
Helsinki University of Technology
Department of Electrical and Communications Engineering
Networking Laboratory

Juuso Aleksi Lehtinen

Design and Implementation of
Mobile Peer-to-Peer Application

Master’s Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology.

January 16, 2006

Juuso Lehtinen

Supervisor: Professor Raimo Kantola

Instructor: Nicklas Beijar, Lic. Sc. (Tech.)

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS

Author: Juuso Aleksi Lehtinen

Name of the Thesis: Design and Implementation of Mobile Peer-to-Peer Application

Date: January 16, 2006 Number of pages:xiii + 102

Department: Department of Electrical and Professorship: S-38

Communications Engineering

Supervisor: Professor Raimo Kantola

Instructor: Nicklas Beijar, Lic. Sc. (Tech.)

Since the beginning of the decade, a dominant part of Internet traffic has been generated
by various Peer-to-Peer (P2P) applications. According to some studies, even 80% of
Internet traffic in the subscriber networks is peer-to-peer. Indeed, the peer-to-peer
networking has established itself as the killer application of the decade.

As the mobile phones are getting more network bandwidth, processing power, and
storage capacity, the mobile phone users are starting to lust after the services that have
been traditionally available only in the fixed networks; one of these services is the
peer-to-peer file sharing.

The main objective of this thesis was to find out how a mobile peer-to-peer file sharing
application could be implemented using the Session Initiation Protocol (SIP) as the un-
derlying signaling protocol. The feasibility of the concept was evaluated by measuring
the message sizes, signaling delays and transmission bandwidth in the network.

The thesis is divided into two parts. First, in the literature part we review the work
done on the peer-to-peer networking, and discuss special requirements posed by the
mobile networks. Then, in the second part we present our implementation of a mobile
peer-to-peer software on Nokia Series 60 platform and measure its performance.

The key findings of the study are that the current mobile terminals and networks are
ready for peer-to-peer applications. The performance of the software is more than
sufficient in the user perspective; there are no noticeable delays in the software use and
the download speeds are adequate for downloads of a few megabytes.

Keywords: mobile peer-to-peer, file sharing, session initiation protocol, Symbian

I

TEKNILLINEN DIPLOMITYÖN
KORKEAKOULU TIIVISTELMÄ

Tekijä: Juuso Aleksi Lehtinen

Työn nimi: Mobiilivertaisverkkosovelluksen suunnittelu ja toteutus

Päivämäärä: 16.1.2006 Sivuja: xiii + 102

Osasto: Sähkö- ja tietoliikenne- Professuuri: S-38

tekniikan osasto

Työn valvoja: Professori Raimo Kantola

Työn ohjaaja: Nicklas Beijar, Tekn. Lis.

Vuosikymmenen alusta saakka suurin osa Internet liikenteestä on ollut vertaisverkko-
jen aiheuttamaa. Joidenkin tutkimusten mukaan jopa 80% kaikesta tilaajaverkkojen
Internet liikenteestä on vertaisverkkoliikennettä. Voidaankin sanoa, että vertaisverkko-
ohjelmistot ovat tämän vuosikymmenen kuumimpia Internet-sovelluksia.

Sitä mukaa kun matkapuhelimet saavat lisää verkkokapasiteettia, laskentatehoa ja tal-
lennustilaa, alkavat matkapuhelimien käyttäjät haluta puhelimiinsa palveluita, jotka
ovat olleet perinteisesti saatavilla vain kiinteässä verkossa. Yksi näistä palveluista on
vertaisverkkoihin perustuva tiedostonjako.

Tämän työn päätavoite oli selvittää kuinka tiedostonjaon mahdollistava mobiilivertais-
verkkosovellus voitaisiin toteuttaa käyttäen Session Initiation Protocol (SIP) protokol-
laa ohjelman signalointiprotokollana. Idean toimivuutta testattiin tekemällä mittauksia
signalointiviestien koosta, siirtoviiveistä ja puhelinverkon siirtokapasiteetista.

Tämä työ on jaettu kahteen osaan. Kirjallisuusosassa käymme läpi yleisen vertais-
verkoista tehdyn tutkimuksen ja käsittelemme mobiiliverkkojen asettamia erityisvaati-
muksia. Toisessa osassa implementoimme vertaisverkkotiedostonjako-ohjelman Nokia
Series 60 -alustalle ja mittaamme tämän ohjelman suorituskykyä.

Tutkimuksen päälöydökset ovat seuraavat: Nykyiset mobiiliverkot ja kännykät ovat
valmiita vertaisverkko-ohjelmistoille. Luodun ohjelmiston suorituskyky on käyttäjän
näkökulmasta enemmän kuin riittävä. Ohjelman käytössä ei ole huomattavia viiveitä,
ja tiedostojen latausnopeudet ovat riittäviä muutaman megatavun tiedostokokoon asti.

Avainsanat: mobiilit vertaisverkot, tiedostonjako, session initiation protocol, Symbian

II

(8) It is more complicated than you think.

RFC 1925, The Twelve Networking Rules

III

Acknowledgements

This master’s thesis has been done for Helsinki University of Technology Net-

working Laboratory in June – December 2006. The thesis has been done as part

of a larger project, which concentrates on mobile peer-to-peer research.

I want to thank my supervisor for the thesis, Professor Raimo Kantola, for support

during my thesis and for giving me valuable insight into peer-to-peer networking,

and into its potential applications in mobile networks.

I would also like to thank Nicklas Beijar, who was the instructor for my thesis and

lead for the mobile peer-to-peer project. Nicklas gave many ideas for my thesis

and was invaluable help during the writing process.

My gratitude also goes to Tuomo Hyyrylä and Marcin Matuszewski who have

been part of the mobile peer-to-peer project, and given good ideas for my thesis. I

want to especially thank Tuomo for being my personal Symbian helpdesk during

the project.

Finally, I would like to thank my family and all of my friends for supporting me

during all my studies.

January 16, 2006

Juuso Lehtinen

IV

Contents

1 Introduction 1

1.1 The Problem . 2

1.2 Objectives and Scope . 4

1.3 Structure . 5

2 Peer-to-Peer Communications 6

2.1 Client-Server Paradigm . 8

2.2 Peer-to-Peer Paradigm . 9

2.2.1 Centralized Architecture 10

2.2.2 Decentralized Architecture 11

2.2.3 Hybrid Architecture . 12

2.2.4 Structured Peer-to-Peer Architectures 14

2.2.5 Architecture Summary 14

2.3 Popular Peer-to-Peer Protocols 15

2.3.1 Napster . 16

2.3.2 Gnutella . 17

2.3.3 Freenet . 17

2.3.4 Proprietary versus Standardized Protocols 18

2.4 Peer-to-Peer Performance Improvements 19

2.5 Effect of P2P on the Internet . 19

2.6 Economical and Legal Issues . 20

3 Session Initiation Protocol 22

V

3.1 SIP in General . 23

3.1.1 SIP Infrastructure and Terminology 24

3.1.2 Resource Location . 26

3.1.2.1 Registration 26

3.1.2.2 Message Routing 28

3.1.3 SIP Message Format . 28

3.1.4 SIP Requests . 30

3.1.5 SIP Responses . 33

3.2 SIP in IP Multimedia Subsystem 34

3.2.1 3G/IMS Network Architecture 35

3.2.2 GPRS Access Network 37

3.3 SIP in Next Generation Networking 38

4 Requirements for Mobile Peer-to-Peer 39

4.1 Technical Constraints of Mobile Platform 40

4.1.1 Memory Size . 40

4.1.2 CPU Performance . 40

4.1.3 Access Network Parameters 40

4.1.4 Screen and Keyboard Size 41

4.1.5 Battery Capacity . 41

4.2 Special Needs of Mobile Environment 42

4.2.1 Support for Various Access Networks 42

4.2.2 Operator Control . 43

4.2.3 Feasible Bandwidth Pricing 43

4.2.4 Economical and Legal Issues 44

4.3 User Requirements . 44

4.4 Optimal Architecture . 45

4.5 Comparison with Other Mobile Content Sharing Methods 46

4.6 Comparison to Fixed Peer-to-Peer 46

4.7 Past Work . 47

VI

4.7.1 Gnutella in Mobile Environment 48

4.7.2 Mobile eDonkey . 49

4.7.3 JXTA for J2MR . 50

4.7.4 Other possibilities . 50

4.7.5 Mobile Peer-to-Peer Architectures 50

5 Developing Mobile Peer-to-Peer Client 52

5.1 High-Level Design . 53

5.1.1 Software Architecture 55

5.1.1.1 The Core Process 55

5.1.1.2 The Transfer Module 57

5.1.1.3 The Graphical User Interface 57

5.1.2 Functionality Provided by SIP 58

5.1.3 SIP Messages . 59

5.1.3.1 SIP Register 59

5.1.3.2 File List Update 59

5.1.3.3 Content Search 60

5.1.3.4 Content Download 61

5.1.3.5 Motivation Behind Chosen SIP Methods 62

5.2 Implementation . 65

5.2.1 Programming Language and SIP Stack 65

5.2.2 Implementation Tools 65

5.2.3 Implementation Details 66

5.2.3.1 SyExpat . 66

5.2.3.2 SIP Profile Manager 66

5.2.3.3 SIP Routing 67

5.2.3.4 Process Communications 67

5.2.3.5 Implementation Issues 67

5.3 Peer-to-Peer Server . 68

5.4 TCP-Relay . 68

VII

5.5 Use Case . 69

6 Measurements 70

6.1 Measurement Setup and Restrictions 70

6.2 Network Performance . 71

6.2.1 Message Sizes . 71

6.2.2 Network Delays . 72

6.2.3 Network Bandwidth . 75

6.3 Software Performance . 77

6.4 User Perceived Performance . 77

6.5 Conclusions on Measurements 79

7 Conclusions 80

7.1 Objectives Revisited . 80

7.2 Results . 81

7.3 Further Discussion . 81

7.3.1 Further Research Possibilities 82

References 84

A Signaling Flows 90

A.1 Registering to the SIP Registrar 90

A.2 File List Update . 92

A.3 Searching for a File . 94

A.4 Starting a Download . 96

A.5 Deregistering from the SIP Registrar 99

B Document Type Definitions 100

B.1 File List Update . 100

B.2 Search Request . 101

B.3 Search Reply . 102

VIII

Abbreviations

3G Third Generation

3GPP Third Generation Partnership Project

AOR Address-of-Record

ARPANET Advanced Research Projects Agency Network

AS Application Server

B2BUA Back-to-Back User Agent

BGCF Breakout Gateway Control Function

BGP Border Gateway Protocol

CAMEL Customized Applications for Mobile network Enhanced Logic

CSCF Call Session Control Function

DHT Distributed Hash Table

DNS Domain Name System

DSL Digital Subscriber Line

DTD Document Type Definition

EDGE Enhanced Data Rates For Global Evolution

EPA Event Publication Agent

IX

ESC Event State Compositor

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

GUI Graphical User Interface

HSS Home Subscriber Service

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

IMP Interface Messaging Processor

IMS IP Multimedia Subsystem

IM-SSF IP Multimedia Service Switching Function

IP Internet Protocol

IPv6 Internet Protocol version 6

IRC Internet Relay Chat

I-CSCF Interrogating-CSCF

LEN Low Entry Networking

MGW Media Gateway

MGCF Media Gateway Control Function

MMS Multimedia Messaging Service

MMUSIC Multiparty Multimedia Session Control

X

MPAA Movie Picture Association of America

MRFC Media Resource Function Controller

MRFP Media Resource Function Processor

MRF Media Resource Function

MT Mobile Terminal

MTP Message Transfer Part

MTU Maximum Transmission Unit

NAT Network Address Translation

NCP Network Control Processor

NGN Next Generation Networking

OSA-SCS Open Service Access – Service Capability Server

OSPF Open Shortest Path First

P2P Peer-to-Peer

PCM Pulse Code Modulation

POP Post Office Protocol

PSTN Public Switched Telephone Network

P-CSCF Proxy-CSCF

QoS Quality of Service

RFC Request for Comments

RIAA Recording Industry Association of America

RIP Routing Information Protocol

RTP Real-Time Protocol

XI

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SGSN Serving GPRS Support Node

SGW Signaling Gateway

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIP Session Initiation Protocol

SIPPING Session Initiation Proposal Investigation

SLF Subscriber Location Function

SMTP Simple Mail Transfer Protocol

SNA Systems Network Architecture

SP Super-Peer

S-CSCF Serving-CSCF

TCP Transmission Control Protocol

TTL Time-to-Live

TLS Transaction Layer Security

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

VoIP Voice Over Internet Protocol

XII

VTAM Virtual Telecommunication Access Method

WCDMA Wideband Code Division Multiple Access

WWW World Wide Web

XML Extensible Markup Language

XIII

Chapter 1

Introduction

Usage patterns of the Internet have radically changed during the past few years.

Peer-to-Peer (P2P) networking might be the next big thing after the World Wide

Web (WWW) boom. After the release of the first peer-to-peer music swapping

software, Napster, in 1999, a mass of Internet traffic has been created between

ordinary end nodes, i.e. between millions of home and work PCs. Some studies

suggest that even 80% of Internet traffic in subscriber networks is peer-to-peer

traffic [5]. Measurements in the Internet backbone suggest numbers as high as

60% of all Internet traffic being peer-to-peer [24]. No longer is the WWW the

dominant traffic generator in the Internet, and no longer is the traffic load concen-

trated around a bunch of centralized servers.

At the same time, mobile devices — especially the mobile phones — have greatly

developed. The phones are getting more memory, faster processors, and larger

color screens. Also the mobile phone networks are moving towards the Internet

architecture. Voice and signaling traffic is being transmitted over the Transmis-

sion Control Protocol / Internet Protocol (TCP/IP) family protocols. Future Third

Generation (3G) networks will employ the Session Initiation Protocol (SIP), a

protocol developed originally for Voice Over Internet Protocol (VoIP) signaling in

the Internet, as their signaling protocol.

Internet connectivity starts to be a standard feature in today’s mobile phones, and

users are accessing services, like WWW and E-mail with their cell phones regu-

1

CHAPTER 1. INTRODUCTION 2

larly. As mobile phones are becoming capable of playing music and video clips,

there is also greater interest to get multimedia content on the mobile phones re-

gardless of place or time. Knowing the popularity of the peer-to-peer networking

among the Internet users, and the trend of ever evolving mobile platforms, it is

only a matter of time before the users start asking for peer-to-peer applications for

their handsets.

