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Abstract— Multicast services can be provided either as a basic network
service or as an application-layer service. Higher level multicast implemen-
tations often provide more sophisticated features, and can provide multicast
services, where no network layer support is available. Overlay multicast net-
works offer an intermediate option, potentially combining the flexibility and
advanced features of application layer multicast with the greater efficiency
of network layer multicast. Overlay multicast networks play an important
role in the Internet. Indeed, since Internet Service Providers have been slow
to enable IP multicast in their networks, Internet multicast is only widely
available as an overlay service. This paper introduces several routing algo-
rithms that are suitable for overlay multicast networks and evaluates their
performance. The algorithms seek to optimize the end-to-end delay and the
interface bandwidth usage at the routing sites within the overlay network.
The interface bandwidth is typically a key resource for an overlay network
provider, and needs to be carefully managed in order to maximize the num-
ber of sessions that can be served. The simultaneous optimization of both
delay and bandwidth is an NP-hard problem. We propose several heuristic
algorithms and simulate their performance under various traffic conditions
and on various network topologies.

I. Introduction

Multicast communication is an important part of many next
generation networked applications, including video conferenc-
ing, video-on-demand, distributed interactive simulation (includ-
ing large multi-player games) and peer-to-peer file sharing. Mul-
ticast services allow one host to send information to a large num-
ber of receivers, without being constrained by its network in-
terface bandwidth. This makes applications more scalable and
leads to more efficient use of network resources. The limited net-
work layer support for multicast in the Internet today, has made
it necessary for applications requiring multicast services to ob-
tain services at a higher level. In application layer multicast,
hosts participating in an application session share responsibility
for forwarding information to other hosts [7,9,11,12,15]. While
highly flexible, this approach places a significant additional bur-
den on end hosts, and does not scale well to large group sizes.
Overlay multicast networks provide multicast services through a
set of distributed Multicast Service Nodes (MSN), which com-
municate with hosts and with each other using standard unicast
mechanisms. Overlay networks effectively use the Internet as a
lower level infrastructure, to provide higher level services to end
users. The multicast backbone, Mbone [5], is the best-known
multicast overlay network, but multicast services are also a part
of commercial overlay network services, such as Akamai [1] and
iBeam [10].

Because overlay multicast networks are built on top of a gen-
eral Internet unicast infrastructure, rather than point-to-point
links, the problem of managing their resource usage is somewhat
different than in networks that do have their own links. One of the
principal resources that an overlay network must manage is the
access bandwidth to the Internet at the MSNs’ interfaces. This
interface bandwidth represents a major cost, and is typically the

resource that constrains the number of simultaneous multicast
sessions that an overlay network can support. Hence, the routing
algorithms used by an overlay multicast network, should seek to
optimize its use.

In addition to optimizing MSN interface bandwidth, a mul-
ticast routing algorithm should ensure that the selected routes
do not contain excessively long paths, as such paths can lead to
excessively long packet delays. However, the objective of limit-
ing delay in a multicast network can conflict with the objective
of optimizing the interface bandwidth usage, so multicast rout-
ing algorithms must strike an appropriate balance between these
objectives. Reference [13] introduced the overlay multicast rout-
ing problem and studied the performance of two algorithms. The
results in [13] showed that optimizing the interface bandwidth
usage, produced a gain of up to 50% on the overlay network
utilization. However, there was still a significant gap between
the achieved performance and a computed performance bound,
suggesting the possibility of further improvements. In this paper,
we briefly review these two algorithms and introduce a new algo-
rithmic strategy that takes a more direct approach to optimizing
the MSN interface bandwidth. We describe several specific al-
gorithms based on this strategy and examine the performance of
two of them in detail. The algorithms are evaluated using simula-
tion and a range of traffic conditions and network configurations.
Our results show that we can improve the performance by 10%
to 20% while still satisfing the same end-to-end delay bound.

The rest of the paper is organized as follows: in section II,
we briefly present the two multicast routing algorithms that were
developed earlier. Our new strategy for overlay multicast rout-
ing is presented in section III. In section IV, we compare the
performance of these routing algorithms on different network
topologies and under various traffic conditions. In section V, we
discuss issues related to dynamic membership control and im-
plementation issues, and in section VI we discuss some of the
related works. Finally we conclude in section VII.

