
Autonomic Group Protocol for Distributed Systems

Tomoya Enokido and Makoto Takizawa
Department of Computers and Systems Engineering

Tokyo Denki University
{eno, taki}@takilab.k.dendai.ac.jp

Abstract
An autonomic group protocol supports applications with

enough quality of service (QoS) in change of QoS supported
by networks and applications. An autonomic group service
is supported for applications by cooperation of multiple au-
tonomous agents. Each agent autonomously takes a class of
each protocol function like retransmission. Classes taken by
an agent are required to be consistent with but might be dif-
ferent from the others. A group is composed of views each of
which is a subset of agents and in each of which agents au-
tonomously take protocol classes consistent with each other.
We discuss a model of autonomic group protocol. We also
present how to autonomously change retransmission ways in
a group as an example.

1 Introduction
Peer-to-Peer (P2P) systems [1] are getting widely available

like grid computing [4] and autonomic computing [5]. Group
communication supports basic communication mechanism to
realize cooperation of multiple peer processes. Multiple peer
processes first establish a group and then messages are ex-
changed among the processes [2, 7, 8, 10, 12]. There are group
protocols which support the ordered and atomic delivery of
messages [2, 7, 8, 10, 12]. A group protocol is realized by pro-
tocol functions; multicast/broadcast, receipt confirmation, de-
tection and retransmission of messages lost, ordering of mes-
sages received, and membership management. There are var-
ious ways to realize each of these functions like selective and
go-back-n retransmissions [6].

The complexity and efficiency of implementation of group
protocol depends on what types and quality of service (QoS)
are supported by the underlying network. Messages sent by a
process may be lost and unexpectedly delayed due to conges-
tions and faults in the network. Thus, QoS parameters are dy-
namically changed due to congestions and faults. The higher
level of communication function is supported, the larger com-
putation and communication overheads are implied. Hence,
the system has to take only classes of functions necessary and
sufficient to support required service by taking usage of the
underlying network service.

The paper [12] discusses a communication architecture
which supports a group of multiple processes which satisfies
application requirements in change of network service. How-
ever, a protocol cannot be dynamically changed each time QoS
supported by the underlying network is changed. In addition,
each process in a group has to use the same protocol functions.
It is not easy to change protocol functions in all the processes
since a large number of processes are cooperating and some
computers like personal computers and mobile computers are

not always working well.
In this paper, we discuss an autonomic group protocol

which can support types and quality (QoS) of service required
by applications even if QoS supported by the underlying net-
work is changed. Each protocol module is realized in an au-
tonomous agent. An agent autonomously changes implemen-
tation of each group protocol function depending on network
QoS monitored. Here, an agent might take different types of
protocol functions from other agents but consistent with the
other agents. We discuss what combination of protocol func-
tions are consistent. Each agent has a view which is a subset
of agents to which the agent can directly send messages. If a
group is too large for each agent to perceive QoS supported by
other agents and manage the group membership, the group is
decomposed into views. In each view, messages are exchanged
by using its own consistent protocol functions. A pair of dif-
ferent views might take different protocols.

In section 2, we show a system model. In section 3, we dis-
cuss classes of protocol functions. In section 4, we present an
agent-based architecture to support the autonomic group ser-
vice. In section 5, we discuss how to change retransmission
functions.

2 System Model

2.1 Autonomic group agent

A group of multiple application processes A1, ..., An (n
≥ 2) are cooperating by taking usage of group communication
service. The group communication service is supported by co-
operation of multiple peer autonomous group (AG) agents
p1, ..., pn through exchanging messages by taking usage of
underlying network service [Figure 1]. For simplicity, a term
“agent” means an AG agent in this paper. The underlying net-
work supports a pair of agents with communication service
which is characterized by quality of service (QoS) parame-
ters; delay time [msec], message loss ratio [%], and bandwidth
[bps].