1.1 The Problem

As mobile phones are getting more feature rich, the phone users want to share

content on their mobile phones with their friends, and to acquire multimedia con-

tent available on the other phones in the mobile network. This content is mostly

self produced (e.g. pictures and videos) but maybe also professionally created

(e.g. movie trailers, ring tones, and application programs). Users are posed with

the question of how to share this content with their friends and other users conve-

niently.

In the existing mobile infrastructure, sharing information, for example pictures, is

only possible by uploading the content to a centralized server, e.g. a web server,

where the other people can fetch the content. Because the uploading has to be

done manually, there is no guarantee that the web server has the most recently

taken pictures or other recently created content available. Also, the author of

the pictures has to upload the files to the centralized server even though he does

not know if anyone will ever download these pictures, thus wasting his upload

bandwidth. Furthermore, there exists no convenient way to search for content

published by different people.

Also from the network operator’s point of view there are some problems with the

client-server architecture. Because all information passes through a centralized

server, the operator has to spend large amounts of money and other resources to

maintain this server. The server has to store a large number of files and it has to

serve multiple uploads and downloads concurrently. It’s also very possible that

the server will be a communication bottleneck in the future — especially if the

CHAPTER 1. INTRODUCTION 3

service turns out to be more popular than predicted (the flash crowd phenomenon).

The centralized server is also a single point of failure, which can bring the whole

service down. Also, in some countries, the operator might be held liable for the

content uploaded to the server. Also, because peer-to-peer networking seems to

be a desired service, the operator is losing potential revenues by not being able to

supply this service to the users.

End user problems can be summarized:

1. The content must be uploaded to be available, even though there is no

knowledge if anyone will ever download it.

2. Search for the content must be done manually if the location of the content

is not known in advance.

And operator problems:

1. The storage server costs money, is a single point of failure, and has hard

time dealing with the flash crown phenomenon.

2. Possible revenues are lost because the operator is not able to give users what

they want.

A peer-to-peer application for mobile networks seems to be a good solution for

these problems. However, there is no known implementation of such product

available; and because there are unique needs in the mobile networks, porting a

popular peer-to-peer program to a phone would not help much. Mobile networks

can not handle the traffic loads created by extensive signaling required by some

existing peer-to-peer applications, and neither do these applications provide any

kind of operator control.

Mobile phones are still less capable than home PCs. They also have very limited

bandwidth for network connectivity. Also when services are used in the Internet,

the mobile user has to pay for the traffic per byte; seldom do operators provide

cheap, flat rate connections for mobile Internet users. On the other hand, for

the services inside the mobile operator’s network, the operator has traditionally

CHAPTER 1. INTRODUCTION 4

wanted to keep control of the service, whereas peer-to-peer networking is inher-

ently distributed with no central point of control.

Content which is shared in mobile networks differs from the content in fixed net-

works. In the mobile networks content is mostly self-created, and thus many users

want to limit access to this content to people they know. To enable content sharing

between restricted user groups calls for authentication and grouping mechanisms

to be implemented in the mobile peer-to-peer application.

1.2 Objectives and Scope

The objective of this thesis is to find out how to efficiently realize a peer-to-peer

file sharing application for mobile phone networks and effectively allow users to

share and acquire content which is saved in their and their friends’ mobile phones.

This content is both created by the users (pictures, videos) and commercial com-

panies.

We implement a prototype of a mobile peer-to-peer application and measure its

performance. Measurement data will be analyzed to draw conclusions on the

feasibility of the mobile peer-to-peer content sharing.

The product has to be efficient on resource usage, both on those of the handset

and the network, and use the already existing (and upcoming) network infras-

tructure in the mobile networks as much as possible to allow easy development

and deployment. Also some kind of operator control has to be possible so that

accounting and control of the shared material can be enforced.

The Session Initiation Protocol will be used as the signaling protocol for the peer-

to-peer software, because SIP is a standardized protocol, which will be an integral

part of the IP Multimedia Subsystem (IMS) in the future 3G networks.

The software will be used to evaluate the feasibility of the concept, considering

the following points:

• Does a modern mobile phone have enough resources to run the Peer-to-

Peer (P2P) application?

CHAPTER 1. INTRODUCTION 5

• Is SIP a suitable protocol for peer-to-peer signaling?

• Is the software performance satisfying in user perspective?

1.3 Structure

The structure of the thesis is following. In the second chapter we review different

architectures of peer-to-peer networks and compare those to the traditional client-

server architecture. We also give examples of how peer-to-peer computing can be

used in different contexts. In chapter three, we study how SIP works and how it is

used in upcoming mobile networks, like in the IP Multimedia Subsystem (IMS)

in the Third Generation Partnership Project (3GPP) release 05 and later. Before

going into the implementation details, we review requirements for mobile peer-

to-peer and past work on the mobile peer-to-peer networking in chapter four, and

finally, in chapter five we discuss the design and implementation of our mobile

peer-to-peer application. Then, in chapter six, we present measurements on the

network and software performance for our application. Last, in chapter seven,

we draw conclusions on the work done and discuss which components could be

further developed.

Chapter 2

Peer-to-Peer Communications

Peer-to-peer communications has been a hot topic for discussion in the field of

networking during the past few years. A lot of research has been done on the

subject, and many peer-to-peer applications have been developed. Many ordinary

Internet users have been keen to play with these new peer-to-peer applications that

provide means for distributed computing, content sharing, Internet telephony, and

instant messaging.

Although seemingly a new topic, research on peer-to-peer has been done before.

IBM developed a peer-to-peer resource sharing system for Systems Network Ar-

chitecture (SNA) networked hosts in 1990 [50]. The system was called Low Entry

Networking (LEN), and it allowed computers to share processor time with each

other in the same subarea network as peers. The system architecture resembled

something that is currently known as the centralized peer-to-peer architecture, as

it had some centralized knowledge in the Network Control Processor (NCP) and

in the Virtual Telecommunication Access Method (VTAM) nodes.

Also many original Internet protocols are peer-to-peer by design. For example

Domain Name System (DNS), Usenet news, routing protocols like Open Short-

est Path First (OSPF), Routing Information Protocol (RIP) and Border Gateway

Protocol (BGP) are inherently peer-to-peer systems. Also usage of many other

Internet protocols, like File Transfer Protocol (FTP), can be seen as peer-to-peer,

when in the early days of the Internet, every node was running a server to which

6

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 7

any other node could connect.

As the time has passed, a lot has happened. Today, applications likeNapster,

Kazaa, Bittorrent andSkypeare used every day by millions of end users. These

applications give users access to a vast number of files, or other services, like

Internet telephony. This peer-to-peer boom has affected not only the Internet as

a service, but also the media industry, the network equipment suppliers and the

Internet operators. The Internet is never going to be the same again.

In this chapter, we are going to examine the traditional client-server architecture

and different peer-to-peer architectures and compare their properties. We will

also study some proprietary peer-to-peer protocols used in the Internet. Then,

we discuss various means how peer-to-peer application performance can be im-

proved. Last, we will discuss shortly the effects of peer-to-peer applications on

the Internet and on the media industry. We are limiting our focus mainly on the

content sharing peer-to-peer protocols because they are the most relevant to the

thesis. However, first we need a definition for what peer-to-peer is actually about.

Schollmeier provides us a good one in [47]:

A distributed network architecture may be called a Peer-to-Peer

(P-to-P, P2P, . . .) network, if the participants share a part of their own

hardware resources (processing power, storage capacity, network link

capacity, printers, . . .). These shared resources are necessary to pro-

vide the service and content offered by the network (e.g. file sharing

or shared workspaces for collaboration). They are accessible by other

peers directly, without passing intermediary entities. The participants

of such a network are thus resource (service and content) providers as

well as resource (service and content) requesters (servent-concept).

The key point is that the participants of the peer-to-peer network can exchange

information with each other without passing the information via some centralized,

controlling entity. When many peers communicate with each other, the load inside

the network is also shared evenly between the users.

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 8

2.1 Client-Server Paradigm

In the early days of the Internet or the Advanced Research Projects Agency Net-

work (ARPANET) as the Internet was called back then, there were very few com-

puters connected to the net. Large universities in the USA were connected to the

ARPANET using Interface Messaging Processor (IMP) mini-computers, ances-

tors of routers. The primary use of the ARPANET was research, electronic mail,

file transfers and remote logins. There were no such services as WWW and there

were no such things as personal computers. Thus, every machine connected to

the network communicated directly via each other. Information was fetched di-

rectly from the computer which had the needed information, not from a centralized

server.

In 1990, Tim Berners-Lee wrote theWorldWideWebbrowser (later namedNexus)

that was able to show HyperText Markup Language (HTML) hypermedia pages [14].

This was the birth of the World Wide Web. The WWW and the concept of the

HTML were based on a 50 year old idea of a global information store,Memex,

visioned by Vannevar Bush [9].

Easy to use graphical browsers made the Internet appealing to the general public

and businesses; the size of the Internet started to increase exponentially. Also,

thanks to the WWW, the fundamental peer-to-peer architecture of the Internet

shifted towards centralized client-server architecture (see figure 2.1). Schollmeier

defines the client-server architecture as follows [47]:

A Client/Server network is a distributed network which consists of

one higher performance system, the Server, and several mostly lower

performance systems, the Clients. The Server is the central register-

ing unit as well as the only provider of content and service. A Client

only requests content or the execution of services, without sharing

any of its own resources.

Besides WWW many popular Internet services, like the Post Office Protocol

(POP), also rely on the centralized client-server architecture. However, the proto-

col behind the WWW, the HyperText Transfer Protocol (HTTP), has been the one

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 9

generating the most traffic.

Figure 2.1: In Client-Server architecture clients communicate only with the cen-
tralized server. The server holds all the information in the network. If two clients
want to exchange some information, one has to first upload the content to the
server so it can be fetched from there by the other client.

2.2 Peer-to-Peer Paradigm

The peer-to-peer paradigm can be divided into structured and unstructured cate-

gories. Unstructured peer-to-peer networks can be further divided into three dif-

ferent architectures:

• Centralized architecture,

• Decentralized architecture,

• Hybrid architecture.

Peers communicate directly with each other in all of these architectures. Differ-

ences between the architectures are in logical network topologies and how the

information is searched inside the network. Figure 2.2 shows how these architec-

tures relate.

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 10

Figure 2.2: Peer-to-peer hierarchy tree

Naming of different P2P architectures is a little vague, and for example [29] di-

vides the centralized architecture into two sub-architectures; to one where the

centralized server works as the centralized database and peers communicate di-

rectly with each other, and to another where peers do not communicate with each

other at all, but only with the centralized server. This latter paradigm is used

e.g. in distributed computing applications where the end nodes do most of the

work (e.g. SETI@home), and where the centralized server merely distributes tasks

to the end nodes. We are not discussing about this latter architecture in this thesis

because it is identical to the client-server paradigm in case of file sharing.

2.2.1 Centralized Architecture

The centralized peer-to-peer architecture (see figure 2.3), also often called the

Napster architecture, is an architecture where a centralized server, a Super-Peer

(SP), holds information about all the content available in the network. Ordinary

peers register with this server and upload information about the files they have

to the SP. When a node searches for files, it queries the central server, the server

checks its internal database, and replies the query with information about the peers

having the requested resource. The querying node then connects directly to a peer

that the server just specified. All further communications is directly between these

two peers; the server is only vital for searching resources. The centralized peer-to-

peer architecture resembles the client-server architecture; the centralized server is

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 11

needed to hold information, but now it only holds meta information, i.e. informa-

tion about information that other peers have. All resources are transferred from

peer to peer, without SP involvement.

The centralized peer-to-peer architecture is most suitable for situations where

some authority wants to have control on the system. For example, a telephone

operator maintaining a peer-to-peer service can control the files distributed by the

system if it has control on the centralized server.

Figure 2.3: Centralized peer-to-peer architecture [46]

2.2.2 Decentralized Architecture

The decentralized architecture, also called the pure peer-to-peer architecture, has

no centralized node, i.e. no SP. All nodes belonging to the peer-to-peer network

are equal in this type of architecture. When a node boots up, it has to locate

another member of the network by some means. Because there are no static cen-

tralized servers in the network, this is a non-trivial task. A node can for example

hold a database of connected nodes when it is running. This database is saved after

every session. Then the node can try to connect to several of those nodes stated in

the database when starting a new session in hope that someone of the nodes listed

in the database is still online in the peer-to-peer network. After finding a peer, the

node contacts this peer and becomes part of the peer-to-peer network. Addresses

of other peers can be learned via the first peer.

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 12

Searches in pure peer-to-peer networks are done by forwarding queries from node

to node, using a flooded request algorithm (e.g. in Gnutella 0.4), which effectively

broadcasts the search with limited scope; or by some more intelligent routing

method (e.g. Freenet), where the query is routed towards the host most likely hav-

ing the requested file. In both search types, propagation of queries is limited by

the Time-to-Live (TTL) field in the queries. If some node has the requested file, it

replies to the original querying peer. The reply is usually sent back to the original

requester via the same path the request was routed initially. Further communica-

tions are directly between the peers or via intermediate nodes, depending whether

there is a need for anonymity in the system or not.

Figure 2.4: Decentralized peer-to-peer architecture

2.2.3 Hybrid Architecture

The hybrid architecture is a combination of the centralized and the pure peer-

to-peer architectures. The hybrid networks have several SPs and the end users

connect to these SPs as in the centralized architecture. However, the SPs them-

selves form a decentralized peer-to-peer network. The SPs hold information about

the resources that nodes connected to them have. Every SP usually knows only

about the nodes connected directly to it, not about the nodes connected to the

other SPs. The hybrid architecture is used by many popular peer-to-peer applica-

tions, such asGnutella 0.6andKazaa. This architecture is also used bySkype, a

massively popular peer-to-peer Internet telephony application, developed by the

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 13

Kazaa team [7].

Queries are forwarded from end nodes to an SP. The SPs query each other if any

of their ordinary nodes have the searched resource. If there is a match, peers

exchange all further information directly without SP involvement.

From the perspective of an ordinary client, the hybrid architecture is just like the

centralized architecture. The client speaks to one super-peer and is not aware of

the other super-peers, or about the pure peer-to-peer network between those super-

peers. However, in some architectures the client can be connected to multiple

super-peers at the same time, so if one super-peer disconnects from the network,

the client can still reach the peer-to-peer network via other super-peers.

Some hybrid peer-to-peer networks allow the node to function as a normal end

node or as a super-peer, depending on the conditions, like the available band-

width and processing power. This is totally different from the centralized peer-to-

peer architecture where the functionality of the super-peer and the client is always

clearly separated and not built into the same application.