II. Background

An overlay multicast network can be modeled as a complete
graph since there exists a unicast path between each pair of
MSNs. For each multicast session, we create a shared over-
lay multicast tree spanning all MSNs serving participants of a
session, with each tree edge corresponding to a unicast path in
the underlying physical network. The amount of available inter-
face bandwidth at an MSN imposes a constraint on the degree
of that node in the multicast tree. We let dmax(v) denote this
degree constraint at node v.

There are two natural formulations of the overlay multicast
routing problem. The first seeks to minimize diameter while
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respecting the degree constraints.

Definition 1: Minimum diameter, degree-limited spanning
tree problem(mddl)

Given an undirected complete graph G = (V, E), a degree
bound dmax(v) ∈ N for each vertex v ∈ V and a cost c(e) ∈ Z+

for each edge e ∈ E; find a spanning tree T of G of minimum
diameter, subject to the constraint that dT (v) ≤ dmax(v) for all
v ∈ T .

The mddl problem is NP-hard. Reference [13] introduced a
heuristic for mddl, referred to here as the Compact Tree (CT)
algorithm. It is a greedy algorithm and builds a spanning tree
incrementally. We let δ(v) denote the length of the longest path
from vertex v to any other node in the partial tree T constructed
so far. For each vertex v that is not yet in the partial tree T , we
maintain an edge λ(v) = {u, v} to a vertex u in the tree; u is
chosen to minimize δ(v) = c(λ(v)) + δ(u). At each step, we
select a vertex v with the smallest value of δ(v) and add it and
the edge λ(v) to the tree. Then, for each vertex v, not yet in the
tree, we update λ(v).

The second natural formulation of the overlay multicast rout-
ing problem seeks the “most balanced” tree, that satisfies an
upper bound on the diameter. To explain what is meant by “most
balanced”, we first define the residual degree at node v with re-
spect to a tree T as resT (v) = dmax(v) − dT (v), where dT (v)
is the degree of v in T . To reduce the likelihood of blocking
a future multicast session request, we should choose trees that
maximize the smallest residual degree. Since the sum of the de-
grees of all multicast trees is the same for a given session size,
this strategy works to “balance” the residual degrees of different
vertices. Any tree that maximizes the smallest residual degree is
a “most balanced” tree.

Definition 2: Limited diameter, residual-balanced span-
ning tree problem(ldrb)

Given an undirected complete graph G = (V, E), a degree
bound dmax(v) for each v ∈ V , a cost c(e) ∈ Z+ for each
e ∈ E and a bound B ∈ Z+; find a spanning tree T of G
with diameter ≤ B that maximizes minv resT (v), subject to the
constraint that dT (v) ≤ dmax(v), for all v ∈ V .

Like the mddl problem, the ldrb problem is NP-hard. Ref-
erence [13] introduced a heuristic for ldrb, referred to here as
the Balanced Compact Tree (BCT) algorithm. The algorithm
can be viewed as a generalization of the CT algorithm. Like the
CT algorithm, it builds the tree incrementally. However, at each
step it first finds the M vertices that have the smallest values of
δ(v) and from this set, it selects a vertex v with λ(v) = {u, v},
which maximizes the smaller of resT (u) and resT (v), where
T is the current partial tree. The parameter M may be varied
to trade-off the goals of residual degree balancing and diameter
minimization. Specifically, when M = 1, it is equivalent to the
CT algorithm and when M is equal to the number of vertices in
the multicast session, BCT concentrates on balancing the residual
degrees. Simulation studies have shown that fairly small values
of M are effective in achieving good balance, without violating
the diameter bound.

We evaluate overlay multicast routing algorithms using a sim-
ulation in which new multicast sessions start and end at random

times. The primary performance metric is the fraction of ses-
sions that are rejected because no multicast route can be found,
either due to the failure to satisfy the diameter bound or due to
the exhaustion of interface bandwidth of at least one MSN. We
also obtain a lower bound on the rejection probability using a
simulation in which a multicast session is rejected only if the
MSN interface bandwidth required by the session exceeds the
total unused interface bandwidth at all MSNs (including those
not involved in the session). Results reported in [13] showed
that by distributing the load more evenly across servers, the BCT
algorithm rejects substantially fewer multicast sessions than the
CT algorithm on the same network configuration. At the same
time, there remained a significant gap between the achieved per-
formance and the potential suggested by the lower bound. While
the bound was not expected to be tight, the size of the gap sug-
gested that there was room for improvement. In the next section,
we introduce a new strategy for overlay multicast routing that
leads to an algorithm with uniformly better performance.

