
Measuring the Effectiveness of Self-Healing Autonomic Systems

Aaron B. Brown
1
 and Charlie Redlin

2

1IBM T.J. Watson Research Center (Hawthorne, NY), 2IBM Rochester Laboratory (Rochester, MN)
{abbrown,redlin}@us.ibm.com

1. Introduction

Benchmarks are a central force in engineering pro-

gress, providing the objective ability to quantify im-

provement and justify design decisions. In previous work,

we brought together the concepts of benchmarks and

autonomic computing, describing a vision of benchmarks

that quantitatively evaluate a computing system along the

four core autonomic dimensions of self-healing, self-

configuration, self-optimization, and self-protection [1,5].

In this paper, we describe our experience with implement-

ing a practical benchmark for the self-healing dimension

of autonomic capability, which goes beyond simple meas-
ures of fault tolerance [4] by including a measure of auto-
nomic maturity. Our benchmark is capable of quantifying

the autonomic self-healing capability of complex, produc-

tion-scale enterprise solutions based on J2EE middleware

(and indeed is currently being used for such purposes).

2. Architecture of self-healing benchmark

Our benchmark architecture, depicted in the figure be-

low, follows the basic pattern described in [1] and injects

disturbances into a System Under Test (SUT) subjected to

a performance workload. The SUT includes all compo-

nents necessary to run the SPECjAppServer
®
 2004 per-

formance workload [6], which simulates a realistic enter-

prise-class e-commerce application with manufacturing,

supply chain, and inventory components and web, Enter-

prise Java
™

 Bean, messaging, and database tiers. Note that

we use only the workload driver component of SPECj-

AppServer2004, and thus we are not conducting compli-

ant SPECjAppServer runs or reporting SPECjAppServer

results. Around that workload driver we wrap four addi-

tional components: a disturbance injector, a data integrity

checker, a reporting module, and a coordination driver.

Our benchmark injects 30 different types of distur-

bances representing common expected failure modes for

multi-tier enterprise application systems, including com-

ponent shutdowns, data loss, resource exhaustion, load

surges, operator errors, and restart failures. By adding

more types of disturbances to this set in the future (such

as security attacks and workload shifts), we expect to ex-

tend the benchmark to other autonomic capabilities.

Each disturbance is injected individually in a slot,

which is a fixed-length interval that includes a period of

steady-state operation preceding the injection, a detection

and recovery period, and a period of steady-state opera-

tion following recovery. If the SUT cannot autonomically

detect or recover from a disturbance, we apply a fixed

time penalty then use scripts to reproducibly simulate the

manual actions needed for detection or recovery.

We quantify the SUT’s self-healing capability with

two metrics: (1) a measure of how effectively the SUT

heals itself in response to the injected disturbances, and

(2) a measure of how autonomic that healing response is.

In our initial implementation, the first metric is calculated

quantitatively as the ratio of the number of SPECjApp-

Server2004 requests that complete successfully during the

injection slot to the number that complete successfully

during a baseline slot with no disturbance injected. The

second metric is calculated via a 90-question survey that

assigns points to the SUT based on the level of automa-

tion present in its response to each disturbance, following

the 5-point classification defined in the IBM Autonomic

Computing Maturity Model [3]: 0 points for a basic man-

ual response, 1 point for a managed response, 2 for pre-

dictive, 4 for adaptive, and 8 for autonomic. Both metrics

are calculated separately for each disturbance to provide

detailed feedback on the SUT’s behavior, but can be ag-

gregated across disturbances (via a weighted average) to

produce summary scores in the [0,1] range.

3. Example result

To explore the capabilities of our prototype bench-

mark, we built two SUT environments based on clustered

J2EE middleware and single-instance database, web, and

messaging servers. SUT #1 did not include autonomic

functionality; SUT #2 included a set of system manage-
System Under Test

SPECjAppServer2004

Workload Driver

Disturbance
Injector

AC Bench.
Driver

Reporter Integrity
Checker

Results

Disturbances

Workload

Response

Check
s

SPECj

Metric
s

IBM is a registered trademark of International Business Machines Corporation
in the United States, other countries, or both. Other company, product and
service names may be trademarks or service marks of others.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

ment technologies that we were evaluating for degree of

autonomic capability (the details of the SUT configura-

tions are elided for space reasons).

 Our baseline run on SUT #1 resulted in an average

healing effectiveness score of 0.79 and an autonomic ma-

turity score of 0.15 (both out of 1.0), indicating a rela-

tively low level of autonomic self-healing capability. In

comparison, SUT #2 attained an effectiveness score of

0.83 and a maturity score of 0.22. Comparing the two re-

sults indicates that SUT #2’s system management tech-

nology provided a small—but measurable—improvement

in autonomic capability. The detailed per-disturbance re-

sults provide insight into where SUT #2’s technology was

beneficial (in this case, in improving the autonomic han-

dling of component shutdowns), as well as in identifying

gaps in the technology (for example, highlighting classes

of disturbances that confuse the SUT’s self-healing

mechanisms, resulting in worse behavior). These example

results indicate the power of our benchmark in providing

quantitative technology comparisons and in steering auto-

nomic improvement efforts toward current problem areas.

