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System and network security are vital parts of
any autonomic computing solution. The ability
of a system to react consistently and correctly
to situations ranging from benign but unusual
events to outright attacks is key to the
achievement of the goals of self-protection,
self-healing, and self-optimization. Because
they are often built around the interconnection
of elements from different administrative
domains, autonomic systems raise additional
security challenges, including the
establishment of a trustworthy system
identity, automatically handling changes in
system configuration and interconnections,
and greatly increased configuration
complexity. On the other hand, the
techniques of autonomic computing offer the
promise of making systems more secure, by
effectively and automatically enforcing high-
level security policies. In this paper, we
discuss these and other security and privacy
challenges posed by autonomic systems and
provide some recommendations for how
these challenges may be met.

As computing systems have become more complex,
more interconnected, and more tightly woven into
the fabric of our lives, the resources involved in man-
aging and administering them have grown at a
steadily increasing rate. As the costs of system hard-
ware and software have leveled off or decreased, the
costs of the human resources devoted to system ad-
ministration have continued to grow, and therefore
constitute a steadily larger fraction of information
technology (IT) costs. The autonomic computing ini-

tiative is aimed at addressing these increasing costs
by producing computing systems that require less hu-
man effort to administer; systems that, like the bi-
ological systems that keep our hearts beating and our
body chemistry balanced, can take care of routine
and even exceptional functions without human in-
tervention.1

Like any other significant computing system, auto-
nomic systems need to be secure. Building secure
autonomic systems is a challenge for a number of
reasons. Many autonomic systems will use new tech-
niques and new architectures whose security impli-
cations are not yet well understood. Autonomic sys-
tems should not rely on anomalous behavior caused
by security compromises being noticed by humans,
if they are to benefit from reduced human admin-
istration costs. Because many autonomic systems are
expected to deal with a constantly changing set of
other systems as suppliers, customers, and partners,
they need flexible new methods for reliably estab-
lishing trust, detecting attacks and compromise, and
recovering from security incidents. Because some au-
tonomic systems deal with personal information
about individuals, they need to be able to represent
and demonstrably obey privacy policies required by
national laws and business ethics.

Successful autonomic systems will need to be self-
configuring, self-optimizing, self-protecting, and self-
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healing. Although security concerns are most obvi-
ous in protecting the system from attack and in
recovering from the effects of attacks, security will
be key in all other aspects as well. Systems must be
secure in every configuration into which they might
put themselves, and in every state into which they
might optimize themselves. Systems must be robust
against attempts to provide them with false or mis-
leading information that might lead them to config-
ure or optimize themselves insecurely, to enter into
an unjustified trust relationship, or to fail to protect
adequately against a malicious attack.

Autonomic computing will not reinvent computer
science ex nihilo and the security of autonomic sys-
tems will not be an entirely new kind of security. All
the traditional issues familiar to computer security
researchers will arise in autonomic systems, some in
more complex and urgent forms. And just as wide-
spread program sharing and ubiquitous network con-
nectivity took computer viruses and worms from a
theoretical possibility to an annoying oddity and then
to a major security concern, we should expect that
the new computing environments made possible by
autonomic computing will give rise to unique secur-
ity threats of their own.

At least as significantly, the new abilities offered by
autonomic computing will also include ways to make
our systems more secure and our private data better
protected. Building and administering secure com-
puting systems is well known to be a difficult task;
properly configuring a complex system to conform
to security policies specified at a high level is ex-
tremely challenging even for skilled practitioners,
and even the best-administered computing systems
generally conform only approximately to their pu-
tative security policies.2 By automating the process
of configuring, optimizing, and protecting systems
according to explicitly stated security policies, au-
tonomic systems offer us the opportunity to do bet-
ter.

In the next section of this paper, we provide a very
brief overview of some of the architectural features
that will be important in the design of autonomic
computing systems, with an emphasis on the aspects
of that architecture that relate to security. In suc-
cessive sections, we survey a number of old and new
security issues and opportunities as they apply to au-
tonomic systems, and we describe two existing sys-
tems in which some of these issues have begun to
emerge. Along the way, we will note both the chal-

lenges and the opportunities in providing security
for autonomic computing systems.

Architectural features of autonomic
computing

Autonomic computing will have implications for
computing systems at all scales, from single devices
to the worldwide networked economy. At small
scales, we anticipate that the units of autonomic com-
puting, generally referred to as “autonomic ele-
ments,” will be comparatively simple and of fixed
function, performing the same activities in concert
with the same set of other elements for long periods
of time. At higher levels, however, we expect that
many autonomic elements will function in a very dy-
namic environment, in which only the element’s es-
sential mission and governing policies will remain
constant. The details of how they carry out their mis-
sion and what other elements they interact with may
change every day, or even every second.