III. Balanced Degree Allocation

In the BCT algorithm, a new node is always attached to the
tree at the point that yields smallest diameter in the resulting tree.
Although the algorithm changes the sequence of node selection
by first selecting nodes with larger residual degrees, it does not
guarantee the use of these nodes as intermediate nodes in the
tree, i.e. nodes with higher degree fanout. This prevents the
BCT algorithm from achieving the best-possible residual degree
balance. Balanced Degree Allocation (BDA) is a strategy for
constructing multicast trees that approaches the problem in a
fundamentally different way. It starts by determining the ideal
degree of each node in the multicast session, with respect to the
objective of maximizing the smallest residual degree.

To state the strategy precisely, we need to stretch our definition
of the residual degree of a vertex. Let k denote the multicast ses-
sion size (or interchangeably session fanout). First, we define a
degree allocation dA to be a function from the vertices of a mul-
ticast session to the positive integers that satisfies two properties:
(1)

∑
v dA(v) = 2(k −1), where k is the number of participants

in the multicast session (so, 2(k − 1) is the sum of the vertex
degrees in any tree implementing the multicast session); and (2)
there are at least two vertices u and v with dA(u) = dA(v) = 1.
A partial degree allocation is a similar function in which the first
property is replaced with

∑
v dA(v) ≤ 2(k − 1). Now, define

the residual capacity of a vertex with respect to a partial degree
allocation dA as resA(v) = dmax(v) − dA(v).

We can compute a degree allocation that maximizes the small-
est residual degree as follows.
• For each vertex v in the multicast session, initialize dA(v) to
1.
• While

∑
v dA(v) < 2(k − 1) select a vertex v that maximizes

resA(v) and increment dA(v).
This procedure actually does more than maximize the smallest

residual degree. It produces the most balanced possible set of
residual degrees, by seeking to “level” the residual capacities as
much as possible. This is illustrated in Figure 1.

Given a degree allocation for a tree, we would like to construct
a tree in which the vertices have the assigned degrees and which
satisfies the limit on the diameter. There is a general procedure

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



m k

k−
2

R
es

id
ua

l D
eg

re
e

Fig. 1. Balanced Degree Allocation

for generating a tree with a given degree allocation, which is
described below.

The procedure builds a tree by selecting eligible pairs of ver-
tices, and adding the edge joining them to a set of edges F that,
when complete, will define the tree. The spare degree of a ver-
tex v, is its allocated degree dA(v) minus the number of edges
in F that are incident to vertex v. At any point in the algorithm,
the edges in F define a set of connected components. A pair of
vertices {u, v} is an eligible pair if the following conditions are
satisfied.
• u, v are not in the same component;
• both u, v have spare degree ≥ 1;
• either, there are only two components remaining, or the sum
of the spare degrees of the vertices in the components containing
u and v is greater than 2.

The last condition above is included to ensure that each newly
formed component has a spare degree of at least one, so that it
can still be connected to other components in later steps. Of
course, this condition is not needed in the last step.

This process is guaranteed to produce a tree with the given
degree allocation, and all trees with the given degree allocation
are possible outcomes of the process. We can get different spe-
cific tree construction algorithms by providing different rules for
selecting the vertices u and v.

One simple and natural rule is to select the closest pair u and
v. Call this the Closest Pair (CP) algorithm. Since the CP algo-
rithm does nothing to directly address the objective of diameter
minimization, it may not produce a tree that meets the diameter
bound. An alternative selection rule is to select the pair {u, v}
that results in the smallest diameter component in the collection
of components constructed as the algorithm progresses. This
algorithm is referred to as the Compact Component (CC) algo-
rithm.