Figure 2.5: Hybrid peer-to-peer architecture

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 14

2.2.4 Structured Peer-to-Peer Architectures

In addition to the architectures described above, there are structured peer-to-peer

architectures. These architectures use the Distributed Hash Table (DHT) algo-

rithm to locate content in the network. In these architectures every file is given a

unique ID or hash. When a new file is added to the network, a link to the file is

stored to the node responsible for the respective part of the hash space. This link

points to the actual file location.

The major drawback of using DHT networks for file sharing is that the name of

the file or the hash of the file has to be known completely to fetch the file from the

network — no wildcard searches are possible in DHT networks.

2.2.5 Architecture Summary

As stated above, different peer-to-peer architectures have different properties. The

scalability, resiliency, search efficiency and ability to control the network depend

on the architectural choice of the network.

For example, the pure peer-to-peer architecture does not scale well to a large num-

ber of nodes. However, it is the most resilient against node failures, whereas a

failure of the centralized server eliminates the whole centralized peer-to-peer net-

work. On the other hand, the centralized server may become a capacity bottleneck

in the centralized architecture and thus render a large peer-to-peer network unus-

able.

The hybrid architecture is located between the pure and the centralized peer-to-

peer architectures. It scales quite well and has good resiliency as long as the

failed nodes are not functioning as super-peers. The hybrid architecture is also

situated somewhere between the other two architectures when considering the

search coverage in the network. When a node sends a search out, the request

is forwarded to other super-peers which then forward the request onwards. The

search coverage is limited by the TTL of the request message, but the coverage

is a lot larger in the hybrid architecture than in the pure peer-to-peer architecture,

thanks to the request only traversing super-peers.

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 15

Because both, the hybrid and the centralized peer-to-peer architectures have super-

peers built into the architecture, some kind of operator control is possible in these

networks via the super-peer control.

Comparison between different peer-to-peer architectures is presented in table 2.1.

Table 2.1: Architectural comparison

Architecture Pure Hybrid Centralized

Scalability Low Very high Medium

Signaling overhead in super-peer – High Very high

Signaling overhead in ordinary peerHigh Low Low

Resiliency Very high Medium Low

Operator control Low High Very high

Search coverage Medium High Very high

When compared to the client-server architecture, all peer-to-peer architectures

have one major down side: Once the peer with a certain file leaves the network,

the file is no longer available — unless several peers are sharing the same file.

2.3 Popular Peer-to-Peer Protocols

Peer-to-peer networking has many uses; however, modern peer-to-peer has its

roots in anti-censorship movement. Peer-to-peer networking can be used to pro-

vide far greater amount of anonymity than conventional Internet routing does. In

many countries, the Internet traffic is monitored by the government or some other,

potentially hostile, entity, like the employer or a jealous partner. Many of the first

peer-to-peer protocols have been developed primarily with anonymous communi-

cation and information sharing in mind (e.g. Freenet).

Shortly after appearance of various anonymity-oriented peer-to-peer applications,

it was noticed that peer-to-peer was a great architecture for distributing other con-

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 16

tent as well, like music and movies. Nowadays, file sharing programs are probably

the most used type of peer-to-peer applications. Distributed computing is also one

use of peer-to-peer systems, where a centralized server distributes computation

tasks to end nodes periodically. These end nodes compute tasks assigned to them,

and return results to the central node which uses the results to combine some larger

answer.

Also, Internet telephony is a major user of the peer-to-peer paradigm. The SIP

protocol, which is used for Internet telephony signaling, is fundamentally a peer-

to-peer protocol.

As noticed earlier, many peer-to-peer protocols exist in the Internet. We will re-

view a few of those shortly. Protocols reviewed here are not the most popular, nor

the most advanced; however, they represent how different peer-to-peer paradigms

are used in applications and give a good, general picture about peer-to-peer in

the Internet. For last, we discuss some issues between the proprietary and the

standardized peer-to-peer protocols.

2.3.1 Napster

Napster was the program which brought peer-to-peer networking to the masses.

The original Napster, released in 1999, was a centralized peer-to-peer system

which allowed users to share music files on their hard drives, and download files

from the other users logged on to the service.

Napster does not exist in its original form anymore because of legal actions against

the company. Nowadays, Napster is a subscription based, legal music service,

where users can download songs by paying a monthly fee. The file-transfer

paradigm used by the current Napster is no more peer-to-peer; it is traditional

client-server instead. The original Napster architecture is described in [20], and

compared against the Gnutella architecture.

In the original architecture, a centralized database was used to store information

about which files every node had, and this database was used for file searches.

When a user found an interesting file, the centralized server passed information

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 17

about the peer having that file, so that peers could directly transfer that song.

The idea behind the Napster was intelligent, the company did not have to deal with

the huge traffic loads generated by the actual file transfer sessions; it only needed

to handle the signaling traffic coming from and going to the centralized database.

2.3.2 Gnutella

Gnutella system is a hybrid peer-to-peer content sharing system, designed orig-

inally by Nullsoft. Unlike Napster, Gnutella allows users to share any kinds of

files, not just music. The Gnutella system tries to fight legal threats by not having

centralized servers which can be shut down.

The original Gnutella protocol was a pure peer-to-peer system without any central

nodes [20]. Due to scalability issues, the concept ofultrapeerswas introduced in

the Gnutella version 0.6 [51]. Some nodes in the Gnutella network are assigned

as ultrapeers, this assignment is based on the node resources: the network band-

width, the firewall/Network Address Translation (NAT) status and the uptime the

node is having. Many end nodes connect to these ultrapeers like ordinary nodes

connected to the Napster servers. The ultrapeers form a pure peer-to-peer net-

work among themselves; thus, they work as proxies to the Gnutella network for

the less capable nodes. In the new architecture, the less capable nodes do not need

to bother with large amount of signaling traffic, whereas the more capable nodes

function as super-peers and are responsible for propagating search messages in-

side the network.

2.3.3 Freenet

Freenet is a pure peer-to-peer system designed by Ian Clarke. Freenet’s main

aim is to provide anonymity for its users. It allows users to publish and fetch

files anonymously in the network. Freenet provides privacy via strong encryption.

Content is distributed over the network, and users of the network are not able to

deduce what information is passed via their computers, nor what files the Freenet

system has stored on their computers. The system replicates files in the network

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 18

automatically, so a computer can store files that the user has never requested.

Instead of sending simple flooded requests as searches, Freenet builds a dynamic

routing table containing mappings between the addresses of other nodes, and the

content those nodes are assumed to be holding. However, files are always routed

via multiple nodes, so neither the sender nor the receiver of the file knows who

has the file or who is requesting it. [13]

2.3.4 Proprietary versus Standardized Protocols

Usually, the peer-to-peer file sharing protocols have not been standardized by any

official standardization body. The protocols have been proprietary protocols cre-

ated by the authors of the different peer-to-peer applications. Some of these proto-

cols have become de-facto standards, i.e. there are many programs available using

the same protocols, and thus able to access the same sets of files. For example the

FastTrackprotocol, originally used by the Kazaa application, has become a kind

of de-facto standard, and is now used by many applications, such asMorpheus,

Grokster, and Apollon.

It is difficult to say why there are no official peer-to-peer file sharing protocol

standards. Maybe it is because of the lack of interest from the standardization

bodies, or maybe there just has not been a need for a standard peer-to-peer file

sharing protocol.

Nonetheless, some peer-to-peer protocols have been standardized; e.g. the Ses-

sion Initiation Protocol (SIP). SIP is not designed to be a file sharing protocol

but a signaling protocol. However, nothing prevents using SIP for peer-to-peer

signaling.

There are some advantages in using standardized protocols for peer-to-peer file

sharing. For example, having a standardized protocol helps network administra-

tors identifying peer-to-peer traffic, and possibly imposing some restrictions on

that traffic. Also sometimes, using a standardized protocol allows peer-to-peer

applications to be integrated more closely with the existing network. For exam-

ple, the SIP protocol is the signaling protocol for future mobile phone networks.

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 19

Building a file sharing application on top of the SIP protocol allows the applica-

tion to be integrated closely to the network, and enables the operator to implement

for example the charging functions easily.

2.4 Peer-to-Peer Performance Improvements

Performance of peer-to-peer systems can be increased by various means. If mere

upload/download bandwidth is wanted, usage of the centralized architecture min-

imizes the link usage for signaling and thus maximizes the link use for actual

content transfers. The same argument goes for the hybrid peer-to-peer networks,

where a small number of more capable super-peers can handle larger signaling

overhead.

Another way to improve performance is to cache popular content on the fast nodes,

where it can be downloaded more efficiently. For example, if some slow node

with a modem connection is sharing an interesting piece of information, it would

be useful to cache that content to some faster node to move part of the load to a

faster connection, and thus improve the overall quality of service. [26]

Multi source downloads are yet another way to improve performance perceived

by a single node. They do not improve the overall network capacity, but they

allow a node with a broadband Internet connectivity to use multiple sources when

downloading a file, thus accelerating the download process.

2.5 Effect of P2P on the Internet

As it was mentioned in the introduction, peer-to-peer applications eat up a large

portion of the Internet bandwidth. Claims between 60% – 80% of all Internet

traffic being peer-to-peer have been published [5, 24].

Not just the amount of the Internet traffic has been changed because of peer-to-

peer; also location of this traffic in the topology has changed. Earlier communi-

cation was just between ordinary clients and a few centralized servers; now the

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 20

traffic load is shared evenly across millions of end nodes. This poses large re-

quirements on the network infrastructure that was originally engineered with the

client-server paradigm in mind. Popular asymmetric cable modem and Digital

Subscriber Line (DSL) connections are not the best means to connect to peer-to-

peer networks. These connections usually have high downstream bandwidths, but

their upstream capacity is limited. This asymmetric design is not most suitable

for peer-to-peer, because the total flow out of the network (download bandwidth)

cannot exceed the total flow into the network (upload bandwidth). Thus, asym-

metric connections virtually restrict the download bandwidth to the average up-

load bandwidth, considering that the same amount of time is used uploading and

downloading information.

This asymmetry would not be a problem if the peer-to-peer users spent only a frac-

tion of the total time they are running the peer-to-peer applications downloading

content. Unfortunately, most users run the peer-to-peer applications only when

they are downloading content from the network and shut down these applications

as soon as the downloads have finished. These users — often called freeriders

— effectively share content only when they are downloading something from the

network. [37]

2.6 Economical and Legal Issues

The music and movie industry has had issues with the peer-to-peer since Napster.

Legal actions against Napster were the reason for the original service shutting

down. Also many other peer-to-peer developers and users have been harassed by

the media industry.

In the US, Recording Industry Association of America (RIAA) and Movie Picture

Association of America (MPAA) have been strongly fighting against peer-to-peer

networks, and especially distribution of pirated material in these networks [3].

There have been legislative changes which allow suing of peer-to-peer developers

based on copyrighted material distributed in the peer-to-peer networks accessible

through their programs. Legal issues faced by the peer-to-peer networks and users

CHAPTER 2. PEER-TO-PEER COMMUNICATIONS 21

are analyzed in [32].

There still does not seem to be any studies available, except those done by RIAA

and MPAA, which show if the peer-to-peer networking has actually had any im-

pact on the music or movie industry. Some studies indeed point that the content

creation industry could benefit from peer-to-peer by adjusting their business mod-

els and using the peer-to-peer networks as a content distribution channel [27].

Chapter 3

Session Initiation Protocol

The Session Initiation Protocol (SIP) [45] is a general Internet signaling protocol

for creating, modifying and terminating multimedia sessions between two or more

participants. SIP can be used as a signaling protocol for Internet Protocol (IP) tele-

phony, instant messaging, multimedia conferences, and similar applications. [49]

SIP was drafted by the Internet Engineering Task Force (IETF) Multiparty Multi-

media Session Control (MMUSIC) working group in 1997 as the result of merg-

ing two different signaling protocol proposals: the Session Invitation Protocol

(SIP) by Mark Handley and Eve Schooler, and the Simple Conference Invitation

Protocol (SCIP) by Henning Schulzrinne. In 1999 the SIP working group was es-

tablished, and later Session Initiation Proposal Investigation (SIPPING) and SIP

for Instant Messaging and Presence Leveraging Extensions (SIMPLE) working

groups were set up for investigating further applications of SIP and defining in-

stant messaging extensions for it. [23]

SIP is an end-to-end protocol; SIP messages are routed via SIP proxies from the

originator to the target user. SIP entities have a peer-to-peer relationship between

each other, thus any entity can send the initial request, and any entity is capable

receiving requests. During a single transaction, the entities are in a client-server

relationship, where the request sender functions as the client, and the party who

sends the reply, as the server.

The SIP will be the signaling protocol for the IP Multimedia Subsystem (IMS) in

22

CHAPTER 3. SESSION INITIATION PROTOCOL 23

the 3G networks. IMS will be part of the 3G networks from the 3GPP Release 5

onwards.

In this chapter we will review the SIP protocol and some extensions to it. We

will start the chapter by reviewing how the protocol functions, and what kind

of signaling messages are included in the protocol. Then, We will also discuss

how SIP is used in the future Third Generation (3G) IP Multimedia Subsystem

(IMS) mobile networks. A reader familiar with the SIP protocol should skip to

section 3.2.

3.1 SIP in General

SIP is a text based signaling protocol; it is based on the HyperText Transfer Pro-

tocol (HTTP) and the Simple Mail Transfer Protocol (SMTP). SIP uses the same

request/response transaction model and status codes as HTTP [17]. From the

SMTP [25] protocol SIP takes the text encoding rules and header style, it uses

many same header fields with the SMTP, e.g.To, FromandSubjectfields.

SIP is specified in RFC 3261 [45]. This Request for Comments (RFC) document

specifies the protocol, and necessary components of the SIP signaling framework.

The SIP architecture provides means for resource location and location indepen-

dent routing of signaling messages. SIP only provides signaling for negotiating

session characteristics; the protocol provides no means to transfer actual commu-

nication data between session participants; thus other protocols have to be used in

addition to SIP to create any meaningful services. Figure 3.1 illustrates how SIP

fits into the protocol stack.

RFC 3261 specifies five aspects of multimedia session establishing, and terminat-

ing that SIP provides:

1. User location - where to route signaling?

2. User availability - is the requested user available?

3. User capabilities - what are the media capabilities of the callee?

CHAPTER 3. SESSION INITIATION PROTOCOL 24

Figure 3.1: SIP is an application layer signaling protocol. It’s used in conjunction
with other application layer protocols to create meaningful services.