We anticipate that one very common architecture
for an autonomic element will involve two parts: a
functional unit that performs whatever basic func-
tion the element provides (such as storage, database
functions, Web services, and so on), and a manage-
ment unit that oversees the operation of the func-
tional unit, ensures that it has the resources that it
needs to perform its function, configures and recon-
figures it to adapt to changing conditions, carries out
negotiations with other autonomic elements, and so
on.3 Figure 1 shows a simple conceptual diagram of
an autonomic element consisting of a functional unit
and a management unit.

The thin arrows connecting the management unit to
the world outside the autonomic element represent
the management unit’s dealings with other auto-
nomic elements (and potentially with other exter-
nal resources). The thick arrows connecting the func-
tional unit to the outside world represent the
channels by which the element acquires the resources
that it needs to carry out its basic function, and by
which it delivers the results of that function to other
elements. The arrows between the management unit
and the functional unit represent the sensors and ef-
fectors by which the management unit monitors and
controls the functional unit, and the arrows between
the management unit and the loops around the func-
tion arrows represent the access control that the
management unit exercises over these functional
channels. No autonomic element or other entity can
provide a resource to this element, or obtain any ser-
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vice from it, without the permission of the manage-
ment unit, as negotiated and obtained through the
management channels.

In order to make the decisions necessary to prop-
erly oversee the operation of the functional unit and
to achieve the flexibility required to make the ele-
ment self-managing, many management units will
carry with them, or otherwise have access to, pol-
icies that govern and constrain their behaviors at a
comparatively high level and task and state represen-
tations that functionally describe their current mis-
sion, strategy, and status at a lower level. Unlike con-
ventional computing systems, which behave as they
do simply because they are explicitly programmed
that way, the management unit of an autonomic el-
ement will often have a wide range of possible strat-
egies available to it in fulfilling the policies that gov-
ern it, and an explicit representation of the current
state of its efforts to carry out those policies.

Some of the policies that govern an autonomic el-
ement will be security policies. An element’s secur-
ity policies may include descriptions of what level of
protection needs to be applied to the various infor-
mation resources that the element contains or con-
trols, rules that determine how much trust the el-
ement places in other elements with which it
communicates, what cryptographic protocols the el-
ement should use in various situations, under what
circumstances the element should apply or accept
security-related patches or other updates to its own
software, and so on. Other policies will control the
strategies that an element uses to recover when one
of its suppliers fails to provide an expected resource,
and to which of its commitments to give the highest
priority when not all can be fully met. These policies
will either be directly specified by a human, implic-
itly specified (as by a human accepting a default), or
derived from higher-level policies by the rules of the
appropriate policy calculus.

Some of the task and state representations that a
management unit holds to describe the current sta-
tus and activities of the element will also be relevant
to the element’s security. A management unit may,
for instance, have:

● A representation of the other elements upon which
it currently depends, and how much it trusts each
of them

● A representation of the current life-cycle state of
the software that the element is running and

whether or not there are any security updates avail-
able for it

● A list of contact information for one or more other
autonomic elements or human administrators who
should be notified when certain suspicious circum-
stances are observed

● Agreements with one or more other autonomic el-
ements to provide it with security-relevant infor-
mation, such as log-file analyses or secure time-
stamping

● A list of previously-vetted resource suppliers, used
to quickly verify the digital signatures on the re-
sources they provide

By explicitly representing both security policies and
security-related tasks and states within the system,
autonomic elements will be able to automatically
handle a wide range of security issues that are cur-
rently addressed by human intervention or by com-
paratively ad hoc programmed solutions. Although
we do not expect that every autonomic element at
every scale will fully conform to this model of man-
agement and functional units, policies, and repre-
sentations, we do anticipate that these design pat-
terns will underlie virtually all autonomic systems
above the device level, and they form the concep-
tual framework for our consideration of the security
aspects of autonomic systems.

Figure 1 Logical structure of an autonomic element
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Traditional and emergent security issues

Every computer security issue familiar to workers
in the field will be relevant to autonomic comput-
ing. Autonomic elements will need secure authen-
tication protocols to identify each other, secure cryp-
tography to keep their communications from falling
into the wrong hands, and secure delegation mech-
anisms to allow other elements to take actions on
their behalf. Digital signatures and nonrepudiation
mechanisms will be vital for elements that carry out
electronic commerce, and it will be crucial to ensure
that the computers on which autonomic systems run
are not vulnerable to compromise through buffer
overflows, or to service disruption by network flood-
ing. Automatic intrusion detection systems will be
more important than ever, since in the absence of
direct human control over the operations of the au-
tonomic elements, it will not be possible (or at least
not desirable) to rely on human common sense to
intuit that something is not right.