One can also use a selection rule that builds a single tree incre-
mentally. In this rule, we consider all eligible pairs of vertices u
and v, for which either u is in the tree built so far, or v is in the
tree, but not both. Among all such pairs, we pick the one that re-
sults in the smallest diameter tree. This procedure is repeated for
every choice of initial vertex, and the smallest diameter tree kept.
This algorithm is the same as the CT algorithm described before,
but with the original input degree constraint dmax replaced with
the much tighter degree allocation dA.

Any of the selection rules described, will produce a tree with
the desired degree allocation. However, the resulting tree may
not satisfy the bound on diameter. We can reduce the diameter
of the trees by using a less balanced degree allocation. To reduce
the diameter, we can increase the degree allocation of “central
vertices” while decreasing the degree allocation of “peripheral

vertices”, where central and peripheral are relative to vertex lo-
cations. A vertex u is more central than a vertex v if its radius
maxwc({u, w}) < maxwc({v, w}). Unfortunately, we have
found that natural strategies for adjusting degree allocations lead
to only marginal improvement in the diameters of the resulting
trees. It appears difficult to find good degree allocations, inde-
pendently of the tree building process. We have found that a
more productive approach is to use a “loose degree allocation”
and allow the tree-building process to construct a suitable tree sat-
isfying the degree limits imposed by the loose allocation. Loose
degree allocations are derived from the most balanced allocation
by allowing small increases in the degrees of vertices.

By combining the tree building procedure, with a specific rule
for selecting eligible pairs and a procedure for “loosening” a de-
gree allocation, we can define iterative algorithms for the overlay
multicast routing problem. We start with a balanced degree al-
location and build a tree using that allocation. If the resulting
tree satisfies the diameter bound, we stop. Otherwise we loosen
the degree allocation and build a new tree. We continue this pro-
cess until we find a tree with small enough diameter, or until a
decision is made to terminate the process and give up.

The degree loosening procedure increases by 1, the degree al-
location of up to b vertices, where b is a parameter. The first
application of the procedure adds 1 to the degree allocation of
the b most central vertices. If incrementing the degree allocation
for a vertex v would cause its degree allocation to exceed the
degree bound for v, then v’s degree allocation is left unchanged.
The second round of the procedure adds 1 to the next b most
central vertices (again, so long as this would not cause their de-
gree bounds to be exceeded). Subsequent applications affect the
degree bounds of successive groups of b vertices, and the process
wraps around to the most central vertices, after all vertices have
been considered. The process can be stopped after some speci-
fied number of applications of the degree loosening procedure,
or after all degree allocations have been increased to the smaller
of their degree bounds and k − 1 where k is the session fanout.

If we select eligible pairs for which the connecting edge has
minimum cost, the resulting algorithm is called Iterative Closest
Pair (ICP) algorithm. If we select eligible pairs so as to minimize
the diameter of the resulting component, the algorithm is called
Iterative Compact Component (ICC) algorithm. In the Iterative
Compact Tree (ICT) algorithm, we select eligible pairs, with one
vertex of each pair in a single tree being constructed, and the
other selected to minimize the tree diameter. This procedure is
repeated for all possible initial vertices.

An example execution of the ICT algorithm appears in Fig-
ure 2. For simplicity, we used geographical distance as routing
cost and a diameter bound of 8000 km. Initially, the BDA output
dictates the creation of a star topology with NewYork City as the
center with degree of 7; this exceeds the diameter bound. In the
second round, the degree allocation of the three nodes with small
radius, Las Vegas, Phoenix, Louisville, is loosened by 1; this re-
sults in a smaller diameter tree satisfying the diameter bound.
We observe that the actual degree allocation is still close to the
balanced degree allocation.
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Las Vegas (1)

New York City (7)

Washington D. C. (1)

Portland (1)

St. Petersburg (1)

Louisville (1)

Phoenix (1)

Miami (1)

(a) Longest Path: Portland → New York → Phoenix; Length =
9416.67 km

New York City (7)

Washington D. C. (1)

Portland (1)

St. Petersburg (1)

Louisville (2)

Phoenix (2)

Las Vegas (2)

Miami (1)

(b) Longest Path: Portland → Las Vegas → Phoenix →
Louisville → New York → St. Petersburg; Length = 7823.64
km

Fig. 2. An Example of the ICT Algorithm with Degree Adjustment

IV. Evaluation

This section reports simulation results for the overlay multicast
routing algorithms described above. We report results for three
network topologies and a range of multicast session sizes. The
principal performance metric is the multicast session rejection
rate. We also evaluate the multicast tree diameter and computa-
tion times of the algorithms. Comparisons with the CT and BCT
algorithms are also included.

