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An ad hoc network is a research concept that has gained increasing attention lately. It
is de�ned as a wireless multihop network independent of any �xed network infrastruc-
ture, formed by mobile terminal devices. There are numerous potential applications for
such networks: conferencing, military networks, and networks formed in emergency and
rescue operations, just to name a few.
Despite a long history of research, the �rst ad hoc network is yet to be implemented:
the nature of ad hoc networks poses several challenging problems. One of them is
that of connectivity, namely, the requirement that the network connect every pair of
network nodes. This property depends on the pairwise node distances and the range of
communication of the nodes.
This study addresses the connectivity problem by modelling the network as a geometric
random graph. Assuming a common communication range for the network nodes (or,
more generally, limit for the range), the threshold value of this range for connectivity
is de�ned as a random variable. Utilizing a graph algorithm that �nds this threshold
range from a given set of nodes, extensive simulations are carried out assuming uniform
spatial distribution of the nodes. Analysis of the simulation data results in statistical
models that bind together the required number of nodes and/or communication range
and the allowed area spanned by the network so that a random network is connected
with a high probability.
The scope of the study is extended to the more general concept of k-connectivity. A
k-connected network retains connectivity after the removal of any k − 1 nodes, which
bears signi�cance in terms of network reliability. The de�nition of the threshold range
can readily be generalized to k-connectivity. Algorithms for �nding the threshold ranges
for 2- and 3-connectivity are developed, and statistical models are �tted to simulation
data in the same way as in the case of simple connectivity. In addition, some compar-
ative analysis between the communication ranges required for the di�erent degrees of
connectivity is made.
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Ad hoc -verkko on viime aikoina kasvavaa kiinnostusta herättänyt tutkimuskonsepti. Sil-
lä tarkoitetaan langattomien päätelaitteiden keskenään muodostamaa verkkoa, joka on
täysin riippumaton kiinteästä verkkoinfrastruktuurista. Tällaisille verkoille on lukuisia
sovellusmahdollisuuksia, joista erilaiset istunnot, sotilasverkot ja pelastusviranomaisten
hätätilanteissa muodostamat verkot ovat vain muutamia esimerkkejä.
Vaikka ad hoc -verkkoja on tutkittu jo kauan, ensimmäinen käytännön toteutus antaa
vielä odottaa itseään: ad hoc -verkkoihin liittyy monta haastavaa ongelmaa. Eräs niistä
on verkon yhteydellisyys eli vaatimus siitä, että verkon kaikki solmut saavat yhteyden
toisiinsa. Tämä riippuu solmujen keskinäisistä etäisyyksistä ja suoran viestinnän kan-
tamasta.
Tässä työssä lähestytään yhteydellisyysongelmaa mallintamalla verkko satunnaisgraa-
�na. Olettamalla kaikille verkon solmuille yhtä suuri kantama (tai yleisemmin suurin
saavutettava kantama) määritellään verkon yhteydellisyyden rajakantama satunnais-
muuttujaksi. Tämän käyttäytymistä tutkitaan simuloimalla olettaen, että solmujen si-
jainnit noudattavat tasajakaumaa, ja käyttäen apuna graa�algoritmia, joka määrittää
rajakantaman annetusta solmujoukosta. Simulointidatan analyysin tuloksena saadaan
tilastollisia malleja, jotka kytkevät toisiinsa tarvittavan solmujen lukumäärän ja/tai kan-
taman sekä sallitun pinta-alan, jolle solmut ovat hajaantuneet, siten että satunnainen
verkko on yhteydellinen (graa�teorian termein yhtenäinen) suurella todennäköisyydellä.
Tarkastelua laajennetaan yleisempään k-yhtenäisyyden käsitteeseen. Verkko joka on k-
yhtenäinen pysyy yhtenäisenä, kun siitä poistetaan mitkä tahansa k − 1 solmua, millä
on tärkeä merkitys verkon luotettavuuden kannalta. Rajakantaman määritelmä voidaan
suoraan yleistää k-yhtenäisyyteen. Työssä kehitetään 2- ja 3-yhtenäisyyden rajakanta-
mat etsivät algoritmit, ja simulointidataan sovitetaan tilastolliset mallit samaan tapaan
kuin yksinkertaisen yhtenäisyyden tapauksessa. Lisäksi tehdään vertailevaa analyysiä
eri yhtenäisyyden asteisiin tarvittavien kantamien välillä.

Avainsanat: Ad hoc -verkot, yhteydellisyys, yhtenäisyys, luotettavuus,
satunnaisgraa�t, graa�algoritmit, tilastolliset mallit
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Chapter 1

Introduction

1.1 Ad hoc networks

The concept of an ad hoc network is de�ned as a network formed by mobile, wireless
terminal devices without the aid of any �xed infrastructure. The network operates in
a decentralized manner, utilizing multihop connections to carry tra�c. This means
that the devices are in the role of both terminals and routers. The topology of the
network can change dynamically because of the mobility of the devices.
Ad hoc networks have been a topic of research from as early as the 1960's, only at
that time the concept was referred to as packet radio networks. Several projects have
been engaged in the �eld since then, but no implementation satisfying the criteria of
a pure ad hoc network has been introduced. This is due to several problematic issues
inherent to such networks. The concept has thus remained an intellectual challenge
for the research community.
What keeps up the interest for such networks are the alluring potential applications
for them. Conferencing using laptop computers or hand-held devices is one obvious
example, military and emergency networks are others. Dedicated sensor networks
could provide measurement and monitoring information about an area; vehicles could
be connected to each other with ad hoc networks. This, along with recent leaps in
the development of various communication technologies, is why ad hoc networks
have become a "hot topic" lately. In 1999, IETF created the MANET working
group (short for Mobile Ad Hoc Networks) as a framework for the study of this �eld.
Extensive overviews of potential applications as well as emerged ideas, algorithms
and protocols for ad hoc networks are given in [1] and [2].
As already mentioned, ad hoc networks have several characteristics unique to them
that pose problems in their design. Such issues have been widely discussed in [3].
Some of the topmost questions are summarized in the following.
Routing is traditionally based on maintaining topology information of the network at
each party involved in the routing process. The dynamic topology of ad hoc networks
resulting from the mobility of the network nodes makes this challenging: attempting
to keep the information up to date in the presence of a high degree of mobility will
easily lead to unsustainable signalling loads. As an alternative to the conventional
proactive routing principles, reactive methods have been proposed in which routes
only for connections to be established are found on demand.
Another issue is scalability. It has been shown that with a uniform tra�c pattern,
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Chapter 1. Introduction

the capacity per node decreases when the number of nodes increases, as each node
becomes more and more occupied in relaying tra�c. Large-scale networks have
therefore been deemed infeasible. The depletion of capacity is ampli�ed particularly
in routing bottlenecks, i.e. nodes used for relaying by several connections. Routing
bottlenecks can be reduced by route diversity.
Since the devices making up the network are most likely to be battery-operated,
energy e�ciency becomes important for maximizing their functioning time. Trans-
mission power adjustment, minimum-energy routing and routing policies are ways
to achieve this goal.
The security of ad hoc networks is a di�cult matter. This problem has already been
witnessed in the existing wireless LAN networks. Measures need to be taken in order
to prevent the intrusion of outsiders into and the leakage of information out of the
network.
Finally, there are some fundamental questions that arise when Quality of Service
in ad hoc networks is considered. The reliability of connections is one of them.
Node mobility makes connections unstable; they can also fail as a result of the
exhaustion of energy in relay nodes. These problems can be alleviated by enabling
several independent routes for a given connection. However, due to the nature of
the wireless links, the establishment of a connection between any two nodes may
not always even be possible. This brings us to the problem of network connectivity
which is the topic of this study. Network connectivity is closely related to route
diversity, which makes it an important property in terms of network capacity as well
as reliability.

1.2 Contributions of this study

The aim of this study is to �nd a model that binds together three quantities, namely,
the number of nodes in an ad hoc network, the maximum distance over which two
nodes can communicate, and the area over which the nodes are scattered, in such a
way that the resulting network is connected (or further biconnected or triconnected)
with a high probability when the nodes are assumed to be spatially uniformly dis-
tributed.
The approach is to regard the network as a geometric random graph. Some basic
results regarding the connectivity of such graphs are shown, and algorithms are de-
veloped that determine from a given set of nodes the threshold communication range
for 1-, 2- and 3-connectivity. These algorithms are utilized to carry out extensive
simulations in order to obtain data for statistical analysis. Finally, models are �tted
to the data to capture the behavior of the threshold ranges and thereby to predict
connectivity in ad hoc networks.

1.3 Structure of the thesis

Chapter 2 introduces the connectivity problem and gives an overview of previous
work carried out on the topic. In addition, the perspective taken on the problem in
this study is described.
Chapter 3 focuses on simple connectivity, i.e. the requirement that every node is
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Chapter 1. Introduction

connected to every other node by the network. Chapters 4 and 5 broaden the scope
to biconnectivity and triconnectivity, respectively. These properties mean that the
network retains simple connectivity even at the failure of any one or two nodes,
respectively. Algorithms play a central role in the latter two chapters.
Discussion and diagnostics of the �ndings as well as conclusions and re�ections on
future work are presented in chapter 6. Chapter 7 concludes the study with a brief
summary.
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Chapter 2

The connectivity problem

This chapter presents the problem of connectivity in ad hoc networks. It gives an
overview of previous studies on the matter. This is followed by a brief preview on
the approach taken in this study, the methods used and developed, and the �ndings
made.

2.1 Problem statement

A widely studied problem in the �eld of ad hoc networks is that of connectivity: every
node in the network should be able to communicate with every other node. This
fundamental property of the network boils down to how the largest distance over
which two nodes can communicate directly relates to the pairwise node distances in
the network. Figure 2.1 illustrates this relation.