4. Session setup - establishment of the session parameters.

5. Session management - transferring, modifying, terminating the session and

invoking services.

Compared to another major internet signaling protocol, H.323 [22], SIP is a lightweight

protocol. H.323 is an umbrella recommendation for multimedia communica-

tions, which includes many protocols, from signaling to actual voice transmission,

whereas SIP only defines the signaling part, and leaves other functionality to sep-

arate protocols; e.g. telephony applications use the Real-Time Protocol (RTP) to

transmit the audio. A comparison between SIP and H.323 can be found in [48].

SIP is not tied to one transfer protocol. SIP is able to run on the Transmission Con-

trol Protocol (TCP), the User Datagram Protocol (UDP), the Transaction Layer

Security (TLS) as defined in RFC 3261 [45], and the Stream Control Transmis-

sion Protocol (SCTP) as defined in an Internet draft [44].

3.1.1 SIP Infrastructure and Terminology

Before going into details of how SIP functions, it is good to sit back and define

some key concepts.

Address-of-Record (AOR) is a SIP or SIPS Uniform Resource Identifier (URI)

which points to a domain with a location service. The AOR is the public address

CHAPTER 3. SESSION INITIATION PROTOCOL 25

of the user, which is usually communicated in the Request URI and To: header

field when contacting the user; e.g. alice@detroit.com.

Dialog is a peer-to-peer relationship between two UAs defined by the To tag, From

tag, and Call-ID header field.

Sessionis a collection of participants, and media streams between them. Session

consists of one or more SIP dialogs.

SIP Transaction consists of a single request and one or more replies to that re-

quest.

Home Domain is the domain where the user’s AOR is allocated; e.g. the home

domain for a user having AOR charly@detroit.com would be detroit.com. This is

also the domain where the registrar for the user resides. Also the SIP messages to

the user are initially routed via this domain.

User Agent Client (UAC) is the logical entity that creates the SIP request.

User Agent Server (UAS)is the logical entity that receives the SIP requests sent

by the UAC and generates replies to them.

User Agent (UA) is the logical entity that can act as a UAC and UAS.

Back-to-Back User Agent (B2BUA)is the logical entity that works as a UAC

and UAS at the same time, so it can receive SIP requests, modify them, and send

them out as new requests. The B2BUA can be used for example to implement an

anonymizer service, which removes all tags from the SIP request which could be

used to identify the original message sender.

Requestis a SIP message that the UAC sends to the UAS. The first line in the

request specifies the SIP method.

Reply is a SIP message that the UAS sends to the UAC as a reply to the request

sent by the UAC. The first line in the reply specifies the status code.

Method is the SIP request type, specified in the first line of the SIP request mes-

sage, e.g.INVITE, OPTIONS, BYE, etc. The method specifies what functionality

the request is supposed to invoke on a server.

Contact URI is an IP-address or Fully Qualified Domain Name (FQDN) where

CHAPTER 3. SESSION INITIATION PROTOCOL 26

the user for some AOR can be reached at the moment.

Proxy is an element which forwards the SIP requests sent to it. The proxy does not

issue requests, nor does it have media capabilities or parse message bodies. The

proxy server can be seen as application layer router. The proxy uses information

from the DNS and location service to route messages. A proxy can be stateless

or stateful, depending on whether it keeps state information about SIP dialogs

passing through it.

Registrar Server is a server that accepts REGISTER requests and saves the infor-

mation contained in these messages to the location service of the domain; i.e. AOR

to Contact URI mappings.

Location Service is a logical component that stores AOR to Contact URI map-

pings for users of the domain. The registrar inserts these mappings to the location

service. The proxies use the information in the location service to route messages

to users.

SIP Gatewayis an entity which can convert the SIP signaling to another signaling

protocol format. A gateway can, for example, be used to establish calls between

SIP and H.323 enabled devices, SIP gateways can be also placed between tradi-

tional Public Switched Telephone Network (PSTN) and VoIP enabled networks.

General SIP infrastructure is pictured in figure 3.2.

3.1.2 Resource Location

SIP infrastructure provides resource location of location-independent names, i.e. for

AORs. The main components needed for the resource location are the registration

and the message routing functionalities.

3.1.2.1 Registration

When a SIP enabled UA starts up, it has to register to the Registrar of its home

domain. The registration is performed by sending a REGISTER message (see

Section 3.1.4) to the registrar. The REGISTER message includes user’s current

CHAPTER 3. SESSION INITIATION PROTOCOL 27

Figure 3.2: The SIP Trapezoid. The figure shows signaling and media paths for
SIP session between users in different domains. It also shows the key components
in the SIP infrastructure.

address in the Contact field, and the user’s AOR in the To field and METHOD line.

The registrar will update UA’s current location to the location service, i.e. create

a mapping between the AOR and the terminal address the user is using, and send

200 OK message back to the UAC to inform that the registration succeeded.

Example registration is shown in figure 3.3.

Figure 3.3: User updates her information to location service with REGISTER
message

CHAPTER 3. SESSION INITIATION PROTOCOL 28

3.1.2.2 Message Routing

When a user wants to contact another user, he usually does not know the current

location of the another party. This means that the user can not contact him directly

by using his Fully Qualified Domain Name (FQDN) or IP-address. However,

the SIP infrastructure provides message routing that enables the originating user

to send the SIP message to the known AOR of another user. User A sends the

message first to the preconfigured outbound SIP proxy in his home domain, or

alternatively to a inbound SIP proxy in foreign user’s domain, whose address can

be attained using DNS [43].

If the message was forwarded first to the outbound proxy in the home domain,

this proxy will resolve the correct inbound proxy in the foreign domain, and send

the message there. The proxy in the foreign domain will contact the location

service of the domain to get information about the current location of user B.

The proxy then uses the location information to route the message to the final

recipient. The final recipient will send the reply via the same proxies the request

came from. In addition to message routing, these proxies may be also used to

implement charging and application layer firewall functions.

After the communicating partners have located each other via proxies, they may

start communicating the SIP messages directly between each other without prox-

ies if the intermediate proxies have not required to stay on the signaling path by

inserting a Record-Route field in the initial SIP messages.

Figure 3.4 shows an example of routing INVITE message between two users in

different domains.

3.1.3 SIP Message Format

SIP is a text based protocol and it does not have a static message format. Instead

the SIP messages consist of separate lines of text. A line may be a Request-Line,

a Status-Line, a Message Header-Line or it can be part of the Message-Body.

The Message-Body can be used to convey arbitrary information. Usually infor-

mation in the body has no meaning for the signaling, but it is processed by the

CHAPTER 3. SESSION INITIATION PROTOCOL 29

Figure 3.4: The figure shows how a session is created between two users in dif-
ferent domains. Alice sends INVITE to her default proxy, which forwards it to
Bob’s domain. Bob’s proxy will further forward the message to Bob. [45]

application using the SIP protocol; e.g. two clients can negotiate their media op-

tions using the Session Description Protocol (SDP) carried in the body of SIP

messages when establishing a new session. This message-body can also be used

for example to convey peer-to-peer application specific information if the appli-

cation uses SIP as its signaling protocol.

The message format for requests and replies has minor differences. Shown below

are the high level descriptions of the message formats.

Format for SIP Request

Request-Line (Method, Request-URI and SIP-Version)

Message Headers

Optional Message-Body

A valid SIP request must contain at least the Request-Line; and the To, From,

CSeq, Call-ID, Max-Forwards and Via headers, whereas a valid SIP reply must

CHAPTER 3. SESSION INITIATION PROTOCOL 30

contain at least the Status-Line and the same headers as requests.

Format for SIP Reply

Status-Line (SIP-Version, Status-Code and Reason-Phrase)

Message Headers

Optional Message-Body

3.1.4 SIP Requests

The basic SIP RFC [45] defines the REGISTER, INVITE, BYE, CANCEL and

OPTIONS methods for establishing, modifying and terminating sessions. There

are additional methods specified in later RFCs, like INFO [15], MESSAGE [11],

PUBLISH [31], UPDATE [39] SUBSCRIBE and NOTIFY [40], REFER [53] and

PRACK [42].

Methods are in request/response style, so there is one final reply per one request.

There can also be several provisional replies before the final one. The INVITE

request is an exception, it is a three-way message, meaning there is a request-

reply-request (INVITE – 200 OK – ACK) pattern.

Proxies do not have to understand the method to pass messages forward, they

only check where the message is heading and treat unknown requests like the

OPTIONS method. If the receiving UA is not aware of the method it receives, it

has to discard the message and reply with an error code.

REGISTER The REGISTER request is needed to push user’s current Contact

URI (an FQDN or an IP-address) to the location service in its home domain. The

location service creates a mapping between this URI and the user’s AOR in its

database. Informing location service about the user’s current location enables

user mobility, because proxies in the home domain can now route messages sent

to the user to the correct host. The REGISTER request can be also used to refresh,

query and remove mappings in the location service for the AOR. The REGISTER

request is sent from the UAC to the Registrar.

CHAPTER 3. SESSION INITIATION PROTOCOL 31

INVITE The INVITE request is used to establish sessions between UAs. The

INVITE request is different from the other requests because it is a three-way re-

quest; whereas there is usually one request and one reply, for INVITE there will

be the initial INVITE request, zero or more provisional 1xx-responses, and a fi-

nal reply. After the final reply, the UAC will send an ACK request to the UAS

to confirm reception of the final reply. There is no reply for ACK. This different

behavior is because the INVITE requests can take a long time to complete, since

they need user confirmation. Often there are provisional responses for the INVITE

requests. The INVITE request often contains a SDP [18] payload, that describes

what protocols and codecs are used on the media path. An offer/answer model is

used when negotiating session parameters using SDP [41]. INVITE requests can

be sent inside a session to update session or media parameters, these mid-session

requests are called re-INVITEs.

BYE The BYE request is used to terminate session established with the INVITE

request. When a session participant sends a BYE request to the other end, the

request is replied with 200 OK, and the sessions is closed.

CANCEL The CANCEL request is used to cancel pending requests. Request

can be only cancelled if it has not been fully processed yet, completed requests can

not be cancelled. This means that practically only INVITE requests can be can-

celled, because their processing can take a longer time, whereas other messages

are usually processed immediately. INVITE requests can be cancelled when the

initial INVITE is sent, but there has been no final reply yet.

OPTIONS The OPTIONS request is different from other methods defined in

RFC 3261 [45]. It is a request that does not establish, modify or terminate ses-

sions, and it can be sent even if there exists no session between the endpoints,

i.e. outside a session. The request is used to query the UA or the proxy about the

SIP capabilities it supports and to discover its current availability. Response to a

OPTIONS request includes capabilities the UA or server supports.

CHAPTER 3. SESSION INITIATION PROTOCOL 32

INFO The INFO request, defined in RFC 2976 [15], is used to convey call con-

trol information during a existing session. This information does not change the

state of the SIP session parameters, or media characteristics of the call, it merely

allows mid-session signaling for the application in both ends.

MESSAGE RFC 3428 [11] specifies the MESSAGE method, which can be used

to transfer user readable messages between terminals over the SIP signaling path.

The MESSAGE requests can be used for instant messaging and services alike.

MESSAGE requests do not initiate SIP dialogs, they can be sent within an existing

dialog, or outside any dialog. The request is different from the other SIP requests

because it carries actual media rather than signaling. It is more convenient to use

the signaling path to send short messages, than to create a short-lived session for

every message transaction.

SUBSCRIBE and NOTIFY The SUBSCRIBE and NOTIFY requests are de-

fined in RFC 3680 [38]. These methods are used for subscribing to and notifying

of events related to the SIP system. The SUBSCRIBE request is sent to an element

that can compose NOTIFY requests whenever some predefined event happens.

Subscribing to the UA registration status is an example where this framework can

be used [40]. An entity can SUBSCRIBE to registration status of some other sub-

ject, and every time the registration status for this subject changes, the service

will notify the subscribing entity with a NOTIFY request. This scheme is more

efficient than polling the registration status every now and then.

PUBLISH RFC 3903 [31] describes the PUBLISH method. This method can

be used for publication of event state information from UAC’s Event Publication

Agent (EPA) to an Event State Compositor (ESC). This method is largely inter-

vened with the SUBSCRIBE and NOTIFY methods, and is used for example to

publish presence information for presence service.

UPDATE The UPDATE request is defined in RFC 3311 [39]. The UPDATE

request is used to modify the state of a pending session. If a session is in in-

CHAPTER 3. SESSION INITIATION PROTOCOL 33

termediate state, i.e. the initial INVITE is sent but no final reply is received, a

re-INVITE can not be sent to modify session parameters, however an UPDATE

request can be used to modify session state when the session is being established;

e.g. the UPDATE request can be used to put a media stream on hold.

PRACK RFC 3262 [42] defines the PRACK method, a method used to pro-

vide reliable provisional responses. Usually provisional 1xx replies to INVITE

requests are not guaranteed to be received reliably because there are no replies

for them, whereas the final response is always responded with ACK. The PRACK

request is sent on reception of a provisional message if both UAs support this op-

tion. Because the PRACK method is handled as a usual request, there will be a

2xx-reply for every PRACK.

REFER The REFER request is specified in RFC 3515 [53]. The REFER request

is used to ask another UA to access a resource specified by the Uniform Resource

Identifier (URI) or Uniform Resource Locator (URL) in the REFER request. It

can be used, for example, for call forwarding or referring the user to a webpage.

The request can be sent within or without an existing dialog.

3.1.5 SIP Responses

The SIP response messages or replies are identified by the reply codes. The reply

codes are divided into six response classes, shown in table 3.1. Because of a large

number of individual response codes, and their irrelevance to this thesis, only a

selected few are reviewed.

100 Trying The 100 Trying is a special type of response which is always

sent hop-by-hop. It is never forwarded by proxies, although UAs as well proxies

can generate these responses.

200 OK The200 OK response is sent to accept a session invitation and to in-

dicate successful completion of a non-INVITE request.

CHAPTER 3. SESSION INITIATION PROTOCOL 34

Table 3.1: Classes for Response Codes

Class Description Action

1xx Provisional Indicate status of the session prior to completion. Are also

called provisional replies.

2xx Success Request has succeeded. Retransmission of messages is stopped.

For an INVITE, send ACK.

3xx Redirection The UAS or an intermediate proxy has returned possible locations

for the AOR we are trying to reach.

4xx Client error The request has failed due to an error in the UAC.

5xx Server failure The request has failed due to an error in the UAS.

6xx Global failure The request has failed. It cannot be fulfilled by any server.

