpose, and in this case the Initiator has to use the ECHO_RESPONSE Parameter in the reply.

R1 packet is signed and the signature is encoded in the HIP_SIGNATURE_2 Parameter. This HIP Parameter defines the signature value and the used signature algorithm (RSA or DSA). The signature is calculated after zeroing Destination HIT, Checksum Field, Puzzle random number #I, and opaque fields. There are two types of ECHO_REQUEST Parameter, the signature covers one type and does not cover the other. Responder can chose which type it will use.

It is possible for the Receiver to have pre-computed R1s to minimize the effect of Denial-of-Service attacks. This is why HIP_SIGNATURE_2 Parameter is used in R1; since it does not cover the Destination HIT, Puzzle random number #I, and opaque fields, all those should be zeroed to calculate the signature.

One or more certificates can follow R1 packet, and Responder should notify the Initiator with this by using the C-bit in Controls Field of the HIP Header. Responder’s Host Identity can be anonymous; this can be signaled to Initiator by setting the A-bit in Controls Field of the HIP Header.

Initiator is protected from R1 replays by the usage of R1_COUNTER (R1 generation counter), which has to be incremented by Responder every time it is sending R1.

R1

 Header:

 Packet Type = 2

 SRC HIT = Responder's HIT

 DST HIT = Initiator's HIT

 IP (HIP ([R1_COUNTER,]

 PUZZLE,

 DIFFIE_HELLMAN,

 HIP_TRANSFORM,

 HOST_ID,

 [ECHO_REQUEST,]

 HIP_SIGNATURE_2)

 [, ECHO_REQUEST])

Figure 5: R1 [2]

Initiator has to check the R1 signature and solve the Puzzle.

I2 packet shown in figure 6 is a HIP type 3 packet sent by the Initiator as a reply to R1, and its main purposes are:

1. Puzzle Solution delivery

2. Diffie-Hellman key agreement [13]

3. Encryption and Integrity protection selection.

HIP Parameters that can be used in I2 packet are shown in figure 6. (i.e. R1_COUNTER, SOLUTION ,…, ECHO_RESPONSE)

R1_COUNTER HIP parameter is used to signal back to Responder what generation of puzzle was solved. The value of this parameter has to be the same as the one in R1 packet.

The puzzle solution is encoded in the SOLUTION HIP parameter. DIFFIE_HELLMAN Parameter defines the Diffeie-Hellman parameters (i.e p, g, and Diffeie-Hellman public key that equals to “gInitiatorSecret mod p”)[13]. The values of p and g are specified through the chosen Modular Exponential Group (MODP) ID [7], which has to be copied from R1; since both the Initiator and the Responder have to use the same value. So Initator can calculate the Diffie-Hellman secret key as (gResponderSecret mod p) InitiatorSecret mod p. Initiator can now generate the Keying material, and it is capable now for using it in Encryption and Integrity protection algorithms.
With HIP_TRANSFORM Parameter, Initiator can select Encryption and Integrity protection algorithm from the alternatives offered by Responder.

Initiator’s HI is encrypted using the selected Encryption algorithm (as in HIP_TRANSFORM), and the HI digest is encoded in ENCRYPTED HIP parameter. The Keying material generated after Diffie-Hellman key agreement is used as encryption key in all further Encryption or Integrity Protection algorithms.

ECHO_RESPONSE Parameter is sent as a reply to ECHO_REQUEST Parameter that sent in R1 packet. ECHO_RESPONSE can be covered by signature calculation encoded in HIP_SIGNATURE, and in this case it has different type than the one that is not covered by signature.

I2 Packet's integrity is protected using keyed-hash message authentication code (HMAC), by ensuring that a different HMAC will be produced if the packet has changed. HMAC also provides I2 Packet's authenticity because only someone who knows the secret key could have generated a valid HMAC. HMAC covers all HIP packet except the HIP Parameters following it (i.e. HIP_SIGNATURE).