The new security issues that emerged in the last years
of the twentieth century will continue to apply in au-
tonomic systems. Replicating threats such as com-
puter viruses and worms, and subtler network effects
such as routing and feedback loops, will need to be
detected and eliminated in autonomic systems at
least as urgently as they are in today’s systems. A
worm that could infect and proliferate between au-
tonomic elements based on a particular implemen-
tation library could potentially be at least as severe
as a worm that spreads between computers running
a particular HyperText Transfer Protocol (HTTP)
server.4 Distributed denial-of-service attacks,5 in
which a large number of systems are compromised
remotely and then used in a coordinated attack on
a target, would be as devastating in an autonomic
system as they are today, if not more so.

The security issues that are urgent today will be even
more urgent in a world of autonomic systems. That
new world will also bring new security issues of its
own, issues that may not be significant or present at
all today. At the same time, autonomic technology
will offer new opportunities—new ways of securing
our systems against attack.

Control, information, and trust

When a system is within a given administrative do-
main, the owners of that domain have (at least po-
tentially) full control over that system, and complete
information about it. In contrast, the owners of a do-

main have less control over, and less complete and
reliable information about, systems in other domains.
All other things being equal, a given party will have
less trust in systems that are outside its administra-
tive domain, because it can neither completely con-
trol, nor completely know, what those systems are
doing.

In a dynamic autonomic computing system that spans
multiple domains, no single entity has full control
over, or full knowledge of, all the components of the
system. Each party using the system will therefore
have a reduced degree of trust in the system. To en-
sure that such a system is usable, and used, by the
parties for whom it is intended, we must design the
system to increase the level of trust that those par-
ties have in the system, so that the net loss of trust
is small compared to the gain in efficiency and flex-
ibility from using the autonomic system.

In the current world, businesses and individuals are
accustomed to dealing with entities that they neither
entirely control nor perfectly trust, as customers, as
suppliers, and as partners. In constructing autonomic
computing systems that span administrative domains,
we must allow businesses and individuals to operate
successfully in an environment where critical parts
of the IT infrastructure, and of the business and per-
sonal infrastructure in general, are similarly under
the control of others, and where the details of the
relationships with those others can change without
human intervention.

Trust is necessary both for the routine operation of
autonomic computing systems and for the initial
adoption of those systems by customers and users.
Not only must the elements of an autonomic system
have good reason to trust the other elements that
they discover and with which they interoperate, but
the human decision makers who opt to use an au-
tonomic system in the first place must have good rea-
son to trust that the system as a whole will serve their
purposes. Establishing both of these kinds of trust
will require considerable invention. Human decision
makers will always prefer to make their own trust
judgments in some areas. On the other hand, auto-
mated trust establishment in some domains may
come to be recognized as more reliable and consis-
tent than ad hoc manual trust decisions made by hu-
mans.

There are a number of existing mechanisms for es-
tablishing and reasoning about trust and trustwor-
thiness, and some of them will have a role to play
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in the development of trust in autonomic systems.
These range from the decentralized web of trust used
in PGP-style (Pretty Good Privacy-style) systems6 to
the strict hierarchy of certificate authorities used in
others.7 An autonomic element might make trust
decisions based on a particular trust scheme, depend-
ing either on explicit instructions from the humans
controlling it, or by a policy derived through the ap-
propriate policy calculus from higher-level human-
provided policies.

When one autonomic element relies on information
that it gets from another, it should ideally have ac-
cess to the entire chain of elements that produced
that information. On the other hand, if the elements
involved are not all in the same administrative do-
main and do not all have precisely the same goals,
the element supplying the information may not be
willing (that is, may not be permitted by its own se-
curity policies) to reveal the identities of all the other
elements in that chain. In such circumstances, how
can the element receiving the information determine
to what extent the information can be trusted? There
will be roles here for technical methods (such as zero-
knowledge proofs), for explicit rules (where, say, a
human simply reassures the element that certain in-
formation sources can be relied upon), for contracts
and other legal arrangements (where an element can
assume that information can be trusted, because it
knows that legal recourse exists if it turns out to be
false), and for various kinds of trust calculus.