The cooperation of multiple AG agents is coordinated by
a group protocol. A group protocol is realized in a collec-
tion of protocol functions, transmission, confirmation, retrans-
mission, ordering of message, detection of message lost, co-
ordination schemes, and membership management. There are
multiple ways to implement each protocol function. A proto-
col function class means a way of implementation of proto-
col function. The classes are stored in a protocol class base
(CB). Each application process Ai takes group communica-
tion service through an agent pi. Each agent pi autonomously
takes one class for each group protocol function from the pro-
tocol class base CB, which can support an application with

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

necessary and sufficient QoS by taking usage of basic commu-
nication service with given QoS supported by the underlying
network. Each agent pi monitors QoS supported by the un-
derlying network. The network QoS information monitored is
stored in a QoS base (QB) of pi. If enough QoS cannot be sup-
ported or too much QoS is supported for the application, the
agent pi reconstructs a combination of group protocol function
classes which are consistent with the other agents by selecting
a class for each protocol function in the CB. Here, each agent
negotiates with other agents to make a consensus on which
class to take for each protocol function. In the paper, we dis-
cuss how each agent autonomously change protocol function
classes in change of QoS monitored.

AApplication layer

System layer

Network layer

Application group

Autonomic group

Network

1 A i A n

p 1 p i p n

Figure 1. System model.

Coordination

Transmission

Confirmation

Retransmission

Detection of
message loss

CB

AG
agent

Application requirement

Change of network QoS

QB

Ordering of
messages

Membership
management

AG
agent

Figure 2. Autonomic group protocol.

2.2 Views

A group G is composed of multiple autonomous group
(AG) agents p1, ..., pn (n > 1). An agent is an autonomous
peer process which supports application process with group
communication service by exchanging messages with other
agents. The cooperation of agents is coordinated in a dis-
tributed way. In a group G including larger number of agents,
it is not easy for each agent to deliver messages to all the agents
and maintain membership information. Each agent pi has a
view V (pi) which is a subset of agents to which the agent pi

can deliver messages directly or indirectly via agents. Thus,
a view is a subgroup of the group G. We assume that for ev-
ery pair of agents pi and pj , pi in V (pj) iff pj in V (pi). Each
agent pi maintains membership of its view V (pi). Current in-
formation systems are composed of local networks which are
interconnected with each other in a trunk network. Here, a
view can be a collection of agents interconnected in a local
network. A pair of different views V1 and V2 may include a
common agent pk . The agent pk is a gateway agent between
agents in V1 and V2. A collection of gateway agents which
are interconnected in a trunk network is also a view V3. Here,
the views V1, V2, and V3 are hierarchically structured. If an
agent pi belongs to only one view, pi is a leaf agent. An agent
pi which takes a message m from an application process Ai

and sends the message m is an original sender agent of the
message m. If an agent pj delivers a message m to an ap-
plication process Aj , the agent pj is an original destination
agent of the message m. If an agent pk forwards a message
m to another agent in a same view V , pk is a routing agent.
Let src(m) be an original source agent and dst(m) be a set of

original destination agents. A local sender and destination of
a message m are agents which send and receive m in a view,
respectively.

A view V which includes all the agents in a group G is
referred to as complete. A global view is a complete view in a
group G. If V ⊂ G, V is partial. A partial view V is changed
if an agent joins and leaves the view V . If a view V (pi) is
changed, V (pi) is dynamic. For example, an agent pi sends
each message to different agents. If V (pi) is invariant, V (pi)
is static.

p
2

p
3

p
5

p
1

m m

 V2

 V1
: Gateway agent

: Routing agent

p
4

Figure 3. Group views.

3 Functions of Group Protocol

A group protocol is realized in a collection of follow-
ing protocol functions: coordination of the agents, message
transmission, receipt confirmation, retransmission, detection
of message loss, ordering of messages, and membership man-
agement. There are multiple ways to realize each of these
functions. A class of a protocol function shows one way to
implement the protocol function. One protocol module for
an autonomous group (AG) agent is a collection of protocol
classes, each of which is for one protocol function. We discuss
what classes exist for each protocol function in this section and
what combination of classes are consistent in the succeeding
section.

There are centralized and distributed approaches to coor-
dinating the cooperation of agents in a view. In the centralized
control, there is one centralized controller in a view V . On the
other hand, there is no centralized controller in the distributed
control scheme. Each agent makes a decision on correct re-
ceipt, delivery order of messages received, and group mem-
bership by itself.