300 Multiple Choices The300 Multiple Choices is a redirection mes-

sage. It contains multipleContact header fields, which specify the URIs where

the user, for the AOR specified in the original request, can be found.

400 Bad Request The 400 Bad Request indicates that the server did not

understand the request. The server sends this message if the request was mal-

formed or did not contain all necessary headers.

501 Not Implemented The501 Not Implemented response indicates that

the UAS does not support the method in the request.

3.2 SIP in IP Multimedia Subsystem

The IP Multimedia Subsystem (IMS) will be the IP-based core of the future packet

switched 3G networks. It is a collaborative effort of the Internet Engineering Task

Force (IETF) and the Third Generation Partnership Project (3GPP) to bring the

cellular networks to a new era of communications. The idea behind IMS is to

CHAPTER 3. SESSION INITIATION PROTOCOL 35

provide Internet services anywhere and anytime for the mobile users and to create

a common platform for various multimedia services.

IMS uses popular Internet protocols, like SIP, RTP, RTCP, COPS, H.248, Diam-

eter, and DNS with minor modifications, to enable multimedia communications

between the mobile users all around the world. The Internet Protocol version

6 (IPv6) will be used as a network protocol for the IMS networks, as specified in

RFC 3316 [4]. The requirements for the IMS networks are described in [10]:

1. Support for establishing IP Multimedia Sessions.

2. Support for Quality of Service (QoS) negotiation.

3. Support for interworking with Internet and circuit-switched networks.

4. Support for strong operator control.

5. Support for rapid service creation.

Sipilä [52] describes briefly what changes and additions are needed to be done to

Internet protocols for IMS use. The 3GPP TS 22.228 Release 5 [1] contains the

whole IMS specification.

3.2.1 3G/IMS Network Architecture

Figure 3.5 shows the basic components in the IMS network. Some of these com-

ponents have evolved from their General Packet Radio Service (GPRS) counter-

parts, while some of them are completely new.

Home Subscriber Service (HSS) is a central database which holds all user re-

lated data, like location, security and user profile information.

Subscriber Location Function (SLF) is needed only if there are more than one

HSSs in the network. The SLF maps every user to a correct HSS.

CHAPTER 3. SESSION INITIATION PROTOCOL 36

Figure 3.5: IMS network architecture.

Call Session Control Function (CSCF) is a SIP proxy server. There are three

types of CSCFs existent in the IMS network, Proxy-CSCF (P-CSCF), Interrogating-

CSCF (I-CSCF), and Serving-CSCF (S-CSCF). P-CSCF is the outbound SIP proxy

for a mobile user. It is the first point of contact between the IMS network and the

user terminal. P-CSCF includes functions like compression and decompression

of the SIP messages between the user terminal and the IMS network. It also in-

cludes security features, like authentication, and checking of SIP messages for

correctness.

I-CSCF is a SIP proxy used as a gateway to operator’s network from other op-

erators’ networks. The SIP messages are routed between operators via I-CSCFs.

Proxies use DNS to solve addresses of I-CSCFs, like described in section 3.1.2.2.

S-CSCF is a central node for SIP signaling, all the SIP signaling sent by the user

terminal is routed via S-CSCF. S-CSCF works as a SIP proxy; it performs session

control and acts as a SIP registrar; it also routes messages to application servers

when needed.

CHAPTER 3. SESSION INITIATION PROTOCOL 37

Application Servers are divided into three different groups. There are OSA-

SCS (Open Service Access – Service Capability Server) and IM-SSF (IP Mul-

timedia Service Switching Function) application servers for older applications,

originally developed for GSM networks. They provide interfaces to the OSA

framework Application Servers and to the CAMEL (Customized Applications for

Mobile network Enhanced Logic) services. The SIP AS is the native application

server for IMS. Future applications will be purely hosted on the SIP ASs. An

application server can act as a SIP proxy, UAS, UAC or B2BUA.

Media Resource Function (MRF) is a kind of a media server. It can generate,

mix, and transcode between different media streams in the network. It can for

example play announcement to the user when the service the user is trying to

reach is not available. The MRF is divided into two parts, to the Media Resource

Function Controller (MRFC) which performs the SIP signaling, and to the Media

Resource Function Processor (MRFP) which performs the actual media-related

functions, like the mixing of multiple media streams.

Breakout Gateway Control Function (BGCF) is a SIP proxy which routes

calls destined to the circuit-switched network.

Circuit-Switched Network Gateway functionality is provided by the Signaling

Gateway (SGW), Media Gateway Control Function (MGCF) and Media Gate-

way (MGW). The SGW converts the lower level protocols like Message Transfer

Part (MTP) to SCTP, whereas the MGCF converts the actual circuit-switched do-

main signaling protocol to SIP. The MGW converts between RTP and Pulse Code

Modulation (PCM) and performs the transcoding if necessary.

3.2.2 GPRS Access Network

Typically a General Packet Radio Service (GPRS) or some GPRS compliant ac-

cess network is used to access the IMS network. The connection to the IMS

network is established via the Serving GPRS Support Node (SGSN) and Gateway

CHAPTER 3. SESSION INITIATION PROTOCOL 38

GPRS Support Node (GGSN) nodes of the operator. The SGSN is the node near-

est to the mobile node and it is selected based on the handset location. The GGSN

will be the same no matter where the user is located. The SGSN relays user data

to the GGSN and the GGSN provides a direct connection to the IMS network.

3.3 SIP in Next Generation Networking

IMS is only beginning for the Next Generation Networking (NGN). In the future

Next Generation Networking (NGN) the same core network is shared between the

fixed and the mobile networks, and the same network carries all traffic, be that

ordinary voice, video or data. NGN will facilitate SIP as the underlying signaling

protocol, and thus will enable the same services to be accessed through the fixed

and mobile networks. This also means that the same peer-to-peer application can

be used from the fixed and wireless terminals if the application is built on the SIP

protocol. Thus, when using service like this, users will be able to access all the

same information wherever they are.

Chapter 4

Requirements for Mobile

Peer-to-Peer

Mobile peer-to-peer has specific requirements compared to fixed peer-to-peer net-

works. Terminal capabilities are more limited than in the fixed networks where the

terminals have more than enough processing power and storage capacity. Also, in

mobile networks the shared content is mostly self created, whereas in fixed net-

works the content is mostly professionally created.

Although most of the studies concerning peer-to-peer networking have been made

with fixed, high capacity networks in mind, research on mobile peer-to-peer is

slowly emerging. The special requirements and constraints of the mobile platform

prevent us using the peer-to-peer protocols developed for the fixed networks in

the cellular domain; thus extra work has to be done to enable mobile peer-to-peer

communication.

We will start this chapter by studying those special constraints and requirements

of the mobile platform. Then, we will discuss user requirements for mobile peer-

to-peer application. Next, we will discuss what would be the optimal architecture

for a mobile peer-to-peer application. Later, we will compare mobile peer-to-peer

file sharing to other mobile content sharing methods and compare it also to fixed

peer-to-peer file sharing. Last, we will review past research done on the subject.

39

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 40

4.1 Technical Constraints of Mobile Platform

The mobile platform has special constraints which have to be taken into account

when designing a peer-to-peer application for mobile terminals.

4.1.1 Memory Size

It is important to minimize the memory usage of the application, because modern

mobile phones usually have many programs running concurrently, and these pro-

grams have to share the limited memory. Although the memory capacity is slowly

increasing, it is still one of the scarcest resources on the mobile phone.

Memory-use minimization means that we generally have to minimize state in-

formation in the application. For example, holding information for hundreds or

thousands of peers (like in Freenet) is not a good idea in a mobile application.

4.1.2 CPU Performance

As with the memory, the same restrictions go with the CPU cycles, thus usage of

complex algorithms should be avoided if possible. Although, thanks to Moore’s

Law, the CPU speed is a less of an issue with the current mobile phones than it

used to be. The CPU usage also directly correlates with the battery usage.

4.1.3 Access Network Parameters

Another big constraint which has to be accounted for when designing a peer-to-

peer application is the bandwidth usage of the program. The air interface used

to access the mobile network has very limited bandwidth, and this bandwidth

has to be shared between multiple users in the cell. This is why it is vital to

minimize bandwidth usage of the peer-to-peer protocol. Using distributed peer-

to-peer protocols, which flood requests to many nodes, is inherently a bad idea

bandwidth wise.

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 41

Compared to fixed networks, wireless networks are more prone to errors, have

lower bandwidth and higher delay and packet-loss; these matters arise from the

nature of the wireless data path, and from the greater protocol overhead and com-

plex error correction schemes used in the air interface. Wireless access networks

are also more prone to communication interruptions of undetermined duration.

These issues pose additional constrains to the application design.

4.1.4 Screen and Keyboard Size

Small screen size of the mobile terminal restricts the user interface design for

the application. The peer-to-peer application needs to have various information

visible to the user, such as the files being downloaded and uploaded, the files in

the queue, current bandwidth usage, and the search dialog. Although screen sizes

of the mobile phones are increasing and the screens are getting higher resolutions,

we are still far away from an ordinary PC screen.

Also small numeric keyboards are not the best ones for inputting extensive textual

searches. Some phones have full QWERTY-keyboards, but these are a minor-

ity. Thus, UI design has to take the limited features of the input device also into

consideration.

4.1.5 Battery Capacity

Faster processors and larger screens consume the battery faster than before. Cur-

rent trend of ever decreasing physical size of the mobile terminal is inevitably

shrinking the battery too. The battery industry tries to keep up with increased

power demands, but best results can be achieved together with the use of modern

batteries and low-power CPUs and screens. Also, limiting transmission over the

wireless link helps with the energy efficiency.

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 42

4.2 Special Needs of Mobile Environment

In addition to the restrictions of the terminal, the mobile environment has spe-

cial needs posed by various access methods, operator and operational require-

ments [35].

4.2.1 Support for Various Access Networks

The mobile peer-to-peer application has to take into account different kinds of

access methods to the mobile network and have good performance in all of them;

such as, GPRS, EDGE, WCDMA, HSDPA, Wi-Fi and Bluetooth [12]. These ac-

cess methods have differences in error rates, bandwidths and delay characteristics;

indeed, the speed of the access link and end-to-end delay characteristics can differ

in orders of magnitude, as seen in table 4.1.

Table 4.1: Theoretical maximum bandwidths and minimum round trip times to
the fixed network for various access networks

GSM Data 9.6 kbps < 300 ms

HSCSD 57.6 kbps < 300 ms

GPRS 115 kbps < 1000 ms

EDGE 384 kbps < 800 ms

WCDMA 2 Mbps DL1 / 384 kbps UL < 300 ms

HSDPA 3.6Mbps DL2 / 384kbps UL < 100 ms

HSUPA 14 Mbps DL / 5.76 Mbps UL < 100 ms

WLAN 54 Mbps < 10 ms

Another problem is roaming between these various access network types. The

application has to be able to work in a changing environment without introducing

1Current devices are typically capable of 384 kbps.
2This is for the first phase HSDPA terminals, the second phase terminals will offer 14 Mbps

downlink.

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 43

errors in the data or other malfunctions. If the network layer does not incorporate

a seamless integration of different access networks, like providing handovers be-

tween them, the application has to have a way to handle effects of these changes,

such as, support for changing IP-address, built in.

Holistic connectivity management described in [19] is a method for handling mul-

tiple underlying network connections and changing between them efficiently with-

out user or application noticing this.

4.2.2 Operator Control

Traditionally the network operator has wanted to have control on all the services

in its network. Because peer-to-peer is inherently distributed, implementing some

kind of operator control is a non-trivial issue. However, centralized and hybrid

peer-to-peer networks make use of super-peers; if the super-peer is under operator

control, the operator has virtually full control on the content available in the peer-

to-peer network. The actual content is still transmitted between the end nodes, but

the super-peer acts as a broker for client communications. More control can be

added by facilitating special media gateways that inspect the actual content sent

between the end nodes.

4.2.3 Feasible Bandwidth Pricing

At the moment, the file transfer prices are still quite high for end-users, although

a trend can be seen that the operators are starting to provide flat rate connections,

meaning that the user pays a fixed amount of money to the operator every month

regardless of how much the user actually transfers data. Peer-to-peer can become

successful in the mobile domain only if the file transfer costs are bearable to the

user.

Current data transfer pricing does not encourage users to share files, because the

users have to pay for both received and sent bytes. There is little reason for any

user to pay to let other people to download files from his phone. Also, the user

generally has no control how much other people download from him, so with the

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 44

current pricing, the mobile peer-to-peer application can quickly become a major

money eater. To create a successful mobile peer-to-peer service, uploading should

be free of charge, or give extra credits to the user that can be later used for down-

loading. The more files the network has, the more valuable users see this network.

4.2.4 Economical and Legal Issues

The economical and legal issues are the same for mobile networks as in the fixed

network peer-to-peer communications; these issues are reviewed in chapter 2. In

the mobile networks, there is also the risk that the mobile operator is seen as

responsible for the material exchanged through its peer-to-peer service. This is

because the operator has traditionally had total control on its services, and thus

control on the content distributed through its services.

4.3 User Requirements

The user expects a mobile peer-to-peer application to provide him the same ca-

pabilities that the applications for fixed networks provide. These expectations

include quick response times for searches, rapid downloads and easy-to-use user

interface. However, the user will probably tolerate somewhat inferior performance

compared to the fixed peer-to-peer networks because the mobile network is avail-

able everywhere.

Mobile peer-to-peer network should include user group management features,

which allow users to create closed groups where files can be swapped. This is

important because a lot of content is self-created and most users want to restrict

access to this material only to people they know. Groups can be formed among

families, friends, or any other relevant set of people.

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 45

4.4 Optimal Architecture

It can be argued that the centralized and the hybrid peer-to-peer architectures are

most suitable for mobile peer-to-peer networking. If the super-peer is located in

a fixed network, mobile nodes do not have to handle huge signaling loads during

searches. All a mobile terminal has to do, is to send the search to the super-peer it

is connected to. The super-peer consults its own database (and other super-peers

in case of the hybrid architecture) and sends a reply to the mobile terminal.

The centralized and the hybrid architectures can also provide the mobile operator

some control over the shared files. As long as the operator controls the super-

peer, it can enforce sharing policies and ban unwanted files. Of course, some

users consider this as a bad feature. Operator control also inherently kills the

possibility for any kind of anonymity in the network.

The choice between the hybrid and the centralized architecture is dictated by the

overall network design. If the idea is that the network operator controls the super-

peer, and that the users of different operators are able to share files, the hybrid

architecture is the most suitable. In this architecture every operator can run its

own super-peer which connects to the other super-peers ran by the other network

operators.