(a) (b)

Figure 2.1: Example of how the network topology depends on the maximum com-
munication range
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Chapter 2. The connectivity problem

2.2 Previous work

This problem has been tackled by choosing appropriate models to describe the net-
work and deriving results analytically from these models. Typically, and as in Figure
2.1, the maximum transmission range r has been assumed to be constant, implying
that all nodes have equal transmission and reception capabilities and that the radio
environment determining the attenuation of transmissions is homogenous through-
out the network. As for the spatial distribution of the nodes, by far the most popular
model is the two-dimensional homogenous Poisson point process, characterized by
the intensity λ. This process has the following properties:

1. The number of points in a region of area A in the plane is Poisson-distributed
with mean λA.

2. The point numbers in any two non-intersecting regions are independent.

In particular, λ is the average number of points per unit area and can therefore be
interpreted as the density of points. Also, given the number of points in a certain
region, the points in that region are uniformly distributed.
This model is partly motivated by continuum percolation [4] where a theorem closely
related to the problem of connectivity has been proven in the following setting. Disks
with equal radii are generated on an in�nite plane according to a Poisson process. As
the intensity of the process increases, disks overlap and form clusters. The theorem
states that there exists a �nite critical intensity above which a unique unbounded
cluster exists almost surely. It should be noted that a cluster of disks is equivalent to
a connected network when the maximum transmission range is twice the disk radius.
This simple relation is demonstrated by Figure 2.2.
In one dimension, the unbounded cluster corresponds directly to a connected network
with maximum transmission range twice the disk radius. However, in a recent study
Dousse et al. [5] showed that the appearance of an unbounded cluster at a �nite
intensity, i.e. the occurrence of percolation, requires the domain to be in�nite in
two dimensions. Then again in two dimensions, an in�nite cluster forming is a
weaker condition than full connectivity. Indeed, Philips et al. showed in [6] that
with the model of a two-dimensional Poisson point process with node density λ and

(a) (b)

Figure 2.2: Disks with same locations as in Figure 2.1 but with radii equal to half
the ranges shown therein
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Chapter 2. The connectivity problem

transmission range r, the expected number of direct neighbors of a node, λπr2, must
grow logarithmically with the network area in order to ensure connectivity. In other
words, a larger area always requires either a longer transmission range or a greater
node density. The intuitive explanation is that the greater the area, the more likely a
region with sparsely located nodes. This renders the connectivity of random networks
in the in�nite plane with limited transmission range impossible.
Also in [5], the number of alternate link-disjoint paths between node pairs was ex-
amined under the two-dimensional percolation model in order to study network reli-
ability and routing bottlenecks. This is equal to the size of the minimal cutset in the
network between the pair of nodes, i.e. the smallest set of links whose removal would
disconnect the two nodes. It was proven that the number of alternate paths between
nodes A and B is not less than min{N∞

A , N∞
B }, where N∞

K is the size of the minimal
cutset separating node K from nodes located arbitrarily far away from K. In fact,
this was shown to be equal to the size of the minimal cutset separating node K from
nodes at a �nite distance LK for each node K. It was found by simulation that for
a �xed range r, the mean of LK tends to zero when the density λ increases. In other
words, the number of link-disjoint paths between two nodes is determined by the
number of nodes adjacent to each end node when the node density is high. With
this observation, the authors in e�ect discovered the validity of a theorem regarding
the connectivity of geometric random graphs, which had recently been proven by
Penrose in [7] and which will be presented and utilized later in this study.
Dousse et al. further observed that when the density is just above the critical per-
colation density, the network consists of "islands", clusters of nodes well connected
to each other, which in turn are interconnected by few links only, acting as the
bottlenecks of the network. These bottlenecks correspond directly to the notion of
articulation points or sets observed in this study.
In [8], Bettstetter derived an analytical expression in attempt to bind together the
transmission range and the node density needed to obtain almost surely a connected
(or, as an extension, k-connected; a concept that will be introduced later and is
also observed in this study) network. It is worth noting that this approach does not
take into account the dependence on the system area shown by Philips et al. The
expression was derived starting from the probability

e−λπr2

of a random node, with transmission range r and generated from a Poisson process
with density λ, being out of range from all other nodes. With the simplifying assump-
tion of this event being independent for all n nodes in the network, the probability
of no node being isolated was then estimated to be

(1− e−λπr2
)n. (2.1)

Based on the theorem by Penrose, this was further approximated to give the prob-
ability that the network is connected. (The theorem, in a narrow form, states that
as the node density tends to in�nity, the transmission range needed to connect ev-
ery node to at least one other node equals the range needed for connectivity with a
probability that tends to one.)
Problems were encountered when trying to verify this expression with simulations
of 500 nodes scattered on a square-shaped area: with a �xed range, the proportion
of connected realizations turned out to be signi�cantly less than predicted. This
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Chapter 2. The connectivity problem

was explained to result from the fact that the simulations were carried out on a
bounded area whereas the analytical expression was derived for an in�nite area. In
the bounded square, nodes located near the edges of the area are likely to have less
connections than those located in the middle. This border e�ect was eliminated by
using a toroidal distance metric, i.e. assuming that nodes at the edge were consid-
ered close to nodes at the opposite edge. Using this distance metric provided more
satisfactory agreement with the analytical expression, although the probability of
connectivity was still overestimated.
All in all, the applicability of the derived analytical expression remained ambiguous.
It may agree to some extent with simulations using the toroidal distance metric, but
that does not mean it applies in the in�nite plane: the probability of connectivity
in the in�nite plane is always zero with �nite transmission range and density of
randomly placed nodes, as already shown by Philips et al. In fact, this applies with
the above expressions as well: if n is assumed �nite along with r, then λ = n/A
becomes arbitrarily small, making every node isolated with a probability arbitrarily
close to one. A positive λ requires n to be in�nite, which results in the estimated
connectivity probability (2.1) becoming arbitrarily small with �nite r.
Moreover, it can be argued that the domain of any real-life ad hoc network is bound
to have edges anyway; a counterexample would have to be as far-fetched as a globe-
scale network scattered over oceans as well as continents. (Of course, this would
come into question in the case of a network constituted by satellites.) It is therefore
necessary to take the implications of this fact into account.
The border e�ect was taken into consideration in a later study by Bettstetter and
Zangl [9]. The approach was to divide the observed region into a central area void of
border e�ects, consisting of the points separated from all the boundaries by at least
the transmission range, and several border zones. Applying geometrical analysis,
the worst-case coverage area of nodes located in these border zones was calculated.
Using the same logic as above, this was then used in deriving a fairly complicated
expression for the probability of no node being isolated which in turn served as an
approximation for the probability of connectivity. Although several corners were cut
in deriving this expression, it turned out to be in considerably better agreement with
simulations than (2.1). In addition to the circular domain considered, the authors
also reported having successfully predicted simulation results in a square region with
the same method.
Despite the encouraging results, even the latter analytical method has some short-
comings. In particular, via utilizing Penrose's theorem, it applies only when n À 1.
Indeed, agreement with simulation results was only demonstrated with n ≥ 100.
Also, applying the analysis to more complex-shaped domains becomes increasingly
di�cult. Finally, solving the desired parameter - either the range in relative units or
the number of nodes required - from the derived analytical expression is not straight-
forward.

2.3 Used approach

In this study, the problem of connectivity is approached from the following probabilis-
tic angle. Each realization of n randomly placed nodes has its threshold transmission
range which is required for connectivity. This threshold range, or the critical trans-
mission range Rcrit(n), is therefore a random variable with a certain distribution for
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Chapter 2. The connectivity problem

each n, which depends on the spatial distribution of the nodes. In several earlier
studies on connectivity, for example [3] and [8], the e�ect of the transmission range
has been studied by �xing it to a chosen value, generating a number of random real-
izations, and determining the proportion of realizations found to be connected with
the chosen range. Repeating this with several �xed ranges and plotting the deter-
mined proportions against them, an interpolated curve making a transition from 0%
to 100% has �nally been obtained. The connection between this curve and the crit-
ical transmission range is obvious: the curve represents the cumulative distribution
function of the random variable.
Motivated by the apparent di�culty of the analytical approach to the connectivity
problem, the statistical behavior of the critical transmission range is studied through
extensive simulations. This is done using the typical modelling assumptions: a
chosen number of nodes uniformly distributed in a square region. In the analysis
of the statistics, it is found that the behavior of the critical range can be described
extremely well with models of simple, analytical form.
The study is extended to the stronger requirements of biconnectivity and triconnec-
tivity: a k-connected network is one that remains connected after the removal of any
k − 1 nodes or, equivalently, has at least k node-disjoint paths between every pair
of nodes. The degree of connectivity is therefore an important property from the
viewpoint of network reliability and load balancing. Biconnectivity and triconnec-
tivity were also included in [8]; the number of link-disjoint paths was also studied
in [5]. As in the case of connectivity, the threshold transmission range for bi- and
triconnectivity can be similarly de�ned. The analysis of simulation data shows that
the same distributions and models can be used to describe the statistical properties
of these quantities as in the case of simple connectivity; only the parameters of the
models di�er.
As the task of determining the threshold range for a given degree of connectivity from
a given set of nodes is more laborious than that of testing whether the nodes form a
k-connected network with a given range, the development of algorithms for �nding
the threshold ranges is an integral part of this study. It turns out that in the case of
simple connectivity, the threshold range is equal to the longest link distance in the
minimum spanning tree of the nodes, as proposed by Sánchez, Manzoni and Haas in
[10]. There are several known algorithms for �nding this tree. In this context, the
result shown in [6] means that this longest link distance tends to in�nity with the net-
work area when the node density is constant. In the cases of bi- and triconnectivity,
the range is found incrementally, by �rst �nding a lower bound for it. At this point,
the theorem by Penrose is an important motivation. The range for biconnectivity
can be found relatively easily by utilizing a well-known graph traversal algorithm.
However, the case of triconnectivity is notably more di�cult. In general, the prob-
lem of �nding the threshold range for k-connectivity can always be decomposed into
n problems concerned with k − 1 -connectivity. Because of the ine�ciency of this
brute-force method with any substantial number of nodes, more e�cient methods are
needed. Even though there exists an e�cient data structure called the SPQR tree for
decomposing a biconnected network into triconnected components, the di�culty of
implementation suggested by the theory behind it discourages the use of this struc-
ture. Instead, an algorithm based on extensions to that used with biconnectivity is
developed for the purposes of this study.
In order to verify the statistical models obtained for the threshold range for simple
connectivity, their predictions are compared to simulation results presented in [8] and
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Chapter 2. The connectivity problem

used in the veri�cation of the expression derived therein. This is justi�ed because
the simulation scenario in question involved up to ten times as many nodes as in
the simulations carried out in this study. The model applied in the comparison is
therefore not based on a replication of the original simulations.
Finally, it is shown that in reality the threshold range cannot obey the analytical
form assumed by the model. This results from the fact that this model, too, predicts
a �nite threshold range in an in�nite area. Indeed, further diagnostics show that the
form of the model requires adjustment.
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Chapter 3

Simple connectivity

This chapter deals with simple network connectivity as de�ned in the problem state-
ment in the previous chapter. It �rst presents a method of �nding the critical trans-
mission range for connectivity for a given set of nodes. It then examines the statis-
tical behavior of this quantity in two ways: by modelling its whole distribution, and
by modelling individual quantiles of its distribution.