(2) Direct transmission

 (3) Indirect transmission

(1) Centralized transmission

 View V View V

 View V

Figure 4. Transmission schemes.

There are centralized, direct, and indirect approaches
to multicasting a message to multiple agents in a view [Fig-
ure 4]. In the centralized transmission, an agent first sends a
message to a forwarder agent and then the forwarder agent
forwards the message to all the destination agents in a view
[Figure 4 (1)]. The forwarder agent plays a role of a central-
ized controller. It takes at least two rounds to deliver mes-
sages since every message is forwarded by the controller. In
the direct transmission, each agent directly not only sends a
message to each destination agent but also receives messages
from other sender agents in a view V [Figure 4 (2)]. Thus, a
message can be delivered to every destination by one round.
In the indirect transmission, a message is first sent to some
agent in a view V . The agent forwards the message to another

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

agent and finally delivers the message to the destination agents
in the view V [Figure 4 (3)]. Tree routing [3] is an example. It
takes a longer time than one round to deliver a message in the
indirect transmission scheme.

(2) Direct confirmation

(3) Indirect confirmation

(1) Centralized confirmation

(4) Distributed confirmation

: message : confirmation : controller

 View V View V

 View V View V

Figure 5. Confirmation schemes.

There are centralized, direct, indirect, and distributed
schemes to confirm receipt of a message in a view V . In the
centralized confirmation, every agent sends a receipt confir-
mation message to one confirmation agent in a view V . Af-
ter receiving confirmation messages from all the destination
agents, the destination agent sends a receipt confirmation to
the local sender agent [Figure 5 (1)]. In the direct confir-
mation, each destination agent pi in the view V sends a re-
ceipt confirmation of a message m to the local sender agent
pi which first sends the message m in the view V [Figure 5
(2)]. In the indirect confirmation, a receipt confirmation of a
message m is sent back to a local sender agent pi in a view V
by each agent pj which has received the message m from the
local sender agent pi [Figure 5 (3)]. In the distributed con-
firmation, each agent which has received a message m sends a
receipt confirmation of the message m to all the other agents
in the same view [10] [Figure 5 (4)]. Each agent in a same
view V can know whether or not all the other agents in V have
received a same message m by using the distributed confirma-
tion scheme.

time

p
1

p
2

p
3

m
1

m
2

m
1 delay

Figure 6. Causally ordered delivery.

A group of multiple agents are exchanging messages in the
network. A message m1 causally precedes another message
m2 (m1 → m2) if and only if (iff) a sending event of m1

happens before a sending event of m2 [7]. A message m1

is causally concurrent with another message m2 (m1 ‖ m2) if
neither m1 → m2 nor m2 → m1. For example, suppose there
are three agents p1, p2, and p3 in a group G [Figure 6]. An
agent p1 sends a message m1 to a pair of agents p2 and p3.
The agent p2 sends a message m2 to p3 after receiving another
message m1. Here, m1 causally precedes m2 (m1 → m2).
Due to communication delay, m1 may arrive at p3 after m2.
The agent p3 is required to deliver m1 before m2 because m1

→ m2. Messages received are ordered by each agent in the
distributed approach. In order to causally deliver messages,
realtime clock with NTP (network time protocol) [9], linear
clock [7], and vector clock [8] are used.

There are sender and destination retransmission schemes

with respect to which agent retransmits a message m lost [Fig-
ure 7]. Suppose an agent pj sends a message m to agents and
one destination agent pi fails to receive m. In the sender
retransmission, the local sender agent pj which first sent
the message m in the view V retransmits the message m to pi.
In the destination retransmission, one or more than one
destination agent in the view V which have safely received the
message m forwards m to the agent pi which fails to receive m
[Figure 7 (2)]. In the distributed confirmation, each agent can
know if every other destination agent safely receives a message
m.

(1) Sender retransmission.

fail to receive retransmission

(2) Destination retransmission.

: :

m
m

pj

pi

pj
m
m

m

pk

pi

 View V View V

Figure 7. Retransmission scheme.