It is also possible that people want to run their own super-peers, e.g. a family or

sports club might want to run its own super-peer which is accessible only for its

members. If no connection to outside world is needed, the centralized architecture

is fit; otherwise, the hybrid architecture can be used.

From the viewpoint of the mobile application the centralized and the hybrid archi-

tecture look the same. The mobile terminal is still connected to one super-peer; it

does not care if the answer is combined from the results of multiple super-peers

connected in peer-to-peer fashion, or from the database of a single super-peer. Be-

cause of this, the same application can be used for connecting to centralized and

hybrid peer-to-peer networks.

More arguments for choosing the hybrid or the centralized architecture are pre-

sented in section 4.7.5.

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 46

As it was discussed in chapter 2, the unstructured architectures are not generally

suitable for file sharing applications when the search functionality is needed. Thus

they were left out altogether from this evaluation.

4.5 Comparison with Other Mobile Content Shar-

ing Methods

Today, the only way to share files in the mobile domain is to send the files to a

centralized sever where they can be fetched by anyone, e-mail the files to some

specific person, or to use some third party application that handles the image up-

loading to a centralized server and the user group management. However, there is

no simple way to make information available for a larger group of users without

first uploading this information to a public server.

Mobile peer-to-peer architecture allows us to share content without initially up-

loading it all to a centralized server. This is useful when the user is not sure if any-

one ever wants to access the content, and thus prevents unnecessary transfers. The

files are kept on the user’s handset, and sent over the air interface only when some-

one actually requests the information. However, this also means that if a shared

file is popular, it will be transmitted several times over the limited-capacity air

interface; thus, complementing peer-to-peer network with some kind of caching

mechanism can improve the performance greatly for popular downloads.

Mobile peer-to-peer implements an integrated search function which looks up in-

formation through the network, whereas searching files from the WWW is much

more complex, because different users use different web servers, and thus the

information is scattered all over the Internet.

4.6 Comparison to Fixed Peer-to-Peer

Mobile peer-to-peer networking can be seen more as an addition to fixed peer-to-

peer networking than as a substitute for it. It is likely that mobile peer-to-peer is

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 47

used to access material when on move, and when a fixed network is not available.

It is probable that a lot of content is self-created in the mobile peer-to-peer net-

works, e.g. pictures and videos shot with the mobile’s camera. This content is

mostly shared among friends and families, because the content has no relevance

to the general public. Piracy is also a less of an issue in the mobile networks — at

least initially. It is safe to predict that as the network bandwidth increases and the

terminals get more storage capacity, swapping of music and movie clips becomes

more popular in the mobile domain too.

The hybrid and the centralized peer-to-peer architectures are most suitable for

mobile peer-to-peer networks, whereas any architecture can be used in the fixed

network. This is because the mobile networks are not capable of handling the

extensive signaling generated by large pure peer-to-peer networks. In the hybrid

architecture the super-peer nodes can be located in the fixed network, and thus the

heaviest signaling load is moved away from the mobile domain. Existence of the

super-peers can also give the operators the control over the peer-to-peer service.

However, the pure peer-to-peer architecture might be feasible if the network size

is small enough, e.g. for family use.

Table 4.2 contrasts key features of the fixed and mobile peer-to-peer networks.

4.7 Past Work

Peer-to-peer research in mobile networks has been done for, both, real-time and

non-real-time communications. The real-time peer-to-peer communication re-

search is mostly about the Internet telephony, and the non-real-time is centered

on the file sharing networks. We will focus on the non-real-time research because

it is most relevant to our application.

Discussion about using different peer-to-peer protocols on the mobile platform is

presented in [19]. The paper argues that the hybrid peer-to-peer architecture is

the most suitable architecture for mobile networks because many functions can

be moved from mobiles to the super-peers. The paper also proposes a framework

called thePlug-and-Play Application Platform (PnPAP)that allows mobile appli-

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 48

Table 4.2: Key features of fixed and mobile peer-to-peer

Fixed peer-to-peer Mobile peer-to-peer

Available at fixed locations Available anywhere

Plenty of bandwidth Limited Bandwidth

Terminals have nearly unlimited Storage capacity is limited

storage capacity

Content is mostly professionally createdContent is mostly self-created

Piracy is a major problem Little piracy

Open for all Group centric

Pure architecture feasible in small and Pure architecture feasible only in small

medium size networks networks

Centralized and hybrid architectures Centralized and hybrid architectures

feasible in small and large networks feasible in small and large networks

cations to use many underlying peer-to-peer and session management protocols

dynamically.

4.7.1 Gnutella in Mobile Environment

Another paper [55] argues that the usual peer-to-peer file sharing networks, such

as Gnutella, are not suitable for the mobile environment due to their bandwidth

consuming broadcast nature. Instead, a modified architecture for Gnutella net-

work is proposed where a mobile agent in the fixed network works on behalf of

the mobile device. The mobile agent is part of the Gnutella network, where it acts

as a normal Gnutella peer, and has vital information like the file-list of the mo-

bile device. The mobile device and the agent communicate using a light-weight

protocol. Thus, the mobile agent can handle most of the signaling traffic, such

as searches, and direct only download requests to the mobile device. The mobile

device can perform the actual file transfer directly with the other end node or,

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 49

alternatively, the mobile agent can do this on behalf of the mobile device.

The mobile agent also abstracts away mobility of the mobile device, because the

agent has a fixed IP address, even though the phone has a rapidly changing IP

address. The mobile device just has to update its IP address to the mobile agent

whenever it changes.

4.7.2 Mobile eDonkey

Oberender et al. [35] have developed a mobile peer-to-peer file transfer architec-

ture based on the eDonkey protocol. Some modifications to the original architec-

ture have been done. This architecture includes modifications to the Index Server,

a Crawling Peer and a Cache Peer. The index server keeps track of the popular-

ity of the files in the network, and exports this popularity data to the cache peer.

The cache peer stores these popular files, and the crawling peers support the index

server by linking it to other index peers in the Internet. The resulting architecture

is something between centralized and hybrid peer-to-peer.

The benefit of the cache peer is that the popular files can now be stored in the

core network, and they do not have to be transferred multiple times over the air

interface. When a file is traditionally transferred from one mobile to another, the

data goes over the air interface twice. Reducing this traffic to half is the main

benefit of the cache peer.

Modifications to the index server, which is a kind of a super-peer, include logging

features and redirections of searches to the cache peer, when the cache has the

requested content.

The crawling peer is the node which creates a connection between the index server

of the mobile network, and the other index servers in the public Internet. Usually

in the eDonkey architecture, the client connects to multiple index servers if the

local index server does not have enough/requested files listed. Because mobile

nodes have lesser capabilities, it is rational for them to have only one connection

to the index server, and let the crawling peer handle the traffic to the other index

servers; thus, enabling the mobile node to acquire all the content available in the

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 50

mobile network and in the Internet combined.

Another paper [36] by the same authors proposes content replication aka. caching

as a general mobile peer-to-peer design feature to improve performance and to

reduce traffic over the air-interface. It recognizes that because mobile networks

have a strictly hierarchical architecture, i.e. the traffic between mobile phones has

always to go through nodes in the core network, even when the mobiles are in

the same cell, it is most useful to cache content near these core network nodes in

economical sense.

4.7.3 JXTA for J2MR

Some peer-to-peer protocols have been designed with mobile platforms in mind,

like JXTA community’s JXME (JXTA for J2ME). Unfortunately JXTA is not

available for Symbian C++, which is the programming language of many mod-

ern phones.

4.7.4 Other possibilities

SIP can be used as a signaling protocol for future IMS games. Reference [2]

describes a gaming platform which sits between the game and the 3G network,

and uses services provided by IMS for the game’s needs; e.g. peer-to-peer con-

nectivity, instant messaging, and QoS. The game server can be implemented as a

application server, and the gaming clients running on user terminals communicate

with the server using normal SIP messages.

4.7.5 Mobile Peer-to-Peer Architectures

Some work has been done evaluating suitability of different peer-to-peer archi-

tectures for mobile use. The general knowledge seems to be, that some kind of

centralized or hybrid architecture is best for mobile terminals, whereas pure peer-

to-peer is infeasible with the current bandwidths (e.g. [19, 55]).

CHAPTER 4. REQUIREMENTS FOR MOBILE PEER-TO-PEER 51

Performance of different Gnutella topologies in wireless networks is evaluated

in [6]. This paper notices that a semi-random mesh is the best topology for net-

works where all nodes are of the same kind. On the other hand, connected stars

topology is found to be better for networks filled with heterogeneous devices, with

different capabilities. The paper recognizes:

A remarkable aspect of this [connected stars] topology is that the

load is unequally divided: the star nodes are heavily loaded while the

leaf nodes carry much less traffic. This can be useful in cases where

the network consists of heterogeneous devices, such as mobile phones

as leaf nodes and personal computers as star nodes.

Even though the paper is an evaluation of the old Gnutella protocol without super-

peers (version 0.4), this idea directly applies to the concept of super-peers. A

super-peer can carry most of the signaling traffic, while the mobile node only

carries file transfers of its own and signaling messages to the super-peer.

Another paper [54] suggests the hybrid peer-to-peer architecture for mobile prox-

imity applications, that is, for applications which are used between devices com-

municating over short distances. The paper notices that the hybrid architecture is

well adapted to changing environments and in addition, the applications are easily

managed, thanks to partial centralization (i.e. the super-peers).

Chapter 5

Developing Mobile Peer-to-Peer

Client

The aim of the thesis was to design and implement a mobile peer-to-peer file

transfer client which uses the Session Initiation Protocol as the underlying sig-

naling protocol, and to test feasibility of the mobile peer-to-peer architecture on

modern cellular networks. The motivation behind using SIP as the signaling pro-

tocol was to enable the application to be used in the future IMS networks that have

native SIP support. Because SIP is inherently a peer-to-peer protocol it seems to

be a suitable platform for signaling needs of a peer-to-peer application.

The SIP was chosen as the underlying protocol instead of some proprietary proto-

col because SIP is an integral part of the Third Generation IP Multimedia Subsys-

tem networks. Using SIP as the underlying protocols, enables the network to be

aware of the peer-to-peer application, and allows operators to implement functions

such as charging for the peer-to-peer application.

To the author’s knowledge, this is the first implementation of a peer-to-peer appli-

cation on a mobile platform which uses SIP as the signaling protocol. Using SIP

as the peer-to-peer signaling protocol is not totally unheard of; e.g. SIP is used as

the signaling protocol for EarthLink’sSIPshare, a file sharing program based on

the pure peer-to-peer paradigm; however,SIPshareis not available for any mobile

platform. [16].

52

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 53

This chapter will start with the review of the application’s high-level design. Then,

the software architecture and the software implementation is discussed. Later in

the chapter, there is short review about the super-peer and the TCP-relay which

were implemented concurrently with the client application. This chapter ends

with a use case study which shows how the peer-to-peer application searches for

a file and finally downloads that file from another peer.

5.1 High-Level Design

The client was designed to be modular and easy to use. The idea is that the client

provides a simple search dialog where the user can input information about the

content he is looking for. The user can initiate the search by specifying the name,

type, size, hash of the file he wants to find. Searches using multiple parameters

are also possible.

The user can configure the software so that the media he creates on his phone

is automatically shared, e.g. user taken pictures and video clips can be shared

immediately after they are saved in the phone.

The modularity means that the application will be easy to extend in the future.

Ideas like peer-to-peer media streaming and chatting are considered to be imple-

mented in the future. The modular design also allows some parts of the software

to run in the background without the user interface running, so the mobile phone

can serve files to other users even though the owner of the phone does not himself

want to obtain any content from the peer-to-peer network.

Hybrid peer-to-peer was chosen as the underlying paradigm to cut down the traffic

on the air interface. In this architecture, every mobile client connects to one super-

peer, and these super-peers, located in the fixed network, create a pure peer-to-peer

network between themselves. The hybrid architecture also allows the operator

to have control of the peer-to-peer service by controlling the super-peer. The

architecture is pictured in figure 5.1.

The hybrid architecture was chosen instead of the centralized architecture because

it allows different mobile operators to run super-peers of their own. Also from

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 54

the client’s perspective, there is no difference between the hybrid and centralized

architectures. The choice only affects the implementation of the super-peer.

The super-peer is being created concurrently with the client. Overview of the

super-peer functionality is presented in section 5.3.

Figure 5.1: Mobile phones are connected to a centralized server located in the
core network.

Our architecture is close to the architecture proposed in [55] (see section 4.7 for

details); however, in our architecture the mobile agent is replaced with the super-

peer; and one super-peer is used by many mobile devices. The same basic assump-

tions still apply; like that the super-peers hold file lists of the mobile devices, and

their location information (i.e. the SIP URIs) — just like the mobile agents in the

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 55

other architecture do. Super-peers also handle large parts of the signaling traf-

fic between themselves, and do not flood the mobile devices with unnecessary

signaling traffic.

In our architecture mobile phones function as ordinary peers. These peers connect

to a super-peer located in the fixed network. The access network is assumed to

provide packet access to the super-peer and to other ordinary peers. This access

can be provided for example via 3G/WCDMA (Wideband Code Division Multiple

Access), GPRS (General Packet Radio Service), EDGE (Enhanced Data Rates For

Global Evolution) or WLAN connection.

5.1.1 Software Architecture

The software architecture described here is originally presented in a paper by the

project team [8].

The mobile peer-to-peer client consists of three separate processes. The overall

architecture of the client is illustrated in figure 5.2. The basic functionality is

divided into four modules. These modules are the registrar, the finder, the transfer,

and the graphical user interface module. The registrar and the finder modules are

implemented in one process, called the core process. The transfer module and the

GUI module have their own separate processes. The motivation of the process

separation is to allow parts of the software to be running independently, e.g. the

user can shut down the GUI without stopping the ongoing file transfers.

The software uses file hashes as unique file identifiers. All search replies from the

super-peer and download initializations messages between ordinary peers contain

file hashes.

5.1.1.1 The Core Process

The core process consists of the registrar module and the finder module. This

process contains core functionality which is general enough that it can be used

with different kinds of modules, like with the file transfer and chatting modules.

The registrar part of the process is responsible for providing information to the

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 56

GUI

REGFND XFR

SIP Routing

Mobile Client (OP)

Server (SP) Mobile Client (OP)

SIP SIP SIP

SIP

Core

SIP + Transfer Protocol

Figure 5.2: Client software is divided in three processes: GUI, Transfer and Core.

super-peer about the current state of the client, i.e. what services are running at

any moment. The super-peer subscribes to this information from the registrar, and

the registrar then notifies the SP whenever some services are started or stopped.