3.1 Finding the critical transmission range for connec-
tivity

To begin, an important result given in [10] without proof is presented with the proof:

Theorem 3.1 The critical transmission range for connectivity Rcrit is equal to the
longest link distance in the minimum spanning tree of the nodes.

The minimum spanning tree, or MST, is a connected graph that contains all the
nodes and minimizes the sum of the link distances.
Proof: Consider an arbitrary set of nodes and assume that their MST is known.
Assume �rst that Rcrit is shorter than the MST's longest link. By the de�nition of
the MST, its longest link (as well as every other link) is the shortest possible way
to connect the two subsets of nodes separated by the link. (Otherwise the link sum
of the tree could be made even smaller by changing the link to a shorter one.) The
assumption made thus implies that Rcrit is too short to connect the two subsets
separated by the MST's longest link, which contradicts the de�nition of Rcrit.
The assumption that Rcrit is longer than the MST's longest link is trivially wrong,
since in this case all the nodes have been connected using distances shorter than Rcrit

by the MST. This completes the proof. ¤
Several algorithms exist for �nding the MST; in this study, the Prim algorithm was
used [11]: starting with any single node, new nodes are added to the tree one by
one, so that at each step the node closest to the nodes included so far is added. One
realization with 15 nodes as well as their MST is depicted in Figure 3.1.
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Chapter 3. Simple connectivity

Figure 3.1: A sample set of 15 nodes and their MST. The longest link is shown with
a dark line.

3.2 Collection and analysis of statistics

To gain information about the distributions of Rcrit(n), statistics were gathered.
Each sample was obtained by placing n nodes in a unit square with uniform proba-
bility distribution and determining their MST. Data sets consisting of 5000 samples
each were collected for various n. Figure 3.2 shows histograms of two such data sets,
one with n = 5 and the other with n = 350.

3.2.1 Modelling the distribution

The �rst step in the analysis of the statistics was to �nd out how the expected value
of Rcrit depends on n. Figure 3.3(a) shows the means of the data sets plotted against
n and Figure 3.3(b) their squared inverses against n. As can be seen, the plotted
values in the latter seem to form a straight line. This encouraged �tting a model of
the form 1/E[Rcrit(n)]2 = kn + c to the data using linear regression. However, this
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Figure 3.2: Histograms of data sets of Rcrit samples
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Figure 3.3: The dependence of the means of Rcrit sample data sets on n

was done by minimizing a weighted sum of squares
∑

i wie
2
i to compensate for the

transformation done on the mean (denote this by y): without weights, the model
would minimize the sum
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i )
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i.e. the sixth powers of the means were used as the weights.
Table 3.1 shows the results of the weighted linear regression which mean that the
model obtained is roughly E[Rcrit(n)] = 1/

√
n/3 + 2. In the table, SE stands for the

standard error of the parameter estimate, TStat is a t-distributed statistic for testing

Table 3.1: Linear regression results for the model of the expected value

Estimate SE TStat PValue
1 1.93794 0.0286534 67.634 0.
x 0.348727 0.00242932 143.549 0.
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n

0.1

0.2

0.3

0.4

0.5

Figure 3.4: Model obtained for E[Rcrit(n)]
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Figure 3.5: The dependence of the sample variances of Rcrit sample data sets on n

whether the parameter could be zero, and PValue is the probability of obtaining this
statistic given the null hypothesis that the parameter is zero. It can be seen that
with both parameters, this probability is equal to zero within the used accuracy, so
the null hypothesis is extremely unlikely.
The coe�cient of determination R2 for this model was 99.98%. For comparison,
that for the model obtained without using weights was 98.08%. Figure 3.4 shows the
curve of the model together with the means of the data sets.
The next step was to examine the behavior of the variance of Rcrit as a function of n.
Figure 3.5(a) shows the sample variances of the data sets plotted against n and Figure
3.5(b) their inverses against n. The latter implies a linear dependence, so the model
to be �tted was 1/Var[Rcrit(n)] = sn + t. Using the same logic as above, the fourth
powers of the sample variances were used as weights in the regression. The results
are shown in Table 3.2, making the model roughly Var[Rcrit(n)] = 1/(16n− 20). It
should be noted that only values of n equal to or greater than 2 are sensible, so the
model predicts a positive and limited variance for all cases that come into question
(this was not the case with the model obtained without using weights). The curve

Table 3.2: Linear regression results for the model of the variance

Estimate SE TStat PValue
1 -20.0476 1.05272 -19.0436 0.
x 15.7905 0.193768 81.4917 0.
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Figure 3.6: Model obtained for Var[Rcrit(n)]
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of the model together with the sample variances is shown in Figure 3.6.
The �nal goal was to �t a known, analytical probability distribution to each data
set. Certain criteria were to be met by these distributions. First, they should be
limited to a closed interval, as Rcrit is limited to [0,

√
2]. Second, as Figure 3.2 shows,

the distributions should become more peaked and develop a tail to the right as n
increases.
The Beta(α, β) distribution seemed appropriate for the purpose. It is de�ned by

fX(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1, 0 < x < 1, α, β > 0 (3.1)

E[X] =
α

α + β
, Var[X] =

αβ

(α + β)2(α + β + 1)
.

Two Beta distributions are shown in Figure 3.7. Since the distribution as such is
de�ned for the interval [0,1], it has to be scaled to cover [0,

√
2] to suit our purpose.

The resulting distribution is found by making the substitution y =
√

2x in the rela-
tion between the probability density function (PDF) and the cumulative distribution
function (CDF) as follows:

∫ x

0
fX(x)dx = FX(x) =

∫ y

0
fX

(
y√
2

)
dy√

2
= FX

(
y√
2

)
.

The scaled distribution is therefore characterized by

fY (y) =
fX

(
y√
2

)
√

2
, FY (y) = FX

(
y√
2

)
, 0 < y <

√
2, α, β > 0 (3.2)

E[Y ] = E[
√

2X] =
√

2α

α + β
, Var[Y ] = Var[

√
2X] =

2αβ

(α + β)2(α + β + 1)
.

With models describing both the expected value and the variance of Rcrit as a func-
tion of n at hand, we can now make the expressions for E[Y ] and Var[Y ] above match
the models to solve the parameters α and β for each n. First, we set

E[Y ] =
√

2α

α + β
=

1√
kn + c

⇔ β = α(
√

2(kn + c)− 1). (3.3)
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Figure 3.7: Beta(5,10) and Beta(5,5) distribution
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Substituting this in the condition for the variance, we get

Var[Y ] =
2αβ

(α + β)2(α + β + 1)
=

2α2(
√

2(kn + c)− 1)
2α2(kn + c)(α

√
2(kn + c) + 1)

=

√
2(kn + c)− 1

(kn + c)(α
√

2(kn + c) + 1)
=

1
sn + t

⇔ α = (sn + t)
(

1
kn + c

− 1√
2(kn + c)3/2

)
− 1√

2(kn + c)
. (3.4)

Figure 3.8 shows PDF's of the form (3.2) obtained using (3.4) and then (3.3) plotted
together with corresponding data set histograms that have been scaled so that their
total integral becomes 1, for di�erent n. It can be seen that for n = 5 the PDF
is in excellent agreement with the statistics, but as n becomes larger, the �tted
distribution does not keep up with the growing peakedness and asymmetry of the
data. In the cases n = 150 and n = 350, this trend is exaggerated by the fact that
the variance of the data is overestimated by the model obtained for it, as shown by
Figure 3.6. However, it can be seen in the same �gure that the variance is in fact
underestimated by the model when n = 25, which con�rms the trend.
Nevertheless, in all cases the PDF follows the tail of the histogram very closely,
implying that these distributions could be used to determine how long a transmission
range provides a high probability of connectivity for each n. This is supported by
Figure 3.9 where the empirical cumulative distributions of the same data sets have
been plotted along with the CDF's of the �tted distributions. It can be seen that
for quantiles of around 90% and above, the two are very close to each other.
In Table 3.3, transmission ranges corresponding to certain quantiles of the �tted dis-
tributions have been given as arguments to the corresponding empirical cumulative
distribution functions (ECDF's) to demonstrate how well these distributions serve

Table 3.3: Results of using �tted distributions for transmission range determination

Desired quantile (%)
50.0 75.0 90.0 95.0 99.0 99.5 99.9

n Obtained empirical quantile
5 51.1 76.24 89.72 94.48 98.76 99.42 99.92
10 51.3 75.52 89.44 94.22 98.48 99.02 99.78
15 53.72 76.94 89.34 93.54 98.1 98.76 99.48
20 54.16 77.42 89.62 94.2 97.8 98.48 99.4
25 56.02 79.08 89.84 94.2 97.82 98.48 99.3
50 59.64 81.58 91.66 95.14 98.26 98.88 99.56
75 59.58 82.8 92.18 95.62 98.24 98.7 99.62
100 58.08 81.64 91.46 95.06 98.18 98.86 99.54
125 56.66 79.64 90.64 94.5 98.06 98.74 99.64
150 55.0 80.26 91.64 95.14 98.46 99.06 99.6
175 53.18 79.84 91.72 95.26 98.12 98.9 99.58
200 52.8 79.66 91.58 95.02 98.36 98.84 99.42
250 50.02 77.58 90.46 94.56 98.26 98.84 99.48
300 48.44 78.14 90.32 94.4 98.42 98.9 99.42
350 46.48 76.2 90.48 94.6 98.42 98.84 99.46
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Figure 3.8: Histograms of Rcrit samples and �tted Beta distribution PDF's
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Figure 3.9: Empirical (dashed lines) and �tted Beta distribution CDF's
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their purpose. For example, it can be seen that in light of the statistics at hand, the
transmission range that according to the �tted distribution provides full connectiv-
ity with 50%-probability in the case of 350 randomly placed nodes actually does so
with a probability of only 46.48%. This kind of inaccuracy in the lower quantiles
was anticipated due to the observations made above. However, the results show that
the di�erence between the desired and the achieved probability of full connectiv-
ity decreases as the desired probability increases: for instance, for the quantiles of
95% and above, the di�erence in probability in all cases is less than 1.5%. In prac-
tice, when estimating appropriate transmission ranges, the inaccuracies of the model
could be compensated for by using su�cient margins in order to ensure the desired
probability: Table 3.4 shows how a margin of 1.5% has been enough to achieve 95%
probability of connectivity. Also, it can be seen in Table 3.3 that 99% is achieved
using the requirement of 99.9%.