There are centralized and distributed ways for managing
the membership. In the centralized way, one membership man-
ager communicates with all the member agents to obtain their
states. In the distributed way, each agent obtains the states of
the other agents by communicating with other agents.

A centralized system is one with centralized coordina-
tion, transmission, and confirmation. There is one controller
which forwards messages to destination agents and confirms
receipt of messages. Most traditional distributed systems like
teleconference systems and Amoeba [11] take the centralized
approach. A system with distributed coordination, transmis-
sion, and centralized confirmation system is classified to be
decentralized. ISIS [2] takes the decentralized approach. A
sender agent coordinates transmission and receipt of a mes-
sage. Destination agents send the receipt confirmation to the
sender agent. Takizawa et al. [10] take the distributed ap-
proach which coordination, transmission, and confirmation are
distributed. Here, every destination agent sends the receipt
confirmation to not only the sender agent but also all the other
destination agents.

4 Autonomic Group Protocol

4.1 Consistent combination of classes
Each autonomous group (AG) agent takes a collection

of classes for protocol functions to communicate with the
other agents. In this paper, we consider significant proto-
col functions, coordination, transmission, confirmation, and
retransmission functions. Let F be a set of the signifi-
cant protocol functions {C(coordination), T (transmission),
CF (confirmation), R(retransmission)}. For each protocol
function F in F, Cl(F) shows a set of classes each of which
shows one way of implementation of the protocol function
F . For example, Cl(C) = {C(centralized), D(distributed)}.
Table 1 shows classes for protocol functions.

We rewrite F to be a set {F1, F2, F3, F4} of protocol func-
tions where 〈 F1, F2, F3, F4 〉 = 〈 C , T , CF , R 〉. A tuple 〈
c1, c2, c3, c4 〉 ∈ Cl(F1) × Cl(F2) × Cl(F3) × Cl(F4) is re-
ferred to as a protocol instance. Each agent takes a protocol
instance C = 〈 c1, c2, c3, c4 〉, i.e. a class ci is taken for each
protocol function fi (i = 1, 2, 3, 4). We discuss what protocol
instance each agent can take to communicate with the other
agents.

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

Table 1. Protocol classes.
Function f Protocol classes Cl(f)
C {C(centralized), D(distributed)}
CF {Cen(centralized), Dir(direct), Ind(indirect), Dis(distributed)}
T {C(centralized), D(direct), I(indirect)}
R {S(sender), D(destination)}

As discussed in the preceding section, the destination re-
transmission scheme can be taken in the distributed confirma-
tion scheme but not in the centralized one. A protocol instance
〈 c1, c2, c3, c4 〉 is referred to as consistent iff an agent taking
the instance can operate. If an agent takes an inconsistent pro-
tocol instance, the agent cannot work. Thus, only some proto-
col instances of function classes are consistent. An agent can
take only a consistent protocol instance. Table 2 summarizes
possible protocol profiles. A protocol profile is a consistent
protocol instance which each agent can take. Protocol profiles
are shown in Table 2. A profile signature “c1c2c3c4” denotes
a protocol profile 〈 c1, c2, c3, c4 〉. For example, DDDirS
shows a protocol profile 〈 D, D, Dir, S 〉 which is composed
of distributed control, direct transmission, direct confirmation,
and sender retransmission. Let P be a set of the protocol pro-
files which are show in Table 2.