HIP_SIGNATURE contains the I2 packet signature. This HIP Parameter defines the signature value and the used signature algorithm (RSA or DSA). The signature is calculated after zeroing Checksum Field, and it covers the whole I2 packet except the HIP Parameters following it.
The same as R1 packet, one or more certificates can follow I2 packet, and setting the C-bit in Controls Field of the HIP Header makes the notification for this. Initiator’s Host Identity can be anonymous and this can be signaled to Responder by setting the A-bit in Controls Field of the HIP Header.

Responder is protected from I2 replays by the Cookie mechanism (PUZZLE in R1, SOLUTION in I2) and by the Echo mechanism (ECHO_REQUEST in R1, ECHO_RESPONSE in I2). I2 Packet's integrity is verified in HMAC verification (less expensive than signature verification) and I2 packet signature verification.

I2

 Header:

 Type = 3

 SRC HIT = Initiator's HIT

 DST HIT = Responder's HIT

 IP (HIP ([R1_COUNTER,]

 SOLUTION,

 DIFFIE_HELLMAN,

 HIP_TRANSFORM,

 ENCRYPTED { HOST_ID },

 [ECHO_RESPONSE ,]

 HMAC,

 HIP_SIGNATURE

 [, ECHO_RESPONSE]))

Figure 6: I2 [2]

Upon reception of I2 packet, Responder can calculate the Diffie-Hellman secret key as (gInitiatorSecret mod p)ResponderSecret mod p. Responder can now generate the Keying material, and it is capable now for using it in Encryption and Integrity protection algorithms.

R2, as shown in figure 7, is a HIP packet type 4 that completes the HIP Base Exchange. It is a reply for I2 packet.

R2 packet has two HIP Parameters. The first one is HMAC_2, which contains the HMAC calculated over the whole HIP packet, except the following HIP parameters (i.e. HIP_SIGNATURE), concatenated with Responders HOST_ID parameter, but this HOST_ID parameter is removed from R2 packet. So HMAC_2 is an HMAC calculated as if HOST_ID parameter is present but it is not. The second R2 HIP Parameter is HIP_SIGNATURE, which covers the whole R2 packet. Initiator is protected from R2 replays by HMAC verification, which is less expensive than signature verification.

R2

 Header:

 Packet Type = 4

 SRC HIT = Responder's HIT

 DST HIT = Initiator's HIT

 IP (HIP (HMAC_2, HIP_SIGNATURE))

Figure 7: R2 [2]

Closing HIP association, shown in figure 8, can happen by sending CLOSE HIP Packet either from Initiator or Responder, and it has to be acknowledged by CLOSE_ACK Packet.

Sender

Receiver

CLOSE

CLOSE_ACK

Figure 8: Closing HIP Association [2]
CLOSE is Packet type 3, as in figure 9, which has to contain ECHO_REQUEST HIP Parameter in addition to the basic ones HMAC and HIP_SIGNATURE. Sender uses ECHO_REQUEST for validation purposes; since Receiver has to send back ECHO_REPLY inside CLOSE_ACK HIP Packet shown in figure 10.

CLOSE

 Header:

 Packet Type = 8

 SRC HIT = Sender's HIT

 DST HIT = Recipient's HIT

 IP (HIP (ECHO_REQUEST, HMAC, HIP_SIGNATURE))

Figure 9: CLOSE [2]

CLOSE_ACK

 Header:

 Packet Type = 9

 SRC HIT = Sender's HIT

 DST HIT = Recipient's HIT

 IP (HIP (ECHO_REPLY, HMAC, HIP_SIGNATURE))

Figure 10: CLOSE_ACK [2]

As a conclusion, HIP Base Exchange is a two-way host authentication mechanism and key material generation method.