Table 3.4: Example of achieving 95% probability of connectivity using proper margin

n 5 10 15 20 25
ECDFn(CDF−1

n (96.5%)) (%) 95.96 95.8 95.12 95.52 95.4

50 75 100 125 150
96.16 96.56 96.16 95.76 96.14

175 200 250 300 350
96.26 96.08 95.56 96.08 95.84

It deserves to be be pointed out that the fact that no ECDF value in the tables
reaches 100% indicates that the �tted distribution does not provide grossly oversized
transmission ranges, as ECDFn(x) = 1.0 would mean that the critical transmission
ranges found in all realizations with n nodes have been less than x.

3.2.2 Modelling individual quantiles

It was shown above that with the �tted distributions, the desired probability of con-
nectivity can be achieved more accurately as the probability itself increases. This
however does not mean that the higher the quantile, the more accurately it can be
predicted: as the tail of the distribution is reached, the rate at which the cumulative
probability grows with respect to the variable value decreases. In other words, verti-
cal distances between CDF curves such as those in Figure 3.9 were considered above;
how about the horizontal ones? Those in the same cases as in Table 3.3 are given
in Table 3.5 where relative deviations of �tted distribution quantiles from empirical
ones have been listed. It can be seen that, quite contrary to the accuracy in prob-
ability, the accuracy in transmission range leaves plenty of room for improvement
in the highest quantiles and especially in them. Although this may result from the
sample size used, as with 5000 samples an empirical tail probability of, for instance,
0.1% corresponds to only 5 realizations, this gave reason to investigate whether the
behavior of individual quantiles as a function of n could be modelled in the same way
as those of the expected value and the variance were before. Figure 3.10 shows that
they do indeed obey the same form of functional dependence on n as the expected
value. The decay of the slope in the last sub�gure is assumed to result from devia-
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Table 3.5: Relative errors of �tted distribution quantiles from corresponding empir-
ical quantiles

Quantile of �tted distribution (%)
50.0 75.0 90.0 95.0 99.0 99.5 99.9

n Relative error from empirical quantile (%)
5 0.76 0.82 -0.15 -1.00 -0.69 -0.92 0.65
10 0.64 0.36 -0.55 -1.16 -3.39 -4.10 -3.32
15 1.55 1.14 -0.69 -2.17 -4.99 -6.85 -7.77
20 1.76 1.57 -0.38 -1.33 -6.88 -7.34 -7.92
25 2.63 2.48 -0.23 -1.48 -7.02 -8.73 -11.03
50 3.36 3.67 1.96 0.31 -4.05 -6.02 -14.87
75 3.48 3.87 2.94 0.98 -4.19 -5.53 -7.92
100 2.64 3.30 1.79 0.06 -3.80 -5.70 -8.95
125 2.03 2.31 0.78 -0.82 -5.45 -5.46 -9.99
150 1.85 2.47 1.88 0.29 -2.85 -3.61 -9.21
175 0.91 2.19 1.53 0.33 -4.30 -4.83 -6.54
200 0.89 2.26 1.68 0.08 -4.39 -7.31 -8.93
250 0.007 1.18 0.44 -1.14 -4.04 -6.78 -7.24
300 -0.42 1.45 0.33 -0.70 -3.54 -7.58 -11.13
350 -1.07 0.44 0.44 -0.79 -4.20 -7.18 -17.23

tions due to the sample size. Table 3.6 shows the resulting estimates from weighted
linear regressions when models for the highest and therefore most interesting quan-
tiles were �tted. The curves of the models are shown in Figure 3.11, together with
the empirical quantiles.
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Figure 3.10: Squared inverses of certain empirical quantiles ECDF−1
n (q)
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Table 3.6: Parameter estimates for models of the form ECDF−1
n (q) = 1/

√
An + B

Quantile q (%)
95.0 99.0 99.5 99.9

B 0.657175 0.575433 0.545681 0.572809
A 0.224535 0.166313 0.149807 0.118794
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Figure 3.11: Models obtained for highest empirical quantiles ECDF−1
n (q)

Needless to say, the �gures of Tables 3.3 and 3.5 re-evaluated using the models of
the quantiles instead of those of the distributions showed clear improvement, as the
former have been explicitly �tted to the desired quantiles themselves. Thus, these
direct models make the accuracy of prediction better in terms of both probability
and transmission range.
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Chapter 4

Biconnectivity

In this chapter, the scope of the study is extended to the stronger requirement of
biconnectivity. This is an important property in terms of network reliability and load
balancing. A method for �nding the threshold transmission range for biconnectivity
is �rst presented. The statistical behavior of this random variable is then analyzed in
the same way as that of the critical transmission range was before.

4.1 Fault tolerance and route diversity through range re-
dundancy

After examining the requirement of simple network connectivity, the introduction of
the following concepts is in order:
A connected network is biconnected if there is no single node whose removal would
disconnect the network. In a biconnected network, at least two node-disjoint paths
exist between every pair of nodes. In general, a network is k-connected if and only
if at least k node-disjoint paths exist between every pair of nodes and it therefore
remains connected after the removal of any k − 1 nodes.
In a connected but not biconnected network, the nodes whose removal would discon-
nect the network are known as articulation points.
Finally, the degree of a node is the number of nodes directly connected to it.
Obviously, articulation points are critical components in the network, and a network
without such nodes is more fault tolerant than one containing such nodes. It is
important to note the following:

Proposition 4.1 A network with more than two nodes, operating with its critical
transmission range Rcrit always has at least one articulation point, namely, the end-
point(s) of the longest link in the MST whose degree is more than one.

To be exact, this only holds provided that the MST is unique, which is not the
case with e.g. the vertices of a regular polygon. However, when the nodes are ran-
domly placed in continuous space, their MST is always unique because there are no
equidistant node pairs.
Of course, nodes other than these endpoints may also be articulation points. This
is demonstrated in Figure 4.1 showing the sample node set of Figure 3.1 with a link
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Figure 4.1: The network formed by the sample node set of Figure 3.1 with transmis-
sion range Rcrit. Large dots depict articulation points.

drawn between all node pairs at most Rcrit apart. It can also be seen here that
in the resulting network, several node pairs lack node-disjoint paths between them.
This yields another signi�cant feature of articulation points in ad hoc networks: they
are prone to becoming relay tra�c bottlenecks whose both capacity and energy is
exhausted under the constant demand to relay tra�c between other node pairs.

4.2 Finding the transmission range required for bicon-
nectivity

As stated in the de�nition above, a biconnected network is a connected network
without articulation points. This yields an elementary method to �nd the threshold
transmission range for biconnectivity - let this be denoted by Rbicon(n): eliminate
the possibility of each node being an articulation point by determining Rcrit for each
subset of nodes obtained by removing one of the n nodes; the greatest of these is
Rbicon. In fact, the threshold range for k-connectivity is the greatest Rcrit obtained
after removing all possible subsets of k − 1 nodes in turn. Naturally, the computa-
tional complexity of this method is excessive, as n determinations of Rcrit are needed
even for Rbicon. In this section, a more e�cient method is presented. The idea is to
narrow down the set of articulation points to be eliminated by �nding a lower-bound
estimate for Rbicon.

4.2.1 Depth-�rst search

The articulation points of any connected network can be found with a graph traver-
sal algorithm called the recursive depth-�rst search (DFS; there exists also a non-
recursive version of this algorithm). The recursive implementation traverses all the
nodes in the network in the following way: starting from any node,
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1. Visit the node

2. Recursively visit (invoke DFS for) all the nodes adjacent to the present node
that have not yet been visited.

The algorithm results in a depth-�rst spanning tree whose root is the starting node.
The links in the original network that resulted in recursive visits correspond to the
edges in the tree. Now, a node x is an articulation point if, from any subtree whose
root is one of x's children, there is no link (in the original network) to a node located
above x in the tree. As an exception, since no link can lead above the root, it is an
articulation point if it has more than one child.
As an example, Figure 4.2(a) shows the graph representing a random �ve-node net-
work operating with Rcrit; the nodes have been named in the order in which their
locations have been generated. The DFS tree that is formed when the algorithm is
called for node A is depicted in Figure 4.2(b). Using the rules above, the articulation
points are found to be nodes A and E, the former because it is the root of the tree
and has two children, and the latter because there is no link in the graph leading
above E in the tree from the (single-node) subtree rooted by E's child D (such a
link would be illustrated with a dashed line; compare with node B which would also
be an articulation point without the link between C and A). Note that it follows
from these rules that a leaf (a node with no children) in the DFS tree (C and D in
this case) is never an articulation point.
The logic behind the name DFS can also be seen in Figure 4.2: the algorithm �rst
progresses as far as possible in the network and then backs up searching for new
branches.
The general rule for �nding the articulation points can thus be implemented as
follows:

• The nodes of the network are numbered in the order in which they are visited
during the search.

• Every instance of the recursive DFS returns either the lowest number of a node

A
B

C

DE

(a)

A

B

C D

E

(b)

Figure 4.2: The graph (a) and a DFS tree (b) of a �ve-node network
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adjacent to the present node or the smallest return value of the DFS instances
invoked from within this instance, whichever is less.