4.2 Consistent set of profiles

Suppose autonomous group (AG) agents p1, ..., pn are in a
view V of a group G. Let Ci show a consistent protocol in-
stance, i.e. protocol profile taken by an agent pi, Ci = 〈 ci1, ...,
ci4 〉 ∈ P. A global protocol instance C for a view V = {p1, ...,
pn} is a tuple 〈 C1, ..., Cn 〉 where each Ci is a protocol profile
which an agent pi takes. Here, each Ci is referred to as local
protocol instance of an agent pi (i = 1, ..., n). In traditional
protocols, every agent has to take a same local protocol in-
stance, i.e. C1 = · · · = Cn. Hence, if some agent pi would like
to change a class cik of a protocol function Fk with another
one cik’, all the agents have to be synchronized to make con-
sensus on a new protocol instance. A global protocol instance
C = 〈 C1, ..., Cn 〉 is referred to as complete if C1 = · · · = Cn.
If Ci �= Cj for some pair of agents pi and pj , a global protocol
instance C = 〈 C1, ..., Cn 〉 is incomplete. A global proto-
col instance C = 〈 C1, ..., Cn〉 is consistent if a collection
of agents where each agent pi takes Ci can be cooperating. A
global protocol profile is a consistent global protocol instance.
It is trivial a complete global protocol instance is consistent. In
this paper, we discuss a group protocol where a view of agents
p1, ..., pn can take an incomplete global protocol instance C
= 〈 C1, ..., Cn 〉. First, suppose that a global protocol instance
C = 〈 C1, ..., Cm 〉 is complete and some agent pi changes
a local protocol instance Ci with another one C ′

i. We discuss
whether or not a global protocol instance 〈 C1, ..., Ci−1, C ′

i,
Ci+1, ..., Cn 〉 is consistent, i.e. all the agents p1, ..., pn can
cooperate even if C ′

i �= Cj for some agent pj .
According to change of network QoS and application re-

quirement, each agent autonomously changes the protocol pro-
file. For example, suppose an agent p3 belongs to a pair of
views V1 and V2 [Figure 8]. In the view V1 where all of the
agents take DDDirS, an agent p1 sends a message m to all the
other agents. On receipt of the message m, an agent p3 with
DDDirS forwards the message m to the other agents p5 and
p6 which belong to another view V2 with DDDisD. Here, the
agent p3 can receive the receipt confirmation of the message m

from a pair of agents p5 and p6 in the view V2. In addition, the
agent p3 sends back the receipt confirmation of the message m
to the original sender agent p1. Here, the original sender agent
p1 can receive the receipt confirmation from all the destination
agents in the view V1. Therefore, the agent p3 does not need to
change the profile since the agent p3 can forward the message
m to another agent in the view V2.

DDDirS

DDDirS

DDDirS

DDDirS

P3

P2

P4

P1

 View V1

DDDisD

P5

DDDisD

P6

 View V2

Figure 8. Change of profiles.

5 Retransmission

We discuss how an autonomous group (AG) agent can au-
tonomously change the retransmission classes in a group as an
example.

5.1 Cost model

Suppose there are three autonomic group (AG) agents ps,
pt, and pu in a view V . An agent ps sends a message m to
a pair of agents pt and pu. Then, the agent pt receives the
message m while another agent pu fails to receive m. Here,
pu is referred to as faulty. The following notations are used
to discuss a cost model for a pair of agents ps and pt:

1. dst = delay time between agents ps and pt [msec].
2. fst = probability that a message is lost.
3. bst = bandwidth [bps].

ps pt pu

m

m

DTsu

time

m

ps pt pu

m

m

DTsu

time

m

A. dst dsu + dtu B. dst dsu + dtu< >

Figure 9. Destination retransmission.

First, let us consider the sender retransmission. Let |m|
show the size of a message m [bit]. It takes (2dsu+ |m| / bsu)
[msec] to detect message loss after the agent ps sends a mes-
sage m. Then, the agent ps retransmits m to pu. Here, the
message m may be lost again. The expected time STsu and
number SNsu of messages to be transmitted to deliver a mes-
sage m to a faulty destination pu are given as follows:

1. STsu = (2dsu + |m| / bsu) / (1 − fsu).
2. SNsu = 1 / (1 − fsu).

In the destination retransmission, some destination agent
pt forwards the message m to the agent pu [Figure 9]. The

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

Table 2. Protocol profiles.
Control Transmission Confirmation Retransmission Signature

Centralized Centralized Centralized Sender CCCenS
Distributed Direct Direct Sender DDDirS

Distributed Sender DDDisS
Destination DDDisD

Indirect Direct Sender DIDirS
Indirect Sender DIIndS
Distributed Sender DIDisS

Destination DIDisD

expected time DTsu and number DNsu of messages to deliver
a message m to pu are given as follows:

1. DTsu = (dsu + |m| / bsu + dut) + (2dut + |m| / but) / (1
− fut) if dst ≤ dsu + dut.

DTsu = (dst + |m| / bst) + (2dut + |m| / but) / (1 − fut)
otherwise.