The security and trust policies that govern an auto-
nomic element will determine how demanding it is
when making trust decisions, how readily it trusts
other elements, and how much corroboration it seeks
before relying on information. These policies will also
constrain some of the actions that an element can
take. For instance, if one of an element’s suppliers
becomes unavailable or stops performing acceptably,
the element will need to decide which of the poten-
tial replacement suppliers can be trusted, both to take
over the function of the failed supplier competently,
and to be sufficiently trustworthy in that role. By en-
abling computing systems to make these decisions
in consistent and reliable ways, autonomic techniques
will engender an extremely adaptive and dynamic op-
erational style, without compromising security.

System compromise vs system outage—
coping with intrusions

Autonomic systems will be self-protecting and self-
healing. This means, in part, that they will be capa-

ble of detecting intrusions on their own, and react-
ing to them so as to eliminate the intrusion and
restore the system to an uncompromised state. To
examine how this might be done, we divide an in-
trusion into three phases:

● Compromise—the initial intrusion and subsequent
actions by the intruder

● Detection—the determination, by the system, that
an intrusion has occurred

● Restoration—the elimination of the intrusion and
restoration of the system to an uncompromised
state

In many ways, the compromise of a system by an in-
truder presents a reliability problem. The system may
or may not still function, and it is likely to function
in a different and unintended way. But compromise
is also different from ordinary unreliability in impor-
tant ways. In an unreliable system, we generally as-
sume that errors are uncorrelated, in the sense that
having two simultaneous errors is much less likely
than having one, or none. Compromise can easily
violate these assumptions. Attacks are malicious
rather than random, and the compromise of several
parts of the system can be correlated to further the
purposes of the attacker. On the other hand, while
some system faults are detectable precisely because
of the pattern of failures that they produce, human
attackers are motivated to cover their tracks and keep
their intrusions inconspicuous. These factors make
intrusion potentially more dangerous, and more dif-
ficult to detect and cure, than simple reliability prob-
lems. Some of the means that an autonomic element
uses to deal with an intrusion will be similar to the
means it uses to deal with unreliable hardware, or
other nonmalicious failures, but other means will be
very different.

Systems are usually organized so as to prevent in-
trusion. Tools such as firewalls, passwords, and ac-
cess control limit the ability of external parties to act
upon a system. At one time, preventative measures
were thought to be the solution to the problem.8 It
seems likely, however, that additional protective
measures are necessary, both because it is difficult
to deploy a fully secure system, and because inev-
itable design and implementation flaws provide tar-
gets of attack even in supposedly secure systems.
Fine-grained behavioral restrictions have been used
to further limit what a user can do within a system
by limiting what actions various programs can take
(see for instance the signer-based security model in
Java** 29). These can be useful, but they too have
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their limitations (for instance, specifying precisely
which behaviors should be permitted for a given pro-
gram can be a complex and error-prone task). Fi-
nally, detection systems attempt to notice when an
intrusion is taking place, often by noticing actions
that should never occur in a normal system, or by
noticing when a user’s or a program’s actions go be-
yond some statistical measure of normal operation.10

As with the detection of virtually any behavioral char-
acteristic of a system, it is impossible to detect with
100 percent certainty that a system has been com-
promised. Therefore, detecting an intrusion or a
compromise in an autonomic system will always be
an approximate business. Even the best detection
methods will always have false positives or false neg-
atives, or both. Because of the malicious nature of
an intrusion, we must assume that it occurs before
we are aware of it, leaving the intruder some amount
of time to compromise the system. The best an au-
tonomic system can do is to minimize the amount
of time between the intrusion and its detection, so
as to limit the amount and extent of compromise.

Once we are aware that an intrusion has taken place
and have some idea of what parts of the system may
have been compromised, we can act. The first thing
we must do is to cut off the intruder as much as pos-
sible. External communications links to the affected
parts of the system can be severed, and affected ma-
chines can be taken down. Autonomic elements that
have been compromised can be terminated or iso-
lated through changes to high-level policies. If this
stops the attack, our remaining problem is restoring
the system to an uncompromised state. To do this,
we divide the system conceptually into a stateless part
and a stateful part. The stateless part has no impor-
tant state that changes as the system operates, so re-
storing it is relatively easy. We can restore each sys-
tem from a known secure backup (perhaps the
original distribution set for the system) and bring it
up again. Autonomic systems must be able to per-
form these functions automatically (at least in typ-
ical cases), without human intervention.