A. Simulation Setup

We have selected three overlay network configurations for
evaluation purposes. The first (called the metro configuration)
has an MSN at each of the 50 largest metropolitan areas in the
United States [14]. The “traffic density” at each node is propor-
tional to the population of the metropolitan area it serves. We use
a Poisson session arrival process and the session holding times
follow a Pareto distribution. Session fanouts follow a truncated
binomial distribution with a minimum of 2 and maximum of 50,
and means varied in different result sets. All multicast sessions
are assumed to have the same bandwidth. Different MSNs were
assigned different interface bandwidths, depending on their traf-
fic density and their location. MSNs in more central locations
are assigned higher interface bandwidths than those in less cen-
tral locations, since it is more efficient for multicast sessions to
branch out from these locations than from the more peripheral
locations. The assignment of interface bandwidth at MSNs is
critical to the performance of the routing algorithms. We have
dimensioned the network to best carry a projected traffic load
given a specific routing algorithm. This is done by routing a pro-
jected traffic load on a network configuration and computing the
average carried load for each MSN. Then we assign access link

bandwidth to each server proportional to its carried load subject
to a fixed total bandwidth capacity for the entire network. The
dimensioned network is further fine-tuned by additional rounds
of routing with the actual routing algorithm. Details of the MSN
dimensioning process can be found in [13].

The metro configuration was chosen to be representative of a
realistic overlay multicast network. However, like any realistic
network, it is somewhat idiosyncratic, since it reflects the loca-
tions of population centers and the differing amounts of traffic
they produce. The other two configurations were chosen to be
more neutral. The first of these consists of 100 randomly dis-
tributed nodes on a disk and the second consists of 100 randomly
distributed nodes on the surface of a sphere. In both cases, all
nodes are assumed to have equal traffic densities. In the disk, as
in the metro configuration, the MSN interface bandwidths must
be dimensioned, but in this case it is just a node’s location that
determines its interface bandwidth. In the sphere configuration,
all nodes are assigned the same interface bandwidth, since there
is no node that is more central than any other.
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Portland
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AtlantaPhoenix

Detroit
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Minneapolis

Denver
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Cincinnati
St. Louis
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Virginia Beach

San Antonio OrlandoNew Orleans

Las Vegas

Salt Lake City

Boston

Charlotte

Buffalo

Austin

Memphis

Raleigh

Jacksonville

Oklahoma City

Miami
West Palm Beach

New York City

Providence

Nashville

Rochester

(a) 50 Largest U.S. Metropolitan Areas

(b) Disk Configuration (c) Sphere Configuration

Fig. 3. Overlay Network Configurations

The three network configurations are illustrated in Figure 3. In
all configurations, the geographical distance between two nodes
is taken as the edge cost in the multicast session tree.

B. Comparison of Tree Building Techniques

In the previous section, we suggested three basic tree building
techniques: selecting the closest pair (CP), selecting the pair
that minimizes the component diameter (CC), and selecting the
pair that minimizes the single tree diameter (CT). The iterative
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versions of these algorithms, namely ICP, ICC and ICT, seek
to satisfy the diameter bound by loosening the degree allocation
produced by BDA. In this section, we examine their performance
sensitivities to different diameter bounds and to the number of
rounds allowed for degree adjustment. The simulation uses the
metro configuration as the network topology and a session fanout
of 10.