2. DNsu = 1 + 1 / (1 − fut).

If STsu > DTsu, the destination agent pt can forward the
message m to the faulty agent pu because the message m lost
can be delivered earlier.

Each agent pt monitors delay time dut, bandwidth but, and
message loss probability fut for each agent pu which are re-
ceived in the QoS base (QB). For example, the agent pt obtains
the QoS information by periodically sending QoS information
messages to all the agents in a view. The agent pt maintains
the quality of service (QoS) information in a variable Q of QB
where Qut = 〈 but, dut, fut 〉 for u = 1, ..., n. If the agent pt

receives QoS information from another agent ps, Qsu = 〈 bsu,
dsu, fsu 〉 for u = 1, ..., n.

5.2 Change of retransmission scheme

Suppose an agent ps sends a message m and every agent
pt take the sender retransmission scheme, Ct = 〈 · · ·, S 〉. As
shown in Figure 10, an agent pu fails to receive the message m.
According to the change of QoS supported by the underlying
network, the sender agent ps makes a decision to change the re-
transmission scheme with the destination one, say an agent pt

forwards the message m to the agent pu. However, the agent pt

still takes the sender retransmission. Here, no agent forwards
the message m to pu.

Next, suppose all the agents is taking the destination re-
transmission scheme. Here, QoS supported by the network is
changed and the agent pt decides to take the sender retrans-
mission scheme. However, no agent forwards the message m
to the agent pu since the sender agent ps still takes the desti-
nation retransmission scheme. In order to prevent these silent
situations, we take a following protocol:

1. A sender agent ps sends a message m to all the destina-
tion agents. Every destination agent sends receipt con-
firmation not only to the sender agent ps but also to the
other destination agents [Figure 10].

2. If an agent pt detects that a destination agent pu has
not received the message m, pt selects a retransmission
scheme which pt considers to be optimal based on the
QoS information Q.

2.1 If pt is a destination agent and changes a retransmis-
sion scheme, pt forwards m to pu and sends Retx
message to the sender agent ps.

2.2 If pt is a sender of a message m and takes a sender
retransmission scheme, pt retransmits m to pu. If pt

takes a destination retransmission scheme, pt waits
for Retx message from a destination. If pt does not
receive Retx, pt retransmits m to pu.

It is straightforward for the following theorem to hold from
the definition.
[Theorem] At least one agent forwards a message m to an
agent which fails to receive the message m. �

ps pt pu
m

DTsu

time

m

Confirmation

Retx

Confirmation

Figure 10. Retransmission.

6 Evaluation
We evaluate the autonomic group protocol (AGP) in terms of
delivery time of a lost message. We make the following as-
sumptions on this evaluation.

Figure 11. dsu ≥ dst + dut.

1. dst = dts for every pair of ps and pt.
2. The protocol processing time of every process is same.
3. No confirmation message is lost although messages may

be lost.

Let us consider a view V = {ps, pt, pu} where every
agent takes a profile DDDisS, distributed control, direct trans-
mission, distributed confirmation, and sender retransmission.
Here, suppose that an agent ps sends a message m to a pair of
agents pt and pu in a view V . Then, the agent pt receives the
message m while another agent pu fails to receive m. After

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

ps

pt

pu ps

pt

pu ps

pt

pu

40ms

100ms

40ms 60ms

100ms

20ms 20ms

100ms

60ms

A. dsu dst + dtu

1. dst = dtu 2. dst > dtu 3. dst < dtu

ps

pt

pu ps

pt

pu
ps

pt

pu

100ms

40ms

40ms 100ms

60ms

20ms 100ms

20ms

60ms

1. dsu = dtu 2. dsu > dtu 3. dsu < dtu

ps

pt

pu ps

pt

pu
ps

pt

pu

40ms

40ms

100ms 20ms

60ms

100ms 60ms

20ms

100ms

1. dsu = dst 2. dsu > dst 3. dsu < dst

B. dsu dst + dtu, dst > dsu and dst > dtu C. dsu dst + dtu, dtu > dsu and dtu > dst > < <

Figure 12. AG agent graph.