3.3 HIP Encapsulated Security Payload (ESP) Setup protocol

Initiator

Responder

I1

 R1(ESP_TRANSFORM)

 I2(ESP_TRANSFORM, ESP_INFO)

 R2(ESP_INFO)

Figure 11: HIP Base Exchange combined with HIP ESP Setup Protocol [3]
Encapsulated Security Payload (ESP) is the transport protocol that will be used for host-to-host user data communication. HIP Base Exchange described in the previous section does not have any indication for ESP or data transport format. New HIP Parameters have been added to R1, I2, and R2 packets to support ESP setup.

Figure 11 shows the HIP Base Exchange combined with ESP Setup protocol; this message sequence will create both HIP Association and ESP Security Associations.

ESP_TRANSFORM HIP Parameter, in R1 packet, is used by Responder to inform about ESP Encryption and Authentication algorithms alternatives that it can support. Initiator will chose one of the offered ESP Encryption and Authentication algorithms and will specify the Security Parameter Index (SPI) that should be used by the Responder for the ESP SA. ESP_TRANSFORM and ESP_INFO HIP Parameters, in I2 packet, carry the chosen algorithm and SPI value respectively. Responder has to inform the Initiator about the SPI value it has to use for the ESP SA, and ESP_INFO, in R2 packet, is used for this purpose. The Host context can be identified by both the SPI and the destination Host IP Address.

It is necessary to update HIP Association due to:

1. Expiry of ESP SA; since every SA is bound to a lifetime.

2. Addition of new SA.

3. HOST IP address change.

Update, HIP packet type 6 as shown in figure 12, is used for this purpose.

UPDATE

 Header:

 Packet Type = 6

 SRC HIT = Sender's HIT

 DST HIT = Recipient's HIT

 IP (HIP ([SEQ, ACK,] HMAC, HIP_SIGNATURE))

Figure 12: UPDATE [2]

SEQ HIP Parameter is used, if there is a need for acknowledge from the peer Host. No SEQ HIP Parameter in the UPDATE packet means no acknowledge is needed and this UPDATE packet is acknowledge to previous UPDATES from the peer Host.

ACK HIP Parameter is used to acknowledge the UPDATE packet with SEQ HIP Parameter coming from peer HOST. ACK should echo the SEQ value of the coming UPDATE packet.

There are other HIP Parameters that can be used to support Host Mobility, rekey, and ESP SA update or addition.

4. Mobility and Multi-Homing

When a Host moves from one network to another, it has to change its IP Address, and this change will have no effect on the upper layer protocol (TCP, UDP, …); since they are bound to HI and not to IP Address, but still the IP Address is the locator of the Host and in order to be reachable by its peers, they have to be informed by the IP Address change.

IP Address is not used as SA selector; the SPI value combined with the destination HI is the SA selector. But due to the importance of Anti-replay service in ESP; it is very necessary to have some kind of association between SPI and IP Address (i.e. different SA for each Interface). Anti-replay service is window based and it is sensitive for latency, so if one of the SAs is using different IP Addresses, packets will use different paths and some of them will fall outside the ESP anti-replay window.

LOCATOR is the key HIP Parameter that enables Host Mobility, Host Multi-Homing, and Site Multi-Homing. This HIP Parameter is carried mainly in HIP UPDATE Packet. When either the Mobile Host or the Peer Host wants to create a new inbound SA, NES HIP Parameter has to be used in the HIP UPDATE Packet

4.1 Some Mobility Scenarios

Figure 13 shows one mobility scenario for a Mobile Host that has an active HIP Association with a Peer Host (i.e. HIP Base Exchange and ESP SA setup are done), and the Mobile Host has moved to another network and changed it IP Address. So it has to inform the Peer Host about this change by Acknowledged HIP UPDATE Packet and it use LOCATOR HIP Parameter to specify the inbound SPI-new IP Address Association. Peer Host will get this UPDATE and acknowledge the new change by sending another Acknowledged HIP UPDATE Packet with its inbound SPI, and it will check the address by using the ECHO mechanism (ECHO-REQUEST/ECHO-REPLY). Mobile Host will acknowledge this and send the ECHO-REPLY in HIP UPDATE Packet. So from now, the new Mobile Host IP Address will be the Destination IP address of IP packets for the inbound SA and the Source IP Address for the outbound SA.