Figure 4 shows the session rejection rates versus the ratio of
the diameter bound to the maximum inter-city delay (6000 km).
In this simulation, we allow each algorithm to loosen the degree
allocation as much as it needs to (stopping when the degree allo-
cation reaches the smaller of nodes’degree bounds or k−1, where
k is the session size). The horizontal line labeled BDA, shows
the rejection rate using the balanced degree allocation strategy,
but ignoring the diameter of the resulting tree.
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Diameter Bound / Maximum Inter−city Distance
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Fig. 4. Sensitivity to Diameter Bound

As the large cities in this map are along the coastal areas, the
majority of the sessions will span across the continent. Therefore,
it is difficult to find a multicast tree for these sessions when the
diameter bound is tight, resulting in very high rejection rates for
all algorithms. However, as the diameter bound is relaxed, the
rejection rate improves for all the algorithms, with the iterative
algorithms all achieving essentially the same performance for
diameter bounds of more than 1.8 times the maximum inter-city
distance. At intermediate diameter bounds, the ICT and BCT
algorithms perform better than the ICC and ICP algorithms. This
suggests that building from a single tree, as both ICT and BCT
do, is more effective in minimizing the tree diameter. The BCT
algorithm does not allocate its node degree before building the
tree; rather, it seeks to maximize the residual bandwidth as the
algorithm progresses. For large diameter bounds, BCT is not
able to reduce its rejection rate as much as the algorithms using
balanced degree allocation.

Figure 5 shows the rejection ratio versus the maximum number
of degree adjustment rounds allowed in ICP, ICC and ICT. The
diameter bound is fixed at 8000 km for this simulation. In each
degree adjustment round, the number of vertices being adjusted
is 3. Generally, the ICP and ICC algorithms only benefit from
the very first few rounds of degree adjustment, which allows
nearby nodes to be joined together to form collections of small
forests. The additional rounds of degree adjustment have no
effect on them and the rejection rates remain relatively high.
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Fig. 5. Sensitivity to Degree Adjustment Round

Contrarily, the ICT algorithm benefits greatly from the additional
rounds of degree adjustment. It is able to utilize the increased
degree allocation at the centrally located nodes and form smaller
diameter trees.

We conclude in this subsection that the ICT algorithm, when
combined with the degree loosening procedure, is more effective
at producing small diameter trees than ICP and ICC. In the rest
of this paper, we will focus our evaluation mainly on the ICT
algorithm. However, ICT’s greater effectiveness comes with a
cost of added complexity, as it iterates through each possible
starting vertex in order to find the best tree. We will analyze the
computational cost of the ICT algorithm later in the section.

C. Performance Results – Rejection Rate

Figure 6 shows the session rejection rates versus offered load
for a subset of the overlay multicast routing algorithms presented
earlier. The charts also include a lower bound on the rejection
fraction that was obtained by running a simulation in which a
session is rejected only if the sum of the degree bounds at all
nodes in the network is less than 2(k − 1) where k is the number
of nodes in the session being set up. The lower bound curves
are labeled LB. The results, labeled BDA, are obtained using the
balanced degree allocation strategy, and ignoring the diameter of
the resulting tree. We conjecture that this also represents a lower
bound on the best possible rejection fraction that can be obtained
by any on-line routing algorithm. It is certainly a lower bound
for algorithms based on the balanced degree allocation strategy.

For these charts, the diameter bound for the metro configura-
tion is 8000 km which is approximately 1.5 times the maximum
distance between nodes. For the disk and sphere topology, the
bound is two times the disk diameter and three times the sphere
diameter; each is about twice the maximum distance between any
two nodes in the respective topology. The total interface band-
width for all MSNs is 10,000 times the bandwidth consumed by
a single edge of a multicast session tree. So, in the sphere, each
MSN can support an average of 100 multicast session edges and
for the metro configuration, the average number is 200.

Overall, the results show that the algorithms that seek to bal-
ance the residual degree usually perform much better than the CT
algorithm, which merely seeks to minimize the diameter sub-
ject to a constraint on the maximum degree bound of a node
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Fig. 6. Rejection Fraction Comparison

(dmax(v)). The performance of CT is particularly poor in the
fanout 20 case, since it tends to create nodes with large fanout
leading to highly unbalanced residual degree distributions.