Since every child of a given node in the resulting tree is adjacent to the node, a return
value equal to k obtained from a DFS call to any child of node number k indicates
that the node is an articulation point.

4.2.2 Incrementing the range gradually

Even though the recursive DFS can be used to �nd the articulation points from a
given set of nodes with a given transmission range, i.e. it tells us whether or not the
network is biconnected with the given range, it does not directly determine Rbicon

for the set of nodes. Of course, the interval containing the right value could be made
in�nitely small by trial and error, in a fashion similar to several known numerical
one-dimensional minimization algorithms, but no matter how many iterations - and
how much computing time - used, this would never provide the exact solution.
To �nd Rbicon, a two-phase approach is used. In the �rst phase, a best-guess lower-
bound estimate for the required range is produced by utilizing two necessary but not
su�cient conditions for biconnectivity. The articulation points with this estimate
are then found. The two conditions are:

1. The network is connected

2. Every node in the network is directly connected to at least two other nodes
(or, the network has minimum degree 2).

The latter condition can be justi�ed by noting that if a node is directly connected
to only one other node then, under the assumption n > 2 without which the whole
concept of biconnectivity would be irrelevant, the other node is an articulation point.
As these two conditions are also completely independent, that is to say, connectivity
does not guarantee minimum degree of 2 and vice versa, the best-guess estimate used
with each realization is the maximum of the threshold transmission ranges for these
two conditions.
The strategy employed in �nding the best estimate was motivated by the following
theorem proved by Penrose in [7]:

Theorem 4.1 For n points uniformly randomly distributed on the unit cube in d
dimensions, with d > 1, let ρn (respectively σn) denote the minimum r at which
the graph, obtained by adding an edge between each pair of points distant at most r
apart, is k-connected (respectively, has minimum degree k). Then P [ρn = σn] → 1
as n →∞.

A few remarks about the theorem: minimum degree k is a weaker condition for r
than k-connectivity, i.e. the inequality σn ≤ ρn always holds with �xed k. Also, ρn

increases with k (a k-connected network is also k−1-connected), but no relation can
be made between σn with k = K and ρn with k < K (as pointed out above in the
case K = 2). Of course, the case of interest here is d = 2. With these and earlier
notations, the threshold transmission ranges for the two conditions mentioned above
are Rcrit(n) and σn with k = 2, respectively. Note that also Rcrit(n) and Rbicon(n)
can be expressed as ρn with k = 1 and k = 2, respectively.
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Experiments in the unit square showed that when k = 1, the probability in question
remained low with reasonable n. However, in the case k = 2 the implied e�ect was
much more visible: with the range σn, the network was very seldom disconnected and
usually had clearly fewer - if any - articulation points than with the range Rcrit(n).
Figure 4.3(a) shows how this tendency is obeyed also by the sample node set observed
earlier.
What is encouraging is that σn is very easy to �nd: given k, i.e. the desired minimum
degree, and the distance matrix of the points, one must only �nd the k+1-th-smallest
element of each row in the matrix (assuming the zero on the diagonal is included);
the greatest of these is σn.
The above observations are why σn is always determined �rst from every realization.
Whether or not this is greater than Rcrit(n) is then implicitly found out after running
the recursive DFS to locate the articulation points with the range σn: if not every
node is visited during the search, the network is not connected with σn, which leads to
determining Rcrit(n) and the corresponding articulation points. But, as mentioned,
this is very rare.
In the second phase, it remains to eliminate each articulation point found with the
estimate for Rbicon. This could be done in the way described in the beginning of this
section, but again a more e�cient method is used: the subnetworks separated by the
articulation point are �rst found. (This can be done by, for example, invoking the
recursive DFS with the articulation point removed until all nodes have been visited.
The resulting DFS trees are the subnetworks.) Next, the shortest range needed to
connect these subnetworks is determined by, in e�ect, treating the subnetworks as
single nodes in the Prim algorithm: starting with any subnetwork, merge it with the
closest other subnetwork until all the subnetworks have been connected, recording
the longest link distance needed in the process. The longest of these, in turn, when
the same is repeated for every articulation point, is �nally Rbicon. Figure 4.3(b)
shows the sample node set with transmission range Rbicon.

(a) (b)

Figure 4.3: The sample node set with transmission range (a): σn (k = 2), (b):
Rbicon(n). Note in the former the number of articulation points in comparison to
Figure 4.1.
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4.2.3 Summary of the algorithm

To summarize, below are the steps taken to �nd Rbicon from a given set of nodes:

1. Find the threshold range for minimum degree 2.

2. Find the articulation points with this range by using recursive DFS.

• If the network is found to be disconnected with this range, �nd Rcrit and
the articulation points with that range.

• If the network is connected and no articulation points exist, the range
found in step 1 is Rbicon.

3. For each articulation point, �nd the threshold range for connectivity with the
articulation point removed. The longest of these is Rbicon.

It is worth mentioning that Penrose's theorem can also be utilized in �nding Rcrit(n):
�rst determine the threshold range for minimum degree 1 and the resulting connected
subnetworks, then treat them as single nodes in the Prim algorithm as described
above. In fact, this proved to be much faster than employing the Prim algorithm
all the way. The reason is that this method enables us to, in e�ect, disregard the
shorter links in the MST. The pseudocode representations of this algorithm as well
as the one summarized above are given in Appendix A.

4.3 Statistical analysis

Data sets of the same size and for the same n as with Rcrit(n) were gathered from
Rbicon(n) samples. Figure 4.4(a) shows the squared inverses of the means and Figure
4.4(b) the inverses of the sample variances of these data sets. It is evident that they
show similar dependence on n as those of Rcrit(n). This is easy to accept by intuition:
after all, Rbicon is just Rcrit for a certain subset of n − 1 nodes. It can therefore be
thought of as some kind of a "conditional" Rcrit, which explains the similar behavior.

The parameter estimates from weighted linear regressions for the means and sample
variances are shown in Table 4.1, making the models approximately E[Rbicon(n)] =
1/

√
n/4 + 1 and Var[Rbicon(n)] = 1/(12.8n − 13.5). Again, for n > 1, the latter
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Figure 4.4: The dependence of (a): the means and (b): the sample variances of
Rbicon data sets on n

25



Chapter 4. Biconnectivity

obtains positive and �nite values. The curves of the models are shown in Figure 4.5.

Table 4.1: Parameter estimates for the models of E[Rbicon(n)] and Var[Rbicon(n)]

1/E[Rbicon(n)]2 1/Var[Rbicon(n)]
1 1.07933 -13.4706
x 0.24866 12.7928
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Figure 4.5: Models obtained for (a): E[Rbicon(n)] and (b): Var[Rbicon(n)]

Because the models di�er from those obtained for Rcrit(n) only in parameters, not
in forms, the rules (3.4) and (3.3) for �tting Beta distributions of the form (3.2) to
the data are applicable here as well. Figure 4.6 shows that the trend in how well
the distribution �ts is the same as with Rcrit(n). In particular, although the �tting
is done by matching only the expected value and the variance, the distribution is in
agreement with the data when n = 5 even in terms of the reversed skewness. This
is the bene�t of using a limited-interval distribution for the approximation.
As shown by Figure 4.8, also the empirical quantiles behave as before. The results
of the weighted regression are presented in Table 4.2 and the curves of the models
in Figure 4.7.

Table 4.2: Parameter estimates for modelling 1/ECDF−1
n (q)2

Quantile q (%)
95.0 99.0 99.5 99.9

1 0.495801 0.469256 0.47827 0.431728
x 0.157316 0.121966 0.110161 0.0944855

Table 4.3 shows the relative di�erences between the highest empirical quantiles of
Rbicon(n) and Rcrit(n). It can be deduced that when the requirement of biconnec-
tivity is added on top of that of simple connectivity, the transmission range must
be increased by roughly 15-20% in order to satisfy that requirement with the same
probability. Again, the highest quantile should be regarded with caution due to
sample size e�ects.
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Figure 4.6: Empirical distributions of Rbicon(n) and �tted Beta distributions (solid
lines)
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Figure 4.7: Models obtained for highest empirical quantiles ECDF−1
n (q)
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Figure 4.8: Squared inverses of ECDF−1
n (q) plotted against n

Table 4.3: Relative di�erences between empirical quantiles of Rbicon(n) and Rcrit(n)

Empirical quantile (%)
95.0 99.0 99.5 99.9

n Relative di�erence (%)
5 17.4 14.1 11.9 12.3

10 19.2 16.7 16.0 18.3
15 19.0 14.5 12.1 11.5
20 19.7 14.5 15.4 12.3
25 18.6 14.1 12.1 7.7
50 20.1 18.8 19.5 7.8
75 19.9 18.4 17.7 18.1
100 18.8 17.9 18.0 16.5
125 17.0 17.1 17.9 14.9
150 17.6 17.5 18.1 13.7
175 18.6 16.2 17.1 18.1
200 18.5 16.9 13.6 11.0
250 17.1 15.7 14.2 15.0
300 18.1 19.0 15.0 15.3
350 17.0 16.3 13.7 5.8
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Triconnectivity

This chapter broadens the view further on triconnectivity. It �rst shows that for ran-
dom networks, every increment in the degree of connectivity always requires a greater
transmission range. It then proceeds like the previous chapters, by presenting �rst
an algorithm for �nding the threshold range for triconnectivity and then statistical
analysis of simulation results.

5.1 Introduction

Analogous to the term biconnectivity, 3-connected networks are commonly referred
to as triconnected. In this context, the notion of articulation points is extended to
articulation pairs: the removal of any such pair of nodes from a biconnected network
will disconnect the network. Also, the load imposed by relay tra�c on an articulation
pair is likely to be high.
It was pointed out in the context of biconnectivity that under the assumption of
randomly placed nodes, a network operating with its threshold transmission range
for connectivity always has at least one articulation point. This can be generalized
to all degrees of connectivity:

Proposition 5.1 A network of at least k + 2 nodes randomly placed in continuous
space operating with its threshold transmission range for k-connectivity always has at
least one articulation set of k nodes.