 Mobile Host

 Peer Host

 UPDATE(LOC(SPI-IP),SEQ)

UPDATE(SPI,SEQ,ACK,ECHO-REQ)

UPDATE(ACK,ECHO-RES)

Figure 13: Readdress without re-keying, but with address check [4]
The scenario in figure 14 is different than previous one, there is a new SA and at the same time a new IP Address and there is re-keying initiated Mobile Host. But in figure 15, the Peer Host initiated the re-key.

 Mobile Host

 Peer Host

UPDATE(LOC(SPI-IP),NES,SEQ, D-H)

UPDATE(NES,SEQ,ACK,D-H,ECHO-REQ)

UPDATE(ACK,ECHO-RES)

Figure 14: Readdress with mobile-initiated re-keying [4]

 Mobile Host

 Peer Host

UPDATE(LOC(SPI-IP),SEQ)

UPDATE(NES,SEQ,ACK,D-H,ECHO-REQ)

UPDATE(NES,SEQ,ACK,D-H,ECHO-RES)

UPDATE(ACK)

Figure 15: Readdress with peer-initiated re-keying [4]
Figures 16 and 17 show the readdressing scenario for Multi-homed Mobile Host in the case of one or two IP Addresses change.

 Multihomed Host

 Peer Host

UPDATE(LOC(SPI-IP),NES,SEQ,D-H)

UPDATE(NES,SEQ,ACK,D-H,ECHO-REQ)

UPDATE(ACK,ECHO-RES)

Figure 16: Readdress in Basic multihoming with mobile-initiated re-keying (one IP address in LOC) [4]

 Multihomed Host

 Peer Host

UPDATE(LOC(SPI1-IP1,SPI2-IP2),SEQ)

UPDATE(ACK)
to IP1: UPDATE(SPI,SEQ,ECHO-REQ)

UPDATE(ACK,ECHO-RES)

to IP2: UPDATE(SPI,SEQ,ECHO-REQ)

UPDATE(ACK,ECHO-RES)

Figure 17: Readdress in Basic multihoming (two IP Addresses in LOC) [4]
The message sequence in figures 13, 14, 15, 16, and 17 is based on old HIP Specification since it uses some HIP Parameters (i.e. SPI and NES), which are not present in the latest IETF HIP Specification. HIP Mobility Management Specification has to be updated to be consistent with the latest HIP Specification.

4.2 HIP and Rendezvous Extension

Rendezvous server provides HIP reachability service to its clients. Each Host in order to be reachable by any other Host it has to register to Rendezvous (RVS) server in its area and this server has to be updated with the latest reachable IP Addresses of the Mobile Host. The RVS server IP Address is configured with a specific resource recode (RR) HIPRVS as well as the HI(HIT) with HIPHI in DNS. [5]&[6]

The latency of updating DNS by a Mobile Host when it is changing its IP Address has been the main driver for utilizing the RVS server concept by HIP.

So if some Host wants to create a HIP Association with a destination Host registered in RVS server, the source Host will resolve the destination FQDN from DNS, DNS will reply by its HIPRVS and HIPHI, then the source Host can use the RVS server IP Address to send the I1 HIP Packet to RVS server which will relay it to the right Responder and just after that the R1, I2, and R2 packets will be directly between both of the hosts.

5 Experience with HIP

Thomas R. Henderson, Jeffrey M. Ahrenholz, and Jae H. Kim have implemented an experimental HIP prototype over Linux 2.4 kernel using the FreeS/WAN IPSec and OpenSSL, and they have published their experience in [9].

They see that there is problem in the deployment of the key infrastructure due to that fact that it is hard for any Host to remember all other Hosts Identities. HIP Specification is proposing DNS to be the storage place for all public keys (HIs), but still there is a problem in finding the destination Host IP Address if only the destination HI or HIT is known by the Initiator. Also there are performance and latency problems due the frequent DNS update of the Mobile Host when it is changing its IP Address. RVS server had been proposed to solve this problem, but this idea is Home Agent in Mobile IP terminology and this might not give advantage to HIP over Mobile IP.