Looking down each column, we see that the lower bound in-
creases with the fanout. This simply reflects the fact that each
session consumes a larger fraction of the total interface band-
width. For the sphere, the rejection fraction also increases with
fanout for the BDA curve. This makes sense intuitively, since
as the fanout grows, one expects it to be more difficult to find
balanced trees with small enough diameter. In the disk and metro
configurations, it is less clear why the BDA curve changes with
fanout as it does. Part of the explanation for the observed be-
havior is that the network dimensioning process is based on an
assumed traffic load, and in particular, an assumed multicast ses-
sion fanout of 10. When the simulated traffic has the same fanout
distribution as the one used to dimension the network, we get
smaller rejection rates. However, there is a somewhat surprising

deterioration of the rejection rate for small fanout, particularly in
the metro network case. The apparent explanation for this is that
with small fanout, we often get sessions involving MSNs near
the east and west coasts, but none in the center of the country.
Such sessions are unable to exploit the ample unused bandwidth
designed into the more central MSNs, based on a larger average
fanout. A similar effect is observed with the disk, but it is more
extreme in the metro configuration because of the greater pop-
ulation densities on the coasts, and also the smaller ratio of the
diameter bound to the maximum inter-MSN distance (1.5 vs. 2).

The curves for the ICT algorithm are generally quite close to
the BDA curves, leaving little apparent room for improvement.
There are small but noticeable gaps in a few cases. For the metro
configuration, the gaps for fanout 5 and 20 are most probably due
to the difference between the average fanout of the simulated traf-
fic and the fanout used for dimensioning. This explanation does
not account for the gap in the sphere configuration for fanout
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20, since in the sphere, all nodes have the same interface band-
width. The most plausible explanation seems to be that with
large fanout, it just becomes intrinsically more difficult to find
trees that satisfy the diameter bound.

In three out of the nine cases shown, the BCT algorithm per-
forms nearly as well as the ICT algorithm. Its performance
relative to ICT is worst for the sphere and best for the metro
configuration.

D. Performance Results – Tree Diameter

Next, we investigate the performance of these algorithms in
terms of the average diameter the trees created. Figure 7 shows
the cumulative distribution of the tree diameter scaled to the
diameter bound used in the algorithms. The fanout used here is
10 per session. Also, we show in a table the mean and variance
of the tree diameter using unscaled values.

We observe that the diameter performance of the BCT algo-
rithm is as good as that of the CT algorithm; the difference is
almost indiscernible. Since the ICT algorithm makes no attempt
to minimize the diameter (it simply attempts to meet the diameter
bound), it does not perform as well as the other algorithms, with
respect to diameter. Especially for the sphere, ICT generates
trees with diameter significantly larger than those generated by
the other two algorithms (the median diameter is approximately
20% larger). The explanation seems to be that in the sphere,
degree allocation and traffic is evenly distributed, which means
that BDA tends to produce trees in which all vertices have small
degree, and many have degree 2. Such trees, while meeting the
diameter bound, have significantly larger diameter than the trees
produced by algorithms that explicitly seek to minimize diame-
ter.

These results suggest that there may be further room for im-
provement. It might be possible to develop algorithms that match
the low rejection rates achievable with balanced degree alloca-
tion, while also matching the diameter performance of CT. In
some settings, it may makes sense to adopt a hybrid approach in
which BCT is used for application sessions that are highly delay
sensitive, while ICT is used for others.

E. Complexity of the ICT Algorithm

Although the ICT algorithms gives superior performance in
terms of rejection fraction and overall system utilization, and
can satisfy the diameter bound in most cases, its computational
complexity is a potential disadvantage, particularly when the
diameter bounds are tight. In this case, the iterative loosening of
the degree allocation might continue for many rounds.

Figure 8 evaluates the impact of the iterative loosening on the
performance of the ICT algorithm. The top half of the figure
shows the percentage of sessions that require degree adjustment;
and the bottom half shows the average number of rounds iterated
for the session that do require it. We observe that for degree
bounds of at least 1.7 times the diameter, fewer than 10% require
degree adjustment. Among those, that do require adjustment, the
average number of rounds is 2 or less. However, if the diameter
bound is too stringent, the extra rounds of degree adjustment do
not help much in reducing the session rejection rate. Therefore,
it is important to pick a suitable diameter bound for a topology
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Fig. 8. Evaluation of Iterative Loosening in ICT Algorithm

so that the algorithm can operate more efficiently and more ef-
fectively. From our experience, a bound of twice the maximum
distance between any pair of nodes seem to be a good choice in
all three network configurations.