Proof: Consider the process of increasing the transmission range among the set of
nodes: as the range increases, new links between node pairs are enabled. At some
threshold range, the network becomes k-connected as a result of some critical link
forming, i.e. there is no longer an articulation set of k − 1 nodes in the network
whose removal would disconnect the network into two connected components, as the
critical link connects these components. (Because of the random node locations, this
critical link is unique.)
Since the number of nodes in the network is assumed to be at least k+2, thus making
an articulation set of k nodes a sensible concept, at least one of the aforementioned
components would consist of more than one node. Assume now that a critical link
endpoint representing such a component is removed. The critical link then ceases
to exist, thereby bringing the articulation set of k − 1 nodes back into e�ect: the
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removal of this set would again disconnect the network, only now with the removed
endpoint missing from one of the connected components. Therefore, this endpoint
together with the articulation set of k − 1 nodes constitutes an articulation set of k
nodes at the threshold range for k-connectivity. ¤
It is easy to see that in the case k = 1, the critical link is the longest link in the
MST and, as stated earlier, at least one of its endpoints is an articulation point at the
threshold range for connectivity. An example of the case k = 2 is illustrated in Figure
5.1 showing the critical link and the articulation point it eliminates (or, the "last"
articulation point) in the sample node set used earlier, as well as the four articulation
pairs at the critical range for biconnectivity. It can be seen that in this case both the
endpoints of the critical link have the property inferred in the above proof, i.e. they
both make up an articulation pair with the last articulation point. However, it is
notable that there are also articulation pairs completely independent of the critical
link and the last articulation point. The conclusion is that the combination of the
last articulation set of k− 1 nodes and at least one of the critical link endpoints is a
su�cient but not necessary condition for an articulation set of k nodes at the critical
range.
The consequence of the result proved is that in random networks, no two degrees of
connectivity are achieved with the same threshold range. Note that the assumption
of distinct pairwise node distances is essential here: consider as a counterexample the
vertices of a regular pentagon. This network achieves connectivity and biconnectivity
with the same transmission range (when the links forming the sides of the pentagon
are enabled), as well as triconnectivity and 4-connectivity (when the links between
the rest of the node pairs are enabled).
Every increment in the required level of network reliability thus implies a need for a
greater transmission range.

Figure 5.1: The sample node set with transmission range Rbicon(n). The critical link
is shown with a dark line and the articulation point eliminated by that link with a
large dot. Each articulation pair is marked with a distinct symbol.
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5.2 Finding the transmission range required for tricon-
nectivity

The threshold transmission range for triconnectivity, or Rtricon(n), can be found with
the same strategy as in the case of biconnectivity: �nd a lower-bound estimate for
the range (in this case, the greater one of the threshold ranges for minimum degree
3 and Rbicon), determine all articulation pairs with that range, and �nally eliminate
the articulation pairs.
The demanding task here is to e�ciently �nd all the articulation pairs. As shown by
Figure 5.1, not all of them are associated with the critical link or the last articulation
point, so all node pairs have to be taken into account. The straightforward method
of �nding out which of the n(n − 1)/2 node pair removals disconnect the network
is again too ine�cient. Another way is to run the DFS with each of the n nodes of
the biconnected network removed in turn: an articulation point found in a DFS tree
forms an articulation pair with the node removed for that tree. (To be exact, the
last run is redundant, so only n− 1 runs are needed.)
There is a known data structure in graph theory called the SPQR-tree which allows
the decomposition of a biconnected graph into its triconnected components in linear
time [12]. Its de�nition is however quite complex, which makes its implementation
even more so. This conception is supported by the fact that a brief search yielded
only two instances that had reported to have implemented the SPQR-tree, both
for the purposes of graph drawing applications, and both of which claiming to have
made the only implementation known so far. As, in addition, neither implementation
was in unrestricted distribution, another algorithm based on the DFS was developed
speci�cally for the purposes of this study.
The method used here is simple and, apart from the SPQR-tree, more e�cient than
the ones mentioned above. It is based on storing the DFS tree of the biconnected
network (obtained with the lower-bound range estimate). At each of the n− 1 node
removals, the una�ected part of the tree is preserved and only the part altered by
the node removal is reformed. Consider as a simple example the removal of node C
from the DFS tree of Figure 5.2(b). It can be seen that the rest of the tree remains
una�ected, so no part of the tree remains to be rebuilt. Furthermore, the remaining
tree yields no articulation points, meaning that node C is not part of any articulation
pair. (This can easily be veri�ed by looking at the graph of the network in Figure
5.2(a).)

5.2.1 Storing the DFS tree

The implementation of this method requires that the DFS tree of the biconnected
network is stored in su�cient detail. The nodes of the tree are stored in a list in the
order in which they are visited during the DFS. In addition to this, for each node
the shortest paths (in terms of hop count) starting with each child of the node and
leading above the node in the tree are stored. In the case of multiple paths with equal
length, the one whose endpoint is located lowest in the tree is selected, for reasons
becoming evident shortly. (Recall that such paths serve as the justi�cations for the
node not being an articulation point.) No paths are however stored for the root, it
being the topmost node in the tree, or for the leaves, for they have no children. Table
5.1 shows how the tree of Figure 5.2(b) is stored. It can be seen that even though
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Figure 5.2: The graph (a) and a DFS tree (b) of the �ve nodes of Figure 4.2 operating
at Rbicon

Table 5.1: The data structures used to store the DFS tree of Figure 5.2(b)

tree { A , B , C , D , E }
paths { {} , {{C,A},{D,E,A}} , {} , {E,A} , {} }

the mere list of nodes in the tree is insu�cient to fully describe the tree, the paths
are enough to remedy this: for example, the two together show that node B has two
subtrees, one consisting of node C only and the other one of nodes D and E; these
are the separate sequences in the list tree that start with node B's children. Also,
nodes C and E are known to be leaves because no paths are stored for them, and
node A, being the �rst node in the list, is the root with node B, the second node,
as its only child (because the network is biconnected). It should be emphasized that
even though in this case all the links in the network (all the dashed lines in Figure
5.2(b)) can be inferred from the stored data, this is not usually the case: only the
shortest paths are stored, as described above.

5.2.2 Finding articulation pairs

Given the node removed from the network, the DFS tree is preserved from the top
down to the �rst node a�ected by the removal. Such nodes are the ones with the
removed node speci�ed as other than the �rst node - the child - in the paths stored
for them, because we no longer know whether a path leading above such a node in the
tree exists via every child of that node. Also, the endpoints of the paths stored for
the removed node are a�ected, since they are the nodes located above the removed
node that are known to be connected to the subtrees under the removed node. This
justi�es the criteria for the selection of the paths to be stored: the aim is to reduce
the chances of regarding nodes located high up in the tree as a�ected by the removal
of a node located far down.
When the �rst a�ected node is found, it is added to the tree (marked as visited)
together with all, if any, subtrees rooted by its children that do not contain the
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removed node (note that the subtrees rooted by the children of a given node are not
connected below the node and are therefore completely independent). Finally, DFS
is called for the a�ected node to complete the DFS tree. The main idea is that any
articulation points will be found by the DFS because the preserved tree (excluding
the �rst a�ected node) is known not to contain any.
There are two special cases of the removed node as to where the reconstruction of
the tree must be initiated. The �rst one, the root of the tree, results in calling DFS
for its child and, in e�ect, rebuilding the whole tree. (In fact, the same can be said
when the child of the root is removed, but here the �rst a�ected node - the root -
is found as the endpoint of the paths stored for the child, so the general rule given
above applies.) The second case is a leaf that is only speci�ed in the paths stored
for its parent: in this case, the rest of the tree is preserved completely yielding no
articulation points, as was the case with node C in Figure 5.2(b).
Figure 5.3 illustrates two examples of this method. When node E is removed from
the sample network (a), the highest-located node a�ected by the removal is node B
because, as shown by Table 5.1, E has been recorded in one of its paths. The tree
can therefore be preserved from the root down to node B, with the addition of the
una�ected subtree consisting of node C (b). The tree is completed by initiating the
DFS from node B; in the new tree (c), node B is found to be an articulation point.
Therefore, nodes B and E form an articulation pair in the network.
In the second example, node D is removed (d). This time the root of the tree, node
A, is the endpoint of the path stored for D, so no part of the tree other than the root
is preserved. When the tree is built anew (e), the root obtains a second child and is
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(b) Preserved tree
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(c) Resulting DFS tree
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(d) Removing node D
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(e) Resulting DFS tree

Figure 5.3: Examples of �nding articulation pairs from the network of Figure 5.2(a)

33



Chapter 5. Triconnectivity

therefore an articulation point. Thus, nodes A and D are another articulation pair.
Both of these results can be veri�ed with the aid of Figure 5.2(a). The remaining
articulation pair consisting of nodes A and B could be found by removing either one
of them and rebuilding the DFS tree. In fact, as was the case in the �rst example
above, the tree resulting from the removal of node A is obtained from the original
tree simply by erasing the removed node and all its connections. In the remaining
tree, the root B has two children, making it an articulation point as expected.