Restoring the stateful part of the system requires
more preparation. The state of the system must be
maintained in such a way that (1) corruption can be
detected and (2) corruption can be eliminated. One
approach to these requirements involves keeping the
state of the system in an encrypted, redundant form,
distributed across a number of logical and/or phys-
ical nodes. Techniques are available for restoring
state where as much as one-third to one-half of the

copies of the state have been corrupted (see the sec-
tion “Secure distributed storage,” later). In many
cases, it will be advantageous to distribute redun-
dant copies of the state in any case and check them
against each other periodically, so that random er-
rors can be dealt with. Using encryption and keep-
ing additional copies helps us deal with intrusion in
a similarly general way; this is one technique that
autonomic elements can use against both malicious
and nonmalicious failures.

Once the compromised systems have been restored,
they can be brought back on line, their communi-
cation channels can be restored, and they can once
again operate normally. These operations are cur-
rently performed by skilled human operators; auto-
mating them so that autonomic systems can perform
them automatically in typical cases (requiring human
help only rarely) will be a significant challenge.

Fraud and persuasion

The policies that govern an autonomic element’s
high-level behavior, and the task and state represen-
tations that allow it to reason about its own activ-
ities, provide high-value targets to a potential at-
tacker. When an attacker compromises a traditional
computing system, the attacker may, for instance, in-
sert a piece of code that causes the system to silently
send him or her a copy of some important informa-
tion at a particular e-mail address at a particular time.
If that address becomes unavailable, or a network
gateway blocks the transmission of the information,
the leak will stop. But if an attacker were to com-
promise an autonomic element, and add to its pol-
icy database a policy that required it to provide some
important information to the attacker at a certain
interval, the autonomic element would then use ev-
ery resource at its disposal to ensure that the infor-
mation was delivered. The attacker would have har-
nessed the element’s own ability to adapt to changing
conditions and adopt new strategies for the purpose
of stealing the desired information. Preventing this
sort of high-level subversion will be an important part
of the security of autonomic systems.

On the other hand, the security policies that govern
an autonomic element can, if properly secured
against tampering, provide new levels of resistance
to attack. If the attacker in the example above alters
only the functional code of the element, or only the
task representation held by the management unit,
the element will probably not leak its important in-
formation to the attacker, because that leakage will
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be forbidden by its security policy. Autonomic sys-
tems, because they contain explicit computer-read-
able representations of the security policies under
which they operate, can potentially be more resis-
tant to attack and subversion than current systems,
which contain only functional code whose behavior
may or may not conform to the policies to which hu-
mans would like it to conform.

In a preautonomic system (see Figure 2), an attacker
who can implant a back door into a computing sys-
tem can create a data leak that will extract and send
any information the back door code can identify. In
an autonomic system (see Figure 3), even if an at-
tacker can implant a back door into the program-
ming of the functional unit, the element’s manage-
ment unit will typically block the back door code’s
attempt to leak data back to the attacker, because
the element’s security policies will not allow the
transmission.

Autonomic elements will make many decisions with-
out direct human instruction, and they will automat-
ically sense and adapt themselves to changes in their
operating environment. In these respects, the field
of autonomic computing shares features with the only
slightly older field of autonomous agents (see for in-
stance Reference 11). Like autonomous agents, au-
tonomic elements will depend for their correct op-
eration on accurate information from other elements
and from the outside world. Although there has been
some theoretical work on protecting autonomous
agents from attacks based on providing them with
inaccurate or biased information (see for example
Reference 12), this is still a mostly unsolved prob-
lem; autonomic elements will have to include safe-
guards to prevent such deception. In the short term,
these safeguards will likely work primarily through
policies that instruct the elements to rely only on in-
formation derived from sources that a human has
explicitly declared trustworthy. As policies become
more complex and more flexible, more of the work
of making trust decisions can be put into the elements
themselves. In fact, this will quickly become a ne-
cessity, as the complexity of the system of autonomic
elements grows.

Privacy issues

One of the factors in the increasing number and com-
plexity of information systems is the increasing
amount of information available to be processed.
Much of this information is personal information,
relevant to some individual who may desire to con-

trol how the information is gathered, and how it is
used or distributed. Different jurisdictions have dif-
ferent definitions of personal information, give in-
dividuals different degrees of legal control over such
information, and impose different legal requirements
on entities that hold such information. The Euro-
pean Union’s Directive on the Protection of Personal
Data, the United Kingdom’s Data Protection Act of
1988, and U.S. regulations on the privacy of medical
records are current examples. Some industry groups

Figure 2 Data leak via back door implanted in functional  
 unit
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adhere to voluntary guidelines on personal data pro-
tection, and individual enterprises often have their
own privacy policies that govern the use and distri-
bution of personal information. Contractual relation-
ships may also call for specific handling of personal
data.