V. Discussion

In this study, we have not considered dynamic session mem-
berships. When vertices can join or leave a session dynamically,
there are fewer choices available to the session routing algo-
rithms. While the strategies of degree balancing and diameter
minimization can still be applied, the need to apply them incre-
mentally can be expected to degrade performance. An important
qualitative difference between the static and dynamic problems
is that in the dynamic problem, nodes may have to remain in a
session, even when they are no longer active participants. This
may be required to prevent a disruption in the flow of packets
to other nodes participating in the session. If we allow only in-
cremental changes to a session configuration (disallowing more
global rearrangement), then a node which is no longer an active
participant may drop out of the session only if it is a leaf in the
tree. Alternatively, we might allow a localized rearrangement
when a node’s degree drops to 2. In a case like this, it would
be relatively straightforward to ensure a continuing smooth flow
of packets to the participants, while the rearrangement is taking
place.

The issue of implementing the algorithms in a distributed fash-
ion also needs to be addressed. If implemented in a fully dis-
tributed fashion, the proposed algorithms require synchronized
update at the end of each node addition to the tree, which is
potentially inefficient and unscalable. Alternatively, if they are
implemented in a centralized way, i.e. let one of the MSNs com-
pute the routes and inform others to connect as a tree, we can
eliminate the many message exchanges required to coordinate
a distributed computation. We should point out that the cen-
tralized version does not create a single point of failure or even
a performance bottleneck, as each session may select a differ-
ent delegate to perform the tree computation. During periods
of heavy network load, we can expect there to be lots of session
routing computations being performed concurrently. This means
that the overall computational load can be effectively distributed
by having different servers do the computation for different ses-
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Fig. 7. End-to-end Delay performance

sions. We believe that the greater efficiency of this approach,
relative to a distributed routing computation for each session,
will more than compensate for any inequities in the load distri-
bution that are likely to arise in practice. However, we note that
there may be some benefit to be gained by introducing explicit
load balancing mechanisms.

VI. Related Work

The Multicast Backbone (Mbone) [5], is the best known and
widely adopted multicast overlay network. The Mbone is im-
plemented as tunnels at the network layer and implements the
distance vector multicast routing protocol [2]. Other standard
routing protocols include: core-based tree (CBT) [3], protocol
independent multicast (PIM) [6] and most recently, source spe-
cific multicast (SSM) [8]. All of these routing protocols build
shortest path trees from data sources or from the core node of
a session, to minimize network delay (although not necessarily,
the total traffic in the network).

There are many application-level multicast services appear-
ing in the recent literatures, mostly due to the dwindling usage
of the Mbone and the slow deployment of network multicast
services. The flexibility of application-level multicast services
allow the routing policy to be changed based on the target ap-
plication requirements. For example, Scattercast [4] uses de-
lay as the routing cost and builds shortest path trees from data
sources; Overcast [11] explicitly measures available bandwidth
on an end-to-end path and builds a multicast tree that maximizes
the available bandwidth from the source to the receivers; and
Endsystem multicast [9] uses a combination of delay and avail-
able bandwidth, and prioritizes available bandwidth over delay
when selecting a routing path.

In this paper, we have defined interface bandwidth as our pri-
mary routing metric. The path selection policies seek to optimize
the usage of interface bandwidth of MSNs while satisfying the
end-to-end delay performance of individual session. We believe
ours is the first work to focus on optimizing the MSN interface
bandwidth.

VII. Conclusions

In this paper, we have introduced several multicast routing
algorithms that are specifically designed for overlay networks,
where the optimization of the interface bandwidth at multicast
service nodes is a primary focus. This leads to rather different
routing considerations than in conventional networks. Our algo-
rithms seek to balance the available MSN interface bandwidth
while keeping the tree diameter small. Our evaluation showed
that it is possible to achieve a large gain in system utilization
without a significant reduction in the end-to-end delay perfor-
mance. The algorithms perform well across a range of network
configurations and traffic conditions.

Perhaps the most promising direction for future work on over-
lay multicast routing relates to the dynamic version of the prob-
lem. Another direction worth pursuing is the development o
routing algorithms that provide fault tolerance in the presence of
server failures.
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