the sender ps and destination pt detect the destination agent
pu fails to receive the message m, the agents ps and pt au-
tonomously select a retransmission scheme based on the QoS
information. Here, we evaluate time to deliver a message m to
a faulty agent pu. In the view V , we assume that bandwidth be-
tween every pair of agents is same (bst = bsu = but = 10Mbps)
and fst = fsu and fut = 0%. Figure 12 shows an AG agent
graph for the view V where each node denotes an agent and
each edge shows a communication channel between agents. A
label of the edge indicates delay time.

First, we consider a case dsu ≥ dst + dut. There are further
cases: dst = dut [Figure 12 A.1], dst > dut [Figure 12 A.2],
and dst < dut [Figure 12 A.3]. Figure 11 shows the expected
time DTsu for three cases. In Figure 11, horizontal axis shows
a message loss probability of fsu and fut. For case of Figure
12 A.2, DTsu < STsu. For case of Figure 12 A.1, DTsu <
STsu if fsu > 15% and fut > 15%. For case of Figure 12 A.3,
DTsu < STsu if fsu > 50% and fut > 50%.

Figure 13. dsu ≤ dst + dut, dst > dsu, and dst > dut.

Next, we consider a case dsu ≤ dst + dut. There are further
following cases [Figure 12]:

a. dst > dsu and dst > dut: dsu = dut [B.1], dsu > dut

[B.2], and dsu < dut [B.3].
b. dut > dsu and dut > dst: dsu = dst [C.1], dsu > dst

[C.2], and dsu < dst [C.3].
The expected time DTsu [Figure 12 B and 12 C] is shown

for these six cases in Figures 13 and 14. For cases of Figure 12
B.1 and B.3, DTsu > STsu. For case of Figure 12 B.2, DTsu

< STsu if fsu > 20% and fut > 20%. For case of Figure 12
C, DTsu > STsu.

7 Concluding Remarks

In this paper, we discussed an agent-based architecture to
support distributed applications with autonomic group service
in change of network and application QoS. Autonomous group
(AG) agents are cooperating to support group service for appli-
cation. We made clear what classes of functions to be realized
in group communication protocols. Every agent autonomously

Figure 14. dsu ≤ dst + dut, dut > dsu, and dut > dst.

changes class of each protocol function which may not be the
same as but are consistent with the other agents in a group.
We discussed how to support applications with the autonomic
group service by changing retransmission schemes, sender and
destination retransmission as an example. We showed which
retransmission scheme can be adopted for types of network
configuration in the evaluation.

References

[1] P. E. Agre. P2p and the promise of internet equality. Commu-
nication of the ACM, 46(2):39–42, 2003.

[2] S. A. Birman, K. and S. P. Lightweight causal and atomic group
multicast. ACM Trans. on Computer Systems, 9(3):272–290,
1991.

[3] S. Deering. Host groups: A multicast extension to the internet
protocol. RFC 966, 1985.

[4] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers,
1999.

[5] IBM Corporation. Autonomic computing architecture : A
blueprint for managing complex computing environments.
2002. http://www-3.ibm.com/autonomic/pdfs/ACwhitepaper
1022.pdf.

[6] M. F. Kaashoek and A. S. Tanenbaum. An evaluation of the
amoeba group communication system. Proc. of IEEE ICDCS-
16, pages 436–447, 1996.

[7] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. CACM, 21(7):558–565, 1978.

[8] F. Mattern. Virtual time and global states of distributed systems.
Parallel and Distributed Algorithms, pages 215–226, 1989.

[9] D. L. Mills. Network time protocol. RFC 1305, 1992.
[10] A. Nakamura and M. Takizawa. Reliable broadcast protocol

for selectively ordering pdus. Proc. of IEEE ICDCS-11, pages
239–246, 1991.

[11] C. Steketee, W. P. Zhu, and P. Moseley. Implementation of
process migration in amoeba. Proc. of IEEE ICDCS-14, pages
194–201, 1994.

[12] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. CACM, 39(4):76–83, 1996.

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