If autonomic computing is to reach its potential, au-
tonomic elements must be able to gather, transmit,
and process personal data in a way that respects the

relevant privacy policies, without requiring direct hu-
man intervention or assistance. Architecturally, this
means that autonomic elements must maintain rep-
resentations of both the applicable data protection
policies and the privacy status of the various kinds
of information that they process. It must be possible
for an autonomic element to reliably and automat-
ically determine the data protection class of each unit
of data that it deals with, and to securely and au-
tomatically retrieve the correct policy to apply to that
class of data. It must be possible to make routine
changes in policies without changing the underlying
programming or architecture, since laws and guide-
lines on personal data protection are in a state of
constant flux and are likely to remain so for some
time.

Security and privacy negotiation

It is not enough for an element of an autonomic com-
puting system to ensure its own security or its own
privacy measures. Because it depends critically on
other elements, it must also be able to trust the se-
curity and privacy of those other elements. An au-
tonomic computing system that spans domain bound-
aries must allow elements to negotiate security and
privacy policies, and to gather and securely exchange
the information required to verify compliance and
to satisfy audit requirements. This will require on-
tologies and standards expressive enough to allow
the specification and negotiation of security and pri-
vacy policies, as well as both technologies and stan-
dards for record keeping and auditing of behavior
relevant to these policies. (Existing technologies in

this space, such as Platform for Privacy Preferences
(P3P),13 are currently aimed at allowing individual
retail users to specify simple static privacy policies;
the requirements for autonomic computing will go
far beyond this.) New cryptographic techniques and
other technologies will be needed to allow data to
be anonymized or aggregated where required, and
to be encoded so as to be secure against various new
and old types of threat.

Security and privacy policies and their negotiation
must be able to take complex political and geograph-
ical situations into account. This is one area where
geography does not disappear in cyberspace. If an
autonomic element has data that, by law, may not
enter a certain region of the world, then the elements
to which it provides those data must be able to prom-
ise, and later perhaps auditably prove, that they did
not ship the data to that region, and that each other
element to which they provided those data made the
same promise and can provide the same audit data.
The same considerations apply to nongeographic re-
strictions. Powerful and flexible ways to specify how
data may and may not be processed are needed, as
data move through a complex autonomic system. In
some applications, it may be necessary for one party
to monitor, in more or less real time, the things that
have happened to the sensitive data that have been
provided to the system. Enabling this in a real sys-
tem will be a significant challenge.

Further opportunities

Autonomic techniques offer opportunities for in-
creasing system security, both at the level of single
elements, and in systems made up of many elements.
The key advantage at the level of the single element
will be the explicit representation and enforcement
of security policies; as we have pointed out previ-
ously, system security will no longer rely on high-level
security policies being accurately converted into low-
level implementation when the system is first coded
and configured. Instead, autonomic elements will
maintain representations of both the security pol-
icies in effect and the tasks to be performed, and will
be able to ensure that the actions they take conform
to the relevant security policies. With this opportu-
nity come challenges: it will require considerable in-
vention to ensure that the various security policies
in use by the autonomic elements in a system are
compatible, to verify that the collective behavior that
they produce has desirable overall security proper-
ties, and to design mechanisms to automatically han-
dle policy conflicts that arise.

Autonomic techniques
offer opportunities

for increasing
system security.
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Very few autonomic elements will operate in a vac-
uum. Many groups of elements in an autonomic sys-
tem will in fact have the same interests, or at least
significantly overlapping interests. When a large
number of elements have an interest in the security
of some part of the system, they may be willing to
provide or exchange security-relevant information
and to allow it to be aggregated. An element could
provide security analysis as a service; any other el-
ement willing to provide it with security-relevant data
could benefit from analysis of all of the aggregated
data, potentially discovering nascent or ongoing at-
tacks that would not be visible from examining only
a single data set, or that might not have been dis-
tinguishable from innocent traffic. This sort of col-
laborative distributed intrusion detection is some-
times done on an ad hoc basis today; autonomic
computing will allow it to become routine. Many
other security-relevant services, such as third-party
signing, time stamping, and security auditing might
be provided as services by elements of an autonomic
system.

As presented in the next section, the practicality of
automated security response has already been dem-
onstrated in the form of “immune system”-style
countermeasures against replicating threats such as
viruses and worms. Autonomic computing will pro-
vide a sound infrastructural basis for this kind of au-
tomated security collaboration.