While we are supporting only file transfer at the moment, the subscription of this

state information is not yet implemented.

Initially the registrar was also meant to send SIP REGISTER messages; however,

this functionality was left out because the Series 60 SIP infrastructure provides

a built-in application, the SIP Profile Manager, for SIP registrations. Now SIP

Registrar functions as a mere gateway for controlling the SIP Profile Manager.

Another half of the Core process is the Finder module. The finder is the com-

ponent generating SIP requests used for file searches. The GUI passes the search

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 57

information to the finder, which then creates an appropriate SIP INVITE message,

containing the search information in XML format as the payload. When the super-

peer replies to the search with 606 Not Acceptable message, the search results are

extracted from the reply and passed back to the GUI.

5.1.1.2 The Transfer Module

The transfer module is responsible for transmitting the requested file between the

two peers, and updating the client’s file list to the super-peer, so that the super-peer

has info about added and removed files. The module features a simple TCP file

transfer protocol. Multi-source downloads and file transfers over MMS messages

might be implemented in the future.

The transfer module starts file transfers by sending a SIP INVITE message to an-

other peer. The INVITE message contains SDP as the payload. The SDP message

defines the IP address and the port number combination to use for the file transfer.

It also defines the hash for the requested file in the session name field. The peer,

who receives the INVITE message, can recognize the requested file by checking

the hash. It replies with a 200 OK message, waits for an ACK, and starts the file

transfer to the address specified in the initial INVITE request.

The transfer module communicates with the super-peer about the files the client

is holding. Whenever the peer-to-peer application is started, the transfer module

will upload the whole file list to the super-peer. Later, when files are added to

or removed from the shares, the transfer module will send update deltas to the

super-peer. These updates are sent inside MESSAGE requests.

5.1.1.3 The Graphical User Interface

The graphical user interface is the process which passes information from the user,

via other modules, to the network and back. It also functions as the component

which ties the core and the transfer processes together because those processes do

not have a direct signaling connection between them. For example, when search-

ing for a file, the user inputs the file information in the search dialog and the

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 58

Graphical User Interface passes the search in XML to the finder. When the finder

receives a reply to the search from the super-peer, it passes the reply in XML back

to the GUI. The search results are then shown to the user. There can be zero, one

or more hits for the search. The user can next specify the file he wants to receive

and the GUI passes the information about the selection to the transfer module.

Finally, the transfer module performs the file transfer.

The GUI can also configure other modules and query statistics from them, e.g. it

can ask the transfer module how much of a file has been transferred or how many

transfers there are waiting in the queue. It can also activate and deactivate other

modules. In case we had streaming and chatting modules installed in addition to

the file transfer module, the GUI could activate these separate modules and ask

the registrar to notify the super-peer about the new situation.

5.1.2 Functionality Provided by SIP

SIP was chosen as the underlying protocol because it is integral part of the IMS.

As SIP is guaranteed to work in the IMS networks there is a quarantee that our

peer-to-peer application will work in these networks too. When the NAT and

firewall traversal functions are provided by SIP, we do not have to deal with these

issues in our application at all. Also, using standard protocol also allows more

rapid application development compared to inventing a signaling protocol of our

own.

SIP allows the operator to implement control functions on the peer-to-peer ser-

vice and necessary charging functions. Implementation of these functions is easy

because all operator equipment are SIP aware.

In addition to the things mentioned above, the features of SIP are used in two

additional ways. First, the IMS/SIP framework has a concept of Application

Server (AS). The Application Server for the peer-to-peer service is used to store

information about content available on the clients in the network; it functions as

super-peer. The super-peer will answer to the content queries sent by the peer-to-

peer clients.

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 59

Second, the SIP infrastructure is used to locate the user who has the requested

content, and to forward session establishment requests to that user. User agents

communicate with each other using the SIP URIs, so the end nodes can contact

each other, without knowing each others’ current IP addresses. The SIP URI of

the other end is all that is needed to contact the node, the SIP infrastructure takes

care of the message routing to the right terminal.

5.1.3 SIP Messages

The application uses four different SIP requests: (1) the REGISTER request

is used for registering to the SIP network, (2) the INVITE request is used for

searches and to start actual file downloads, (3) the MESSAGE request is used to

upload information about client’s shares to the super-peer.

Example messaging flow diagrams and message contents can be seen in appendix A.

5.1.3.1 SIP Register

Before sending any other SIP requests, the application has to register itself to the

SIP registrar. Registration creates a mapping between the current contact URI and

user’s public SIP URI.

This part is executed by the SIP Profile Manager; our application merely issues a

call to the profile manager to register a predefined SIP profile.

5.1.3.2 File List Update

Mobile terminals use the MESSAGE1 request to upload file lists to the super-

peer. Terminals can add or remove separate files in super-peer’s database, and

they have an option to clear all files marked for them in the super-peer’s file list

in case of a client shutdown or in need for a clean startup. Whenever the mobile

1The original idea was to use the PUBLISH request to upload information about new files to
the super-peer; however, due to problems with Nokia SIP proxy rejecting PUBLISH requests we
used MESSAGE requests instead. Changing back to the PUBLISH request may be considered in
the future.

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 60

terminal starts, it has to upload the full file list to the super-peer, so the other nodes

can search for the files of the user. Whenever new files are added to or removed

from the file system, the mobile terminal automatically sends MESSAGE requests

to the super-peer. These requests contain deltas about the recent file changes.

The file list update messages are split into several 1400 byte requests to prevent

message fragmentation in the network.

File list updates include the list of the files the node has in the Extensible Markup

Language (XML) format. Appendix B presents the Document Type Definition

(DTD) for the file list update XMLs.

5.1.3.3 Content Search

The client is using the INVITE request to search files. The INVITE request con-

taining the search information is sent to the super-peer. The super-peer will pro-

cess the search and reply with information about the nodes that have the requested

content. However, we do not want to create long lasting sessions between the mo-

bile terminal and the super-peer, so the super-peer returns the search results in a

global error message, 606 Not Acceptable, which terminates the session establish-

ment between the mobile client and super-peer. An error message was chosen for

the reply because we did not want to establish a session with the super-peer during

the search. Thus, we had the option of generating a redirect or an error message to

prevent session establishment, a global error message, 606 Not Acceptable, was

chosen in lack of a better message. Figure 5.3 has an example search message

sent from a client to the super-peer.

Usage of the INVITE request for searches can be argued, e.g. the MESSAGE

request could have been used instead; however, the MESSAGE request is usually

used for carrying actual user data, not signaling data, and in the view of the peer-

to-peer application, the search is inherently signaling. It seems that SIP is actually

missing a general request-reply type of a signaling message that could be sent

outside a dialog and that would not create a dialog of its own. OPTIONS request

fits into this description, but it is not general enough for request-reply use. The

OPTIONS requests are used to query peers about the SIP options they support.

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 61

INVITE sip:sp@realm SIP/2.0
Route: <sip:130.233.154.17;lr>
Via: SIP/2.0/UDP 130.233.154.32:5060
;branch=z9hG4bKO0PR9jA9aKyRG
From: sip:player2@realm;tag=lwDR9oR_n-
To: sip:sp@realm
Contact: sip:player2@130.233.154.32
Supported: sec-agree
CSeq: 344 INVITE
Call-ID: Hk7R9hhoou0OICbnAnO5n1Mnf5mjwI
Max-Forwards: 70
Content-Type: text/xml
Content-Length: 81

<?xml version="1.0" standalone = "yes" ?>
<request>
<name>Meeting*</name>
</request>

Figure 5.3: Search message sent from a mobile client to the super-peer

Also, it can be thought that we INVITE to the file we are searching for, so even

though in SIP’s perspective the session we are trying to establish between the

mobile terminal and the super-peer, and then between the two mobile terminals

for the file transfer, are different, we could see this as one session on the peer-to-

peer level, a session to get some specific file.

Currently the size of the reply message is bounded to 1400 bytes to prevent packet

fragmentation in the mobile network. In the future more results can be received

by sending multiple search messages each specifying an offset which tells the

super-peer which search results we want to receive.

Appendix B presents the DTDs for the file search and reply XMLs.

5.1.3.4 Content Download

The INVITE message is a natural choice for starting a download session between

two mobiles. The mobiles create a session and communicate the session parame-

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 62

ters, like the hash of the file to be transferred via SDP inside the INVITE message.

An example INVITE for the file transfer is shown in figure 5.4.

INVITE sip:player1@realm SIP/2.0
Route: <sip:130.233.154.17;lr>
Via: SIP/2.0/UDP 130.233.154.32:5060
;branch=z9hG4bKiY7R9umiJuSy4
From: sip:player2@realm;tag=LIjR9gJ6lL
To: sip:player1@realm
Contact: sip:player2@130.233.154.32
Supported: sec-agree
CSeq: 345 INVITE
Call-ID: xw7R9l7AMeVg__Kh8YA8n28JLxNZMy
Max-Forwards: 70
Content-Type: application/sdp
Content-Length: 159

v=0
o=player2 5771190683978352867
5771190683978352868 IN IP4 130.233.154.32
s=281dcbfd8a2a1b72
c=IN IP4 130.233.154.32
t=0 0
m=application 1234 TCP MP2P

Figure 5.4: INVITE message initiating file transfer between two peers

5.1.3.5 Motivation Behind Chosen SIP Methods

The SIP protocol provides more methods than used in this application. Motivation

for choosing the specific methods used in this program were discussed in previous

sections. Tables 5.1 and 5.2 provide motivation why the other SIP messages were

not used instead.

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 63

Table 5.1: Suitability of different SIP methods to different uses

Method Suitability for peer-to-peer use

BYE This method can be used only for terminating sessions already

established with the INVITE request. This request is not suitable

to be sent alone without sending an INVITE request first. The BYE

request can be used to terminate a download session established

with an INVITE request.

CANCEL This method is used to cancel pending requests (practically

only INVITE requests). This method is not suitable to be used

in our peer-to-peer application.

OPTIONS Because this method does not establish a session, and because

it can be sent outside of any existing session, this request would be

a good general request-reply method if it was not semantically defined

to be used only for requesting information about the SIP capabilities

the other end supports.

INFO The INFO request can be used only inside an existing session,

thus it is not suitable for peer-to-peer signaling.

MESSAGE This request can be sent outside of any existing session.

This method is usually used to transmit actual user communication,

for example text messages. It should not be used for application

signaling. For example, in IMS the user might be charged for all

MESSAGE requests because they are thought to be user readable

messages, and of course we want the application signaling to be

free-of-charge.

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 64

Table 5.2: Suitability of different SIP methods to different uses

Method Suitability for peer-to-peer use

PUBLISH Would have been a good message for publishing file lists

to the super-peer. However, due to the problems with the current

SIP-proxy, this message could not be used.

UPDATE This method is used to modify the state of a pending session.

Because we want to send all our messages outside of any existing

session, this method is not suitable for our uses. In the future, this

method may be used to request network resources for file downloads

or music/video streams during the session establishment.

SUBSCRIBE Usage of these methods creates state to the endpoint where

and NOTIFY we send the SUBSRIBE request. These messages could have been

used for subscribing the file list from the mobile terminal, so that

the mobile terminal would always send a NOTIFY request to the super-

peer when there are changes in the file list. However, the MESSAGE

request was used instead because it allowed more rapid initial

implementation.

REFER This method is used to refer the message recipient to some other

location (i.e. URI). Usage of this method would be justified if search

results or actual downloadable content were available in some other

location, e.g. in the World Wide Web. However, in our architecture this

is not the case, so this request is not used.

PRACK This method is used to provide reliable provisional responses.

It is not suitable for peer-to-peer application signaling.

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 65

5.2 Implementation

The software was implemented on Nokia’s Series 60 platform, which uses the

Symbian operating system underneath. This is a platform used on many popular

smart phones, and provides vast number of different APIs (Application Program-

ming Interfaces) for performing different tasks. The Series 60 platform also has a

SIP stack available for it, so with its large user base and good software support it

was chosen as the implementation platform.

5.2.1 Programming Language and SIP Stack

Applications for the Series 60 platform can be programmed in C++, Java and

now also in Python. The consideration was done between C++ and Java, because

Python was not seen as a good language for larger software projects. C++ was

chosen as the implementation language because it provides more complete inter-

faces for mobile programming and poses less restrictions than Java. It’s also more

efficient performance-wise than Java. Also, no phone on the market provided

access to the SIP stack via Java at the time of the implementation.

Nokia SIP stack was the only free SIP stack for Series 60 platform available when

the implementation of the software started, and because we did not want to spend

time porting some open source SIP stack to the Series 60 platform, the Nokia

stack was chosen. Nokia SIP plugin was installed on Nokia 6680 to enable SIP

functionality on the real phone.

5.2.2 Implementation Tools

We usedMicrosoft Visual C++ .NET of Microsoft Visual Development Environ-

ment 2003[28] with Series 60 2nd Edition SDK for Symbian OS Supporting Fea-

ture Pack 2[33] which integrated the mobile development tools with the MS De-

velopment Environment. The tools also contained Series 60 phone emulators on

which much of the initial testing was done.

Nokia SIP Plug-in 3.0 and 4.0 for Series 60[34] were used for providing SIP

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 66

functionality to the programming environment.

We needed to use an external XML parser, because the Series 60 platform did

not include any of its own. Open source project,SyExpat[56], was chosen as the

parser.

Nokia SIP Server Emulator[34] provided simple SIP Proxy and Register func-

tionality. It was used during the software testing to enable SIP communication

between the emulators and between the real phones.

partysip SIP proxy server[30] was used instead of the Nokia SIP Server Emulator

during the measurements.

5.2.3 Implementation Details

5.2.3.1 SyExpat

SyExpat is a stream-oriented XML parser, i.e. it reads the document sequentially,

tag by tag, from the beginning to the end. The user has to implement handlers

which are called when the parser discovers associated structures in the parsed

document.

SyExpat does not validate XML documents against DTDs, so there is no guarantee

that the received XML is structured right application wise.

5.2.3.2 SIP Profile Manager

Registration to the SIP registrar is handled by the SIP profile manager application.

This application comes with the Series 60 SIP stack and provides an API, via

which other applications can ask the profile manager to register to predefined SIP

registrars. Because of the SIP profile manager, the application programmer does

not have to create any registration logic.

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 67

5.2.3.3 SIP Routing

SIP routing uses the SIP ECOM plugin to redirect incoming SIP requests to the

correct application. It senses differences between different content types and me-

dia (m=) fields in the SDP headers.