5.2.3 E�ciency improvement

It could be observed above that the stored DFS tree is of little or no use when the
removed node is close to the root in the tree. This can be alleviated by utilizing the
fact that the DFS tree obtained from a given network is not unique. For instance,
any node of the network can be chosen as the root: Figure 5.4(a) shows the resulting
tree when the DFS is called for node E of the sample network. Now, consider the
removal of node D from this tree. The highest-located a�ected node is node A, so
two nodes of this tree can be preserved instead of only one which was the case with
the tree used before.
Nevertheless, this tree turns out to be very similar to that in Figure 5.2(b): in e�ect,
every node has been shifted down one level, with the exception of the new root.
Changing the root has therefore had little impact on the distances of nodes from
the root in the tree. Fortunately, there is another way to vary the outcome of the
DFS, namely, the order in which the adjacency list of each node is processed by the
algorithm. As an example, Figure 5.4(b) shows the tree obtained when the adjacency
lists are processed in the reverse alphabetical order, i.e. of all unvisited nodes in the
list, the DFS is recursively called for the node standing last in the alphabet. It can
be seen that this, combined with changing the root, results in a tree totally di�erent
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Figure 5.4: Di�erent DFS trees obtained from the graph of Figure 5.2(a)
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from the one in Figure 5.2(b). In particular, nodes close to the root in one tree are
located further from the root in the other.
Thus, �nding the articulation points after removing a certain node can be much
more e�cient when using one tree than when using another. (Actually, the sample
network observed here demonstrates this rather poorly because it consists of only �ve
nodes, but with a large number of nodes this becomes increasingly evident.) This is
why several DFS trees are computed and stored from each network before starting to
consider any node removals. As nodes are identi�ed with an index range from 1 to n
in the implementation of the algorithm, the di�erent trees are obtained by applying
the reverse order of the one-dimensional distance of the node index from a given
number k in the DFS and starting the DFS from the node with the largest distance
from k (that is, from either 1 or n), with several k distributed evenly between 1 and
n . The intention of this is to have for each node a tree where the node is located far
from the root. Finally, given the node removed from the network, it is �rst checked
whether in any of the stored trees the removed node is a leaf only speci�ed in the
paths stored for its parent; in this case, the node is known not to belong to any
articulation pair, as pointed out before. Otherwise, the tree in which the highest
a�ected node is located lowest (or, to be exact, appears latest in the list of nodes,
which does not necessarily indicate the node's distance from the root) is chosen.
Computationally, this proves to be well worth the e�ort. For example, with 350-node
networks it was still advantageous to increase the number of trees used to nine, which
resulted in the time needed to �nd all the articulation pairs decreasing by over 35%,
compared to using one tree only. Overall, utilizing the stored DFS trees reduced the
time required to �nd the articulation pairs by over 70% with 350-node networks, in
comparison to building all n− 1 trees from scratch.

5.2.4 Summary of the algorithm

In a nutshell, the algorithm used to �nd Rtricon is as follows:

1. Find the threshold range for minimum degree 3.

2. Build the DFS tree using this range. If the network is found to be disconnected
or to contain any articulation points, follow the steps needed to �nd Rbicon and
rebuild the tree.

3. Store the tree, along with a number of other trees built using the current range
estimate.

4. Find all articulation pairs with the current range estimate by removing n − 1
nodes from the network in turn and �nding the resulting articulation points
using the most suitable tree stored.

5. If at this point no articulation pairs are found, the threshold range for minimum
degree 3 has turned out to be Rtricon. Otherwise, eliminate the articulation
pairs by determining the threshold range for connectivity with each articulation
pair removed in turn. The longest of these is Rtricon.

Figure 5.5 shows the sample node set observed earlier with the threshold range for
minimum degree 3 and Rtricon(n). Note that with this particular node set, the former
range does not even provide biconnectivity.
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(a) (b)

Figure 5.5: The sample node set with threshold range for minimum degree 3 (a) and
triconnectivity (b)

5.3 Statistical analysis

Table 5.2 shows the weighted linear regression results for the means and sample
variances of Rtricon(n). The models obtained are approximately E[Rtricon(n)] =
1/

√
n/5 + 3/4 and Var[Rbicon(n)] = 1/(12.0n− 14.6). The agreement of the models

with the data is demonstrated in Figure 5.6.

Table 5.2: Parameter estimates for the models of E[Rtricon(n)] and Var[Rtricon(n)]

1/E[Rtricon(n)]2 1/Var[Rtricon(n)]
1 0.7356 -14.6367
x 0.192681 11.9986
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Figure 5.6: Models obtained for (a): E[Rtricon(n)] and (b): Var[Rtricon(n)]

Beta distributions �tted using these models are depicted in Figure 5.7. The new
observation to be made is the slightly visible deviation of the data from the �tted
distribution even in the case n = 5.
The parameter estimates for the models of the highest empirical quantiles are pre-
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Figure 5.7: Empirical and �tted Beta distributions (solid lines) for Rtricon(n)

sented in Table 5.3, and the �t of the models is shown in Figure 5.8. It should
be noted that even though the value predicted by the last model exceeds

√
2 when

n = 2, this is not the case with n > 3, i.e. with node numbers relevant in the context
of triconnectivity.
Table 5.4 shows that the required increase in the transmission range is roughly 30%
from the corresponding quantile of Rcrit(n) when triconnectivity is to be achieved.
In Table 5.5, the increase has been expressed in proportion to that needed for bicon-
nectivity. The fact that the majority of these ratios is less than two suggests that
the "cost", in terms of transmission range, per increment in the required degree of
connectivity decreases with the degree, i.e. the cost function is concave. This is con-
sistent with the fact that the threshold transmission range for k-connectivity when k
(and the number of nodes) tends to in�nity is limited by the dimensions of the area
-
√

2 in this case - and cannot therefore exceed that limit.
On the other hand, based on the observations from Tables 4.3 and 5.4, it could be
argued that the increase in the squared range, which can be interpreted to represent
the coverage area of a node or, in some cases, the required transmission power, is
close to constant in the gradual transitions to 2- and 3-connectivity.

Table 5.3: Parameter estimates for modelling 1/ECDF−1
n (q)2

Quantile q (%)
95.0 99.0 99.5 99.9

1 0.389088 0.352953 0.342611 0.34069
x 0.124881 0.100613 0.0920022 0.0777993
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Figure 5.8: Models obtained for highest empirical quantiles ECDF−1
n (q)

Table 5.4: Relative di�erences
between empirical quantiles of
Rtricon(n) and Rcrit(n)

Empirical quantile (%)
95.0 99.0 99.5 99.9

n Relative di�erence (%)
5 32.3 28.6 27.9 27.2
10 33.6 27.7 26.3 24.6
15 33.4 28.2 24.3 18.7
20 34.1 27.5 27.4 27.0
25 33.7 27.3 26.2 27.5
50 34.2 30.4 30.1 18.9
75 35.2 29.3 30.6 26.2
100 33.1 30.3 30.1 27.3
125 32.7 27.3 28.5 23.3
150 34.7 32.4 32.4 24.9
175 33.6 29.9 32.1 36.5
200 32.6 29.2 27.4 26.0
250 30.3 28.1 25.7 25.7
300 31.9 30.6 26.0 25.7
350 33.0 31.3 28.5 16.1

Table 5.5: Ratios of the �gures in
Table 5.4 to those in Table 4.3

Empirical quantile (%)
95.0 99.0 99.5 99.9

n Ratio
5 1.85 2.04 2.35 2.20

10 1.75 1.66 1.64 1.34
15 1.75 1.95 2.02 1.62
20 1.74 1.89 1.78 2.20
25 1.81 1.93 2.18 3.60
50 1.70 1.61 1.54 2.41
75 1.77 1.59 1.73 1.45
100 1.76 1.70 1.67 1.66
125 1.92 1.60 1.59 1.57
150 1.97 1.85 1.79 1.82
175 1.81 1.85 1.88 2.02
200 1.76 1.72 2.02 2.36
250 1.77 1.79 1.82 1.72
300 1.76 1.60 1.74 1.68
350 1.95 1.92 2.07 2.77
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Chapter 6

Discussion and conclusions

In this chapter, the statistical models obtained in the previous chapters are veri�ed
against �ndings from previous studies presented in chapter 2. This is done with the
aid of both simulation data and analytical results. Diagnostics are then carried out
which show that the form of the models requires adjustment. Finally, some conclu-
sions are presented.

6.1 Application of the models

In the previous sections, simulations have been performed with a varying number
of nodes randomly distributed in the unit square. The required ranges have been
seen to �t models of the form r = 1/

√
cn + d where c and d are the parameters of

the model. Because the unit in these models is the side of the square, they can be
generalized as r/

√
A = 1/

√
cn + d, or

r =

√
A

cn + d
(6.1)

where A is the area of the square region of interest. The model therefore binds
together three quantities: the largest area allowed, the required number of nodes,
and the required transmission range. Given any two of these, the third can be
predicted.
To show how this can be done, the results for simple connectivity are applied to an
example scenario simulated and used for veri�cation in [8]. The problem setting is
quoted below:
"Example (Design of a large-scale wireless sensor network): A wireless sensor net-
work should cover an area of size A = 500 × 500 m2. Since all sensors exchange
information, e.g. for environmental monitoring, the network should be connected.
The sensors are equipped with transceivers that transmit a range of r0 = 20 m in
free space and do not perform power control. How many sensors do we need to
distribute over the area?"
Figure 6.1 is an excerpt from [8] depicting the simulation results as well as the
analytical approximation (2.1) derived therein. It shows that according to (2.1),
2500 sensors would provide a connected network with a probability of roughly 99%.
However, it can be seen that only about 82% of the simulated random topologies
with 2500 nodes were connected.
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Figure 6.1: Simulation results for n nodes with r0 = 20m uniformly distributed on
A = 500× 500m2, 3000 random topologies [8]

Solving for n in (6.1) and applying the parameters obtained for the 99% quantile in
Table 3.6 yields n = 3755. Similarly, the prediction obtained for the 95% quantile
is 2781. Looking at Figure 6.1, the former seems to be a very good estimate, but
according to the simulation results, the latter would have resulted in a connectivity
probability of only about 90%. It can further be seen that approximately 3100 nodes
were needed to achieve the probability of 95%. The error may partly result from
the bold extrapolation in the prediction: simulation results involving no more than
350 nodes were used to �t the model, and the prediction is almost eight times that
much. Bearing this in mind, the accuracy of the prediction for the 99% quantile is
in fact quite surprising.

6.2 Asymptotic examination

Increasing the number of nodes in the simulations is intuitively interpreted as increas-
ing the node density in a constant region. It can also be interpreted as increasing
the area while keeping the node density constant. For instance, in comparison to the
simulations with only �ve nodes in the area, having 350 nodes can represent not only
70 times the nodes in that area, but also the same density as in the �ve-node case,
applied to 70 times the original area. The e�ect of the latter can be seen by writing
(6.1) in the form r = 1/

√
cn/A + d/A = 1/

√
cλ + d/A, where λ denotes the node

density. This shows that with a �xed node density, the required range increases with
the area of the network, which is in agreement with [6].
However, the latter form also shows that when the area tends to in�nity while the
node density is constant, the required transmission range predicted by the model
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tends to a �nite limit. This is inconsistent with the result shown in [6]. Looking at
(6.1), if n and A are increased while keeping their ratio constant, then in order that
the required range has no �nite limit, the denominator in the expression must grow
slower than linearly with n. In other words, the inverse of the square of the required
range cannot grow linearly with n in a given area, contrary to the conclusion made
in the analysis of the simulation data.