The policy-management advantages that autonomic
computing offers to a single element also apply to
groups of elements in the same administrative do-
main, or otherwise under the control of the same
set of policies. Ultimately, the owner of an autonomic
system will need to be concerned only with security
policies at the level of overall business objectives and
operating standards, and the autonomic elements
comprising the system will automatically derive and
distribute the lower-level policies constraining their
detailed operation. In the shorter term, humans will
still be involved in the creation of middle-level and
even low-level policies, but by securely distributing
these policies to all the elements of the autonomic
system, significant amounts of effort (and opportu-
nities for error) will be avoided.

Sample products and implications

In this section, we discuss security issues in two ex-
isting systems that exhibit various kinds of autonomic
behavior.

Immune system. In the 1990s, replicating security
threats in the form of computer viruses and worms
became a significant problem for the computing com-
munity. One effective response to that threat was the
development of a biologically inspired “immune sys-
tem,” as described in Reference 14. Although this
immune system predates the idea of autonomic com-
puting as we present it here, it was one of the pro-
genitors of that idea, and the architecture and de-
sign of the system have autonomic aspects that are
worth considering.

Key to the effectiveness of the antivirus immune sys-
tem is that it automates many of the activities in-
volved in discovering a new virus and protecting com-
puter systems against it. Until the development of
the immune system, many parts of the process de-
pended on human action. A new virus (discovered
either by heuristics in antivirus programs or by a user
noticing odd system behavior) would be manually
captured and forwarded to an antivirus company.
There it would be analyzed by a human expert using
various debugging and analysis tools. That expert
would then develop a virus “definition,” containing
instructions for detecting and removing the new vi-
rus. That definition would be manually added to the
set of definitions used by the antivirus program, and
the new definitions placed on update servers for users
of the antivirus program to download. Although
some antivirus programs had begun to include sched-
uled update facilities that would automatically down-
load and install the latest available definitions at
some fixed interval, the rest of the process was al-
most entirely manual, and therefore limited in speed
by the availability of skilled humans.

The immune system automates every stage of this
process. The antivirus software on a protected cli-
ent system uses a variety of heuristic methods to de-
tect and identify files or other objects that may con-
tain a new virus. A suspect file is encrypted and
securely transmitted to an analysis center, where it
is exercised and encouraged to spread within a pro-
tected environment. After it spreads, it is automat-
ically analyzed, new detection and repair informa-
tion is extracted, and the updated definitions are
tested and provided to both the original infected sys-
tem and to any other systems that are registered to
receive automatic updates. At various stages of the
process (especially during analysis) the system will
defer to human experts if the virus does not yield to
automatic methods, but for a significant percentage
of new viruses the entire process proceeds without
human intervention.
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Various aspects of the immune system contain les-
sons for the development of secure autonomic el-
ements. Perhaps the most important is that in a highly
connected world, security threats can spread very
quickly, and it is vital that the security response be
correspondingly quick. Autonomic elements con-
cerned with security must also be able to function
under the sudden heavy loads often caused by wide-

spread security incidents; the immune system uses
a hierarchical network of gateways that cache the
results of virus analysis and thus prevent a sudden
flood of suspect files from bogging down the anal-
ysis center.

Autonomic elements should also have the ability to
ask for human confirmation of security-relevant ac-
tions. The component of the immune system that for-
wards a suspect file from a protected machine to the
central analysis center can be configured to ask an
administrator for confirmation before sending. At
the same time, it should also be possible to config-
ure the system so that this confirmation is not re-
quired; where a sufficient trust relationship exists be-
tween the protected enterprise and the owner of the
analysis center, the confirmation can be turned off,
so that suspect files are immediately forwarded. The
security policies that govern autonomic elements
must be flexible enough to allow this sort of configu-
rability in connection with human confirmation.

Another lesson learned from the development and
deployment of the antivirus immune system is a psy-
chological one. While the system was being devel-
oped, considerable skepticism was expressed by ex-
perts in the field (including some of the antivirus
experts involved in the development of the system)
about the feasibility of creating an automatic system
that would perform as well as a skilled human at crit-
ical security-related tasks (such as deriving recog-
nition definitions for computer viruses). Those fears
proved unfounded. Although the system does have
decision points at which it can defer to a human ex-
pert when a particular virus is not automatically ana-

lyzable, for a typical virus the system does as well or
better than human experts. In particular, the virus
recognition patterns extracted by the immune sys-
tem proved to be more powerful for detection, and
less prone to false alarms, than those manually cho-
sen by human experts.