4. Issues and discussion

While our results (such as the example above) demon-

strate the utility of our initial self-healing benchmark im-

plementation, there still many areas where the benchmark

could benefit from additional sophistication, and a set of

challenging issues to address in these areas.

Quantifying autonomic maturity. Since autonomic

computing is still in its infancy, most systems today have

low levels of autonomic maturity. More granularity is

needed in the benchmark’s maturity score to differentiate

these systems; also, a more objective, directly-quantified

metric is desirable. We are pursuing an approach based on

complexity analysis of manual healing processes [2], and

hope to ultimately map the quantitative measurement of

maturity into dollar cost.

Quantifying healing effectiveness. Our current meas-

ure of effectiveness considers only throughput of cor-

rectly-handled requests (subject to a response time cut-

off). To get a more complete picture of effectiveness,

these metrics must be extended to capture broader impacts

of disturbances, and in particular the impact of distur-

bances on SUT capacity and response time distribution.

Adding a measure of capacity degradation is the most

challenging aspect, since, depending on the workload, ca-

pacity, throughput, and response time can be linked.

Accounting for incomplete healing. A complete self-

healing cycle includes bypassing the component(s) af-

fected by a disturbance, repairing those components, and

reintegrating them into the SUT. A SUT might complete

only some of these stages of healing in response to a dis-

turbance, or alternately may simply tolerate the distur-

bance without any active healing process. The degree of

healing is not always evident from the effectiveness and

maturity scores we have described, yet it can affect the

SUT’s ability to tolerate future disturbances. An open is-

sue is whether the benchmark can be extended to identify

the extent of self-healing, perhaps via additional rounds of

disturbance injection.

Accounting for healing-specific resources. A SUT

may include resources dedicated to self-healing capability

(such as monitors, hot standby cluster nodes, spare disks,

etc.). To prevent situations where a system is intentionally

over-provisioned in order to get a good self-healing

benchmark score, the cost of these extra resources must

be factored into the benchmark result. Currently, we sim-

ply require that resources and their utilizations be reported

along with the benchmark results. We envision a more

advanced benchmark that measures these quantities auto-

matically and maps them to cost; combined with the cost-

based maturity metric proposed above, this would allow

the benchmark to estimate the overall cost (in resource

and labor) for the SUT’s healing capability.

Unified metrics. Ultimately, we imagine the results of

the self-healing benchmark (per-disturbance or in aggre-

gate) being reported on a 2-D space, with one axis meas-

uring effectiveness of self-healing as discussed above, and

the other measuring the cost of the healing capability (in-

cluding the cost of healing-dedicated resources and the

cost of human labor to fill in the gaps in autonomic re-

sponse). These are the natural evolution of our through-

put-degradation and autonomic maturity metrics, although

significant research work will be required to define and

validate these high-level metrics.

5. Conclusion

Our implementation of the first benchmark for auto-

nomic self-healing capability demonstrates the feasibility

and utility of autonomic computing benchmarks, and pro-

vides users with a quantitative way to measure the resil-

iency of their IT systems. However, there remains a great

deal of work ahead, to extend the existing benchmark to

address some of the issues discussed above, and to move

beyond self-healing to other autonomic capabilities. We

believe that quantitative benchmarks are critical to the

success of autonomic computing, and look forward to fu-

ture progress in this area.

4. References
[1] A.B. Brown, J.L. Hellerstein, et al. Benchmarking Autonomic

Capability: Promises and Pitfalls. ICAC 2004, NY, NY, June 2004.
[2] A.B. Brown, A. Keller, and J.L. Hellerstein. A Model of Con-

figuration Complexity and Its Application to a Change Management

System. IM 2005, Nice, France, May 2005.
[3] IBM Corp. Architectural Blueprint for Autonomic Computing,

www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf, 2004.

[4] K. Kanoun, H. Madiera, and J. Arlat. A Framework for Depend-
ability Benchmarking. 2002 Workshop on Dependability Benchmark-

ing (at DSN 2002), Washington, D.C., June 2003.

[5] S. Lightstone, J. Hellerstein, et al. Towards Benchmarking Auto-
nomic Computing Maturity. IEEE Workshop on Autonomic Comput-

ing Principles and Architectures, Banff, Alberta, Canada, 2003.

[6] SPECjAppServer2004 Design Document, Version 1.00, 2004,
http://www.spec.org/jAppServer2004/docs/ DesignDocument.html.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