6.3 Diagnostics

The models �tted to the data therefore call for a closer look. Figure 6.2 shows
residual-versus-dependent-variable plots of linear models �tted (without using weights)
to the squared inverses of di�erent quantiles and means of the critical transmission
range for connectivity. If the assumed form of dependence on an independent variable
in a model is correct, such a plot should show a "constellation" evenly distributed
around zero with no curving trend. The plot in the case of the 99% quantile reveals
no such trend, nor can anything decisive be said in the 95% case. However, the
plot corresponding to the means shows a distinctive trend with negative curvature,
indicating that the rate of increase of the data points with n decreases in comparison
to that of the model. This con�rms the conjecture made above.
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Figure 6.2: Residuals of linear models �tted to the squared inverses of empirical
quantiles and means of Rcrit(n), plotted against n

The fact that this phenomenon could not be observed in the �rst two plots probably
results from the estimates for the quantiles at the tail of the distribution having
excessive variance with the used sample size of 5000. However, the peak-to-peak
variation of the residuals in these plots can be seen to be less than in the last plot.
This gives reason to speculate whether the behavior of the highest quantiles is still
better - although not perfectly - described by models of the form (6.1) than that of
the expected value. In fact, such a trend would also explain why the prediction of
the higher quantile was better than that of the lower one in the beginning of this
chapter.
Now that it has been con�rmed that the slope of the squared inverse of the required
range as a function of n actually decreases with n, a simple way to improve predictions
involving large (that is, larger than in the data at hand) n immediately emerges.
Recall that the models in this study were �tted using weighted linear regression, with
the conventional aim of minimizing the sum of squares of the eventual residuals. This
resulted in more emphasis being put on - and the slope of the model in e�ect being
dictated by - the data points with small n. More accurate predictions in settings
involving large n could obviously be achieved with models �tted using an opposite
weighting policy, i.e. one that puts more emphasis on the data points with large n.
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6.4 Conclusions

This work consisted mainly of two entities: the development of algorithms for �nding
the threshold transmission ranges for 1-, 2- and 3-connectivity for a given set of
nodes, and the statistical analysis of simulation data obtained by utilizing these
algorithms and using typical network modelling assumptions. It was found that
the statistical behavior of the critical ranges within the settings simulated can be
well described with models of simple analytical form. While these models are able
to predict connectivity in ad hoc networks rather accurately in the vicinity of their
scope, i.e. when the number of network nodes is moderate, their accuracy deteriorates
as this number grows. This is due to the fact that the form of the model is inconsistent
with theory.
The models obtained in this study are of course bound to the assumed square shape
of the network area. Perhaps more important is however the methodology that has
been shown for predicting network connectivity with the aid of statistical models;
this methodology can be utilized irrespective of the region in question.

6.5 Further work

Although it has been shown that a statistical model of the form (6.1) performs well
in predicting connectivity in a wide range of settings, �nding the correct form for
the model remains for future work.
It seems logical to assume that the critical range for connectivity exhibits similar
statistical behavior in bounded domains of other shapes (it should also be in order
to consider only convex domains), with the parameters dictated by the border e�ect
intensity inherent to each shape. Some indication of that intensity could be the way
the circumference of the region relates to its area. One possible "shape index" for
measuring this could be the circumference of the region of the particular shape with
unit area. For example, for a circle this index is 2

√
π u 3.5 (and it is known from the

classical problem of variational analysis that the circle minimizes the circumference
of a given area). For a rectangle whose longer side is a, it is 2(a+1/a) which equals to
4 in the case of a square and increases in�nitely with a. This implies that the wider
the rectangular region, the stronger the border e�ect, i.e. the longer transmission
range or number of nodes would be required. This makes sense, as randomly placed
nodes would be spread over a larger distance. This is another potential topic of
further study.
The generalization of the model (6.1) to the cases of bi- and triconnectivity has an
interesting implication: k-connectivity with higher k could be predicted in a similar
way using linear models. The growing complexity of the algorithms to �nd the crit-
ical range for k-connectivity could be compensated for by restricting simulations to
realizations containing only few nodes but using large sample sizes to improve model
accuracy. This would not necessarily even require new, elaborate algorithms, but
the brute-force method of decomposing a problem of �nding the threshold range for
k-connectivity into n problems concerned with k−1-connectivity could be su�cient.
Relating to Penrose's theorem, it would be worth while to study more closely how
the probability that the threshold range for minimum degree k equals to that for
k-connectivity grows with n with di�erent k.
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Finally, this study is restricted to static networks only. As such, it has direct appli-
cability in, for instance, sensor networks. Considering the e�ects of node mobility
to network connectivity however adds a signi�cant additional dimension. This in-
volves the important choice of mobility model, several of which have been proposed
in literature. An issue with great impact is that the assumption of uniform spatial
distribution of nodes over time is not valid with some of the most intuitive mobility
models.
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Chapter 7

Summary

This study focused on the problem of connectivity in ad hoc networks. With uniform
spatial distribution of the network nodes, square-shaped network area and a common
limit for the communication range as the underlying modelling assumptions, statisti-
cal models were �tted to extensive simulation data in order to ultimately determine
how the probability that such a network is connected depends on three quantities:
the number of nodes in the network, the area over which the nodes are scattered,
and the transmission range limit.
Simple network connectivity is a weak property in the context of the general notion
of k-connectivity. A natural extension for the scope of this study was to examine bi-
connectivity and triconnectivity which are stronger requirements in terms of network
reliability and route diversity.
The key de�nition that allowed precise, quantitative study of these properties was
that of the threshold transmission range for k-connectivity which in fact is the dis-
tance separating a certain pair of nodes in every network realization. This node
pair is unique in the case of random networks. An important part of this study was
developing algorithms for �nding the critical range e�ciently in the cases k = 1, 2,
3.
The essential �nding in the statistical analysis of simulation data was that the sta-
tistical behavior of the threshold ranges can be bound very closely to the three
quantities mentioned above using models of simple, analytical form.
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Appendix A

Algorithms

Algorithm 1 Find Rcrit(X)
Require: X = {x1, ..., xn}, n > 1, xi ∈ R2 ∀i
Ensure: R = Rcrit(X)
Calculate D ∈ Rn×n : dij = ‖xj − xi‖2 {the distance matrix}
R ← maxi{minj{dij |dij > 0}} {the threshold range for minimum degree 1}
S ← ∅ {the set of connected subnetworks}
P ← {1, 2, ..., n} {the set of nodes not yet included}
while P 6= ∅ do {Note that P cannot contain only 1 element}

C ← {P (1)} {the �rst element in P}
P ← P\{P (1)}
i ← 0
repeat

i ← i + 1
N ← {j|j ∈ P, dC(i)j ≤ R} {nodes within range R from C(i)}
C ← C

⋃
N {Append N at end of C!}

P ← P\N
until P = ∅ ∨ i = card(C)
S ← S

⋃{C} {Maintain C as a set}
end while
NS ← card(S)
if NS > 1 then {run the Prim algorithm for the connected subnetworks:}

Calculate M ∈ RNS×NS : mij = min{dkl|k ∈ S(i), l ∈ S(j)}
{M is the distance matrix for the connected subnetworks}
C ← {1}
P ← {2, ..., NS} {the subnetworks not yet included}
while P 6= ∅ do

s ← argminj∈P {mij |i ∈ C} {the closest subnetwork not yet included}
r ← min{mij |i ∈ C, j ∈ P} {and its distance from the included subnetworks}
C ← C

⋃{s}
P ← P\{s}
R ← max{R, r}

end while
end if
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Algorithm 2 Find Rbicon(X)
Require: X = {x1, ..., xn}, n > 2, xi ∈ R2 ∀i
Ensure: R = Rbicon(X)
Calculate D ∈ Rn×n : dij = ‖xj − xi‖2 {the distance matrix}
R ← maxi{minj{dij |∃dik > 0 : dik < dij}} {the threshold range for minimum
degree 2}
V ← ∅ {the set of nodes visited}
A ← ∅ {the set of articulation points}
DFS(1) {Call Algorithm 3 for the �rst node. The return value of this top instance
will be 1.}
{The recursive depth-�rst search will complete the sets V and A.}
if card(V ) 6= n then {the network is not connected with the current range}

R ← Rcrit(X) {Run Algorithm 1 (Use R as the initial range; the distance matrix
is already known)}
V ← ∅
A ← ∅ {Re-initialize the sets}
DFS(1)

end if
N ← card(A)
for i = 1 to N do {If A = ∅ do nothing}

Y ← X\{xA(i)}
E ∈ R(n−1)×(n−1) ← {djk|j, k 6= A(i)} {the distance matrix D with the row and
column A(i) deleted}
r ← Rcrit(Y ) {Use E as the distance matrix and R as the initial range}
R ← max{R, r}

end for

Algorithm 3 on the following page is the recursive depth-�rst search customized to
maintain the set of articulation points. It is de�ned here as a sub-algorithm within
Algorithm 2. The range R and the sets V and A are treated as global variables
de�ned in Algorithm 2.

47



Appendix A. Algorithms

Algorithm 3 DFS(i)
Require: i ∈ {1...n} {the node that DFS is called for: "this node"}
Ensure: v is the �rst node in V referred to under this DFS call

V ← V
⋃{i} {Append i at the end of V !}

v ← s ← card(V )
a ← FALSE {The articulation point condition for nodes other than the root}
c ← 0 {The number of children of this node in the DFS tree}
for all 1 ≤ j ≤ n such that 0 < dij ≤ R do
if ∃k : V (k) = j then {this adjacent node has already been visited}

v ← min{v, k}
else

c ← c + 1
w ← DFS(j)
if w = s then

a ← TRUE
else

v ← min{v, w}
end if

end if
end for
if (s = 1 ∧ c > 1) ∨ (s 6= 1 ∧ a = TRUE) then

A ← A
⋃{i}

end if
Return v
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