The antivirus immune system we have just described
is not the only computer security system inspired by
biological analogies; see for instance Reference 15
for another approach inspired by biological immune
systems and Reference 16 for a security system in-
spired by homeostatic processes.

Secure distributed storage. The central idea of the
Secure Distributed Storage (SDS) solution is to ef-
ficiently spread important information over several
separate servers in such a way that it is highly avail-
able, reliable, self-correcting, and self-protecting.17

Let us assume that we want to store a file in an SDS
system. The SDS system does not simply send a copy
of the file to each server, since that would require
every server to have enough storage to hold a com-
plete copy of the file. Instead, the file is processed
in a special way that breaks up the file into pieces,
with each piece being significantly smaller than the
original file. Each piece is then sent to a different
server. This provides very efficient distributed stor-
age.

Because of the special process that was used to break
the file into pieces, one has only to retrieve the orig-
inal pieces from just over half of the servers in order
to completely reassemble the original file. It does
not matter which pieces are retrieved, as long as at
least half of them are. This allows for the other serv-
ers to have gone off-line or otherwise be unavailable.
In addition, the SDS also provides a means by which
compromised, malicious servers may be detected
when a retrieval operation is underway. These ca-
pabilities allow the SDS to provide highly available,
self-healing storage.

An SDS system consists, by definition, of several dis-
tinct servers. When depositing a file into an SDS sys-
tem, the user can initiate the deposit of the file via
any one of these servers. That is, any one of the avail-
able servers in an SDS system can act as the user’s
“gateway” for storing files. Similarly, when request-
ing a retrieval, the user may direct the request to any
available server of the SDS. This also eliminates the
need for the user’s system to contact each of the dis-
tributed servers when attempting a deposit or re-
trieval. This transparency among the servers (auto-

Autonomic elements
must be able to function

under the sudden heavy loads
often caused by widespread

security incidents.
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nomic elements) directly supports more autonomic
behavior.

Finally, an SDS system can be configured to be self-
protecting. That is, since any of the servers might be
down, disconnected from the network, or compro-
mised by an attacker at any time, there must be some
means for reestablishing the trust of that server. If
a server was unavailable or disconnected, when it be-
comes available once again it sends the other serv-
ers a “What did I miss?” message and they all co-
operate to bring that server up to date. Similarly, if
a server has been compromised, that condition can
be detected, and that server is automatically ignored
until it can be reinitialized to restore its trustwor-
thiness. In addition, the SDS system is capable of
changing the representation of the data that it holds,
so that information “captured” by an attacker who
has broken into the system is useless. This is achieved
by having the system periodically shuffle the pieces
of a stored file across all the servers. This proactive
security feature provides the self-protecting attribute
of this autonomic system.

Conclusion

No functioning system is perfectly secure, and au-
tonomic systems will be no exception. The develop-
ment of autonomic systems cannot be delayed until
we have found final solutions to all the correspond-
ing security challenges, since such final solutions will
never be available. On the other hand, for autonomic
computing to succeed, it must be, and must be per-
ceived as being, secure enough that its benefits out-
weigh the risks. In this paper, we have outlined a
number of security and privacy challenges facing
those designing and developing autonomic systems,
and also a number of ways that autonomic princi-
ples can be used to make systems more secure than
they are today.

There is a need for further research in many areas.
Some of the key needs identified above include:

● Ways to represent and reason about the security
and privacy policies that govern autonomic systems

● Ways to represent and reason about security states,
and the trust relationships between elements

● Criteria and methods for effectively differentiat-
ing between normal system failures and failures
caused by malicious attacks

● Policies and algorithms for making autonomic el-
ements that are resistant to fraud and persuasion

● Common languages and taxonomies for commu-

nicating and negotiating about security and privacy
states and policies

● Ways to construct individual autonomic elements
so that their collective behavior is both trustwor-
thy and trusted

Autonomic computing offers as least as many ben-
efits in the security area as it does challenges. The
complexity of modern computing systems makes se-
cure systems administration a daunting task and one
that is seldom done well in practice. Recent advances,
including the growing use of automatic intrusion de-
tection systems, secure embedded processors, pro-
active security measures, and automated virus re-
sponse, have helped take some of the burden of
security maintenance off overloaded system admin-
istrators, but there is much more to do. By making
computing systems directly aware of the security pol-
icies that apply to them, and giving the systems the
ability to conform their actions to those policies, the
techniques of autonomic computing will help cre-
ate systems that are increasingly and consistently se-
cure.

**Trademark or registered trademark of Sun Microsystems, Inc.
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