HIP Mobility Management is macro-mobility type as well as Mobile IP, so HIP Mobility Management need to be enhanced with an integrated micro-mobility type of protocols.

HIP has a great potential in performance, security, addressing architecture and all those are advantages over Mobile IP. In a mobile network infrastructure, Mobile IP has advantage over HIP. [9]&[10]

HIP is still in the development phase and there is still inconsistency in HIP IETF drafts. HIP as a protocol is very adaptive to functionality changes and its clearly visible from its format, figure 2, that it is easy to add new feature or functionality by adding a new HIP Parameter or might be a new Packet. HIP is still evolving and we might see completely new features coming in the future.

References

[1] draft-ietf-hip-arch-02.txt, January 11, 2004, Expires: July 11, 2004, http://www.ietf.org/internet-drafts/draft-ietf-hip-arch-02.txt
[2] draft-ietf-hip-base-02, February 21, 2005, Expires: August 25, 2005, http://www.hip4inter.net/documentation/drafts/draft-ietf-hip-base-02.txt
[3] draft-jokela-hip-esp-00, February 11, 2005, Expires: August 12, 2005, http://www.hip4inter.net/documentation/drafts/draft-jokela-hip-esp-00.txt
[4] draft-ietf-hip-mm-01, February 20, 2005, Expires: August 21, 2005, http://www.ietf.org/internet-drafts/draft-ietf-hip-mm-01.txt
[5] draft-ietf-hip-dns-01, February 20, 2005, Expires: August 21, 2005, http://www.ietf.org/internet-drafts/draft-ietf-hip-dns-01.txt
[6] draft-ietf-hip-rvs-01, February 18, 2005, Expires: August 19, 2005, http://www.ietf.org/internet-drafts/draft-ietf-hip-rvs-01.txt
[7] RFC3526: More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE), May 2003, http://ietf.org/rfc/rfc3526.txt?number=3526
[8] Sarela, Mikko and Nikander, Pekka, Applying Host Identity Protocol to Tactical Networks. http://www.tcs.hut.fi/~id/publications/SarelaMilcom2004.pdf
[9] Henderson, Thomas R., Ahrenholz, Jeffrey M., and Kim, Jae H. Experience with the Host Identity Protocol for Secure Host Mobility and Multihoming, Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE Volume 3, 16-20 March 2003 Page(s):2120 - 2125 vol.3

[10] Henderson, T.R.; Host mobility for IP networks: a comparison, Network, IEEE Volume 17, Issue 6, Nov.-Dec. 2003 Page(s):18 - 26
[11] Jokela, Petri, Nikander, Pekka, Melen, Jan, Ylitalo, Jukka, and Wall, Jorma, Host Identity Protocol: Achieving Ipv4-Ipv6 handovers without tunneling. http://users.tkk.fi/~jylitalo/publications/Evolute03-Jokela-et-al.pdf
[12] Nikander, P, Applying host identity protocol to the Internet addressing architecture; Applications and the Internet, 2004. Proceedings. 2004 International Symposium on2004 Page(s):5

[13] PKCS #3: Diffie-Hellman Key-Agreement Standard, An RSA Laboratories Technical Note, Version 1.4, Revised November 1, 1993 http://www.chinese-watercolor.com/nicholas/linux/pkcs-3.pdf
[14] Jokela, Petri, Nikander, Pekka, Melen, Jan, Ylitalo, Jukka, and Wall, Jorma, Host Identity Protocol - Extended Abstract, in Proceedings of WWRF8bis (electronic), Beijing, China, February 26-27, 2004 http://www.tml.hut.fi/~pnr/publications/wwrf8bis.pdf
Process

Transport Layer

Host Identity Layer

Internetworking Layer

Link Layer