5.2.3.4 Process Communications

The three processes communicate with each other using the client-server architec-

ture of Symbian. Transfer and core processes provide interface classes which the

GUI can link to and ask those processes to perform functions.

5.2.3.5 Implementation Issues

SIP Stack There were some issues with the Nokia SIP Stack. When an instance

of the stack is created in C++, the programmer has to specify the application UID

of the program using the stack. In our architecture the stack is used by the core

and transfer processes. However, for some reason, the SIP Stack cannot be bound

to executables which run in the background, thus it cannot be initialized with the

UIDs of the core and transfer processes. To overcome this limitation we had to

use UIDs of some other applications installed into the system. The downside of

this is that the applications whose UIDs we are using, can not use the SIP stack

concurrently with the peer-to-peer application. However, using application UIDs

of non-SIP-aware programs covers our fix.

The problem has been confirmed with Nokia. We hope this minor glitch will be

fixed in the future. For now we have to live with our hack in the code.

XML Parser SyExpat XML parser supports only stream oriented parsing. Pars-

ing would have been easier to implement if the parser supported hierarchical

search and access to the XML document. The XML documents used by the ap-

plication contain a set of predefined fields. Thus, it would be easier to search for

these fields and extract needed information than to parse the whole document in

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 68

the stream format and to maintain extra state information about where we are in-

side the document. However, SyExpat was the only free XML parser available for

Symbian so its usage — despite these minor obstacles — was justified.

5.3 Peer-to-Peer Server

The super-peer software is being implemented concurrently with the mobile peer-

to-peer client. The super-peer will be implemented as an Application Server to

provide full integration with IMS networks. While the super-peer software is be-

ing implemented we use a simple Python script to act as the super-peer. The

Python script does not form pure peer-to-peer networks with other super-peers,

but this is not a problem because the peer-to-peer client does not see any differ-

ence between the hybrid and centralized architectures; the super-peer abstracts all

differences away.

The super-peer will maintain information about shared files; this information in-

cludes file names, hashes, and sizes. Also, support for clustering will be imple-

mented in the future. Clustering will allow separating different files to separate

clusters. Access to individual clusters can be limited or open to all. Clustering

allows different groups of people to share content between each other without

having to make the information accessible for all.

The super-peer interacts with the clients during searches and file list updates. File

searches are initiated by some client sending an INVITE request including the

search string to the super-peer. The super-peer replies with a 606 Not Acceptable

message. This reply has the search results that contain information about the

matching files and the peers having those files.

5.4 TCP-Relay

A simple TCP relay was used to transfer files between two mobile terminals since

direct connections between mobile terminals were impossible because of a mobile

operator firewall. The SIP messages were routed via the SIP proxy, so there were

CHAPTER 5. DEVELOPING MOBILE PEER-TO-PEER CLIENT 69

no problems for them.

5.5 Use Case

To use the peer-to-peer file transfer application one needs first to open GPRS/UMTS

connection and to create a PDP context to an access point which provides connec-

tivity to the super-peer. Next, one needs to perform the SIP registration, which is

followed by uploading the file list to the super-peer. Now, the user is able to search

and download files from the other peers. The file search and download signaling

is shown in figure 5.5.

Figure 5.5: Signaling flow for a file search and download

Chapter 6

Measurements

Overall performance of the mobile peer-to-peer application depends mainly on the

network performance. The performance of the SIP protocol and the TCP based

content transfer protocol is influenced by the packet loss and the delay in the

network. Mobile networks usually have varying delays and some packet loss on

the air interface. This is due to dynamically changing signal quality [21].

This chapter presents performance measurements done on the application. Signal-

ing delays and download bandwidths were measured, as well as the average sig-

naling message sizes. Next, we discuss shortly the actual software performance,

like the memory consumption of the application and the SIP stack. For last, we

present discussion how the user perceives the software performance. The results

attained in this chapter are later used to provide answers to the initial research

question about the feasibility of the SIP protocol to mobile peer-to-peer use.

6.1 Measurement Setup and Restrictions

All measurements were performed using Nokia 6680 mobile phones. The phones

were connected to a 3G/WCDMA network during all tests. The network provided

384 kbit/s downstream and 128 kbit/s upstream bandwidth to the mobile phones.

It must be noted that we had no tools to monitor the signal quality and other

70

CHAPTER 6. MEASUREMENTS 71

link parameters. Thus, these measurements should be only used as guide when

evaluating the total performance of the application.

Unfortunately, at the time of the writing this thesis, none of Finnish mobile opera-

tors provided direct IP-level connectivity between mobile phones. Because of this

we had to route all mobile to mobile traffic via a node located in the fixed network.

This node was running the Linux operating system, and it was connected to the

Internet via an ADSL modem. The node was running a SIP proxy/register, the

super-peer and the TCP-relay. The TCP-relay enabled file transfers between the

mobile nodes. Instead of opening a TCP-connection directly between each other,

the mobile terminals connected to the TCP-relay for file transfers.

During measurements, traffic was captured usingtcpdumpandEtherealpacket

capturing software. Delay measurements were done with the help of a standard

ping utility. The results were extracted from the logs produced by the packet

capturing programs. Bandwidth measurements were done using the mobile peer-

to-peer application for content transfers and measuring the bandwidth in the TCP-

relay.

6.2 Network Performance

Simple delay and bandwidth measurements were done to find out how the mobile

peer-to-peer application handles searches and content transfers. Also the SIP mes-

sage sizes were measured from the network captures. Average sizes of different

messages can be seen in table 6.1. Measured message sizes include the size of the

UDP datagram.

6.2.1 Message Sizes

The message sizes were extracted from the packet captures. It must be noted that

because the SIP is a text based protocol and because the messages include many

variable length parameters, sizes for the requests and replies vary. The message

sizes shown in table 6.1 are averages from the captured messages and are rounded

CHAPTER 6. MEASUREMENTS 72

to nearest ten-byte-boundary.

Table 6.1: SIP message sizes in bytes

Action Request Size Reply Size

Register REGISTER 390 200 OK 320

Search INVITE 450–5001 100 Trying 250

606 Not Acceptable 390–14002

ACK 340

File list update MESSAGE 470–14003 200 OK 270

Download INVITE 560 100 Trying 250

180 Ringing 310

200 OK 310

ACK 410

De-register REGISTER 400 200 OK 270

Size of a message consists mostly of the SIP headers. Search replies and file

list updates are exceptions to this rule. These messages contain large XML pay-

loads with file listings. If searches or file list updates are frequent it might be

useful to use some other kind of encoding for these messages. For example type-

length-value encoding could be used instead of XML in these messages to reduce

message sizes.

6.2.2 Network Delays

Delay measurements were done using theping utility program running on a PC.

ICMP echo requests and replies were sent with different payload sizes and one-

way delays for these messages were measured. The mobile phone was attached to

the PC with a USB cable during the measurements and it served as a modem.

1Search size varies with the number search arguments
2Reply size varies with the number of search hits
3File list update size varies with the number of added/removed files

CHAPTER 6. MEASUREMENTS 73

One way delays were measured by pinging PC’s second network interface, which

was connected to the ADSL modem, with the mobile interface. This way it was

possible to log the sending time of the ICMP request on the mobile interface and

the receiving time on the ADSL interface with microsecond precision on the same

computer.

Delays measured from the mobile terminal to the super-peer can be seen in fig-

ure 6.1 and delays from the super-peer to the mobile terminal in figure 6.2. Packet

loss was zero for all delay measurements.

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 (

m
s)

Message size (bytes)

Mobile terminal to super-peer one-way delays

Figure 6.1: One-way delays from the mobile terminal to the super-peer

Figure 6.3 shows round trip times from the ADSL modem to the mobile gateway.

We can approximate the one-way delay being about half of the round trip time in

both directions for the ADSL connection. Using these results we can approximate

the delay introduced solely in the mobile network; e.g. for a 1000 byte packet,

we can approximate the ADSL one-way delay being around 13 milliseconds, thus

about 200 milliseconds of the total 215 millisecond delay on the MT->SP path is

due to the mobile network.

Using these measurement results, we can calculate how long searches take. If

CHAPTER 6. MEASUREMENTS 74

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 (

m
s)

Message size (bytes)

Super-peer to mobile terminal one-way delays

Figure 6.2: One-way delays from the super-peer to the mobile terminal

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 (

m
s)

Message size (bytes)

ADSL RTT to the mobile terminal router

Figure 6.3: Round trip time from the ADSL modem to the router providing access
to the mobile terminal (i.e. the mobile gateway)

CHAPTER 6. MEASUREMENTS 75

average size of a search message is 500 bytes, it takes about 140 ms for a message

of this size to get to the super-peer. The SIP proxy will reply with 250 byte Trying,

which takes less than 150 ms to transfer, and finally the super-peer replies with

606 Not Acceptable message which is around 1400 bytes at maximum, resulting

in 310 ms delay. Finally the mobile terminal sends an ACK to the SP, size of 340

bytes, time to transfer 120 ms. This all takes around 700 ms (in case that 100

Trying and 606 Not Acceptable do not overlap). Considering some processing

delays in the super-peer and varying delays in the mobile network, the total search

delay is usually below one second.

After a successful search, the user might start a file transfer. Before the actual

TCP file transfer connection is opened, the download must be initialized with SIP

signaling, as shown in figure 5.5. This signaling sequence includes the INVITE re-

quest with the SDP payload, then the 100 Trying from the proxy, the 180 Ringing

and the 200 OK from the super-peer, and last an ACK from the client. Together

these all messages should take less than 1.5 seconds to transfer, in reality the delay

is usually even shorter because some of these messages are transmitted back-to-

back, and thus their transmission overlaps in time; namely the 100 Trying, 180

Ringing, and 200 OK replies.

We can see that the delay measurements agree with the numbers presented initially

in table 4.1. The one-way delays increase with the increasing packet sizes, so the

smaller the message is, the quicker it goes through the network. We can speculate

that the delays would be even smaller when using more advanced access networks

such as HSDPA and WLAN.

6.2.3 Network Bandwidth

File transfer speeds were measured in an office environment. Transfer speeds

were measured with varying file sizes. The results are shown in table 6.2. Times

do not contain signaling delays — only actual file transfer times were measured.

However, as it can be seen when comparing results to those in figures 6.2 and 6.1,

for files over 50 kilobytes in size the file transfer time starts to dominate over the

signaling delays. Table 6.2 also includes average download rates calculated over

CHAPTER 6. MEASUREMENTS 76

the average download rates of individual tests.

Table 6.2: File transfer speeds for different file sizes

File size Transmit time Average download rate Content example

1 kB < 1 sec 10.3 kB/s vCard

10 kB < 1.5 sec 11.6 kB/s E-mail

50 kB 3.5 – 6.5 sec 11.3 kB/s Low-quality image

100 kB 7 – 8.5 sec 13.3 kB/s Medium-quality image

500 kB 46–48 sec 10.4 kB/s High-quality image

1 MB 102–104 sec 10.0 kB/s MP3 / e-Book

5 MB 525–528 sec 9.7 kB/s MP3 / Video clip

As it can be seen from the results, the download rates achieved in the 3G network

are higher than those with a single channel ISDN connection. These rates are

more than adequate for small file transfers. Small files download instantly, while

larger ones can be downloaded in the background while the user is spending his

time in other tasks. The download rate of the client is limited by the upload rate

of the peer who holds the content. In this case, the upload rate in the network was

limited to 128 kbit/s.

The results also suggest that some kind of phone to phone audio streaming might

be feasible in the future, e.g. ability to stream MP3-music clips straight from an-

other mobile phone.

For curiosity, transfer rates were also tested when on move, on the bus, and when

walking in an urban environment. Transfer rates in vehicular use averaged to

7 kB/s; in pedestrian use, transfer rates averaged around 9.5kB/s, just below of

those achieved in stationary use. Lower performance in vehicular use is probably

due to several handovers during the downloads. These tests were done using one

megabyte file size.

CHAPTER 6. MEASUREMENTS 77

MP2P Application

SIP Stack

Operating System

Figure 6.4: The Mobile Peer-to-Peer (MP2P) application uses the SIP stack to
interface with the operating system and the network. Measuring the SIP stack
performance is not possible from the MP2P application, because the SIP stack is
integrated with the operating system.

6.3 Software Performance

The initial objective was also to evaluate the software performance by measur-

ing processing delays in the system. The original idea was to measure how long

it takes for the client to process a SIP message from the moment it receives the

request to the moment when it sends an automatic reply. Unfortunately, measure-

ments of the SIP processing delays could not be performed. Reason for this was

that the SIP stack is integrated on top of the operating system and the network

stack. Our application can only see the interface to the SIP stack it uses, not the

interface between the SIP stack and the operating system. Thus, we cannot mea-

sure the performance of the SIP stack; we have no means of inserting triggers to

the operating system and the SIP stack interface. This architecture is pictured in

figure 6.4

Memory utilization of the MP2P application was measured with a system monitor

application. The memory use of the peer-to-peer application varied between 200

and 350 kilobytes; whereas, the SIP stack and the SIP profile manager together

consumed 170 kilobytes of memory.

6.4 User Perceived Performance

From this thesis’s point of view, more important than numerical measurements

with millisecond resolution is how the user perceives the software performance.

CHAPTER 6. MEASUREMENTS 78

From the user perspective, are there noticeable delays or sluggishness in the ap-

plication use?

Mainly the user is concerned how quickly he can get some interesting piece of

content. This includes searching for the content and then downloading the content.

The download time is, of course, affected largely by the file size and available

data bearer. However, before the download can be started the search has to be

done. The search and download initialization involve some SIP signaling in the

background. The signaling performance was measured earlier in this chapter.

Based on measurements and subjective tests done by the project group, the per-

formance is more than adequate. When the user has typed in the search string,

the results are represented almost immediately. Considering that web pages take

tens of seconds to load on mobile phones, the search speed should be more than

enough.

The overall time for file downloading can be divided into five steps:

1. Application startup, PDP context activation and SIP registration delay,

2. Delay of the user entering the search string,

3. Search delay; signaling with the super-peer,

4. Delay of the user selecting the file for download,

5. Download initializing and download delay.

The first step is only needed if the application is not running yet. The delay in the

second and fourth steps is solely controlled by the user, so these steps can be left

out when evaluating the overall application performance. The delay perceived by

the user is thus the result of the first, third, and fifth steps.

The duration of the first step depends on whether some subtask is already per-

formed in advance. The PDP context activation usually takes longest of the three

subtasks, the SIP registration takes less than two seconds and the application starts

in one second. In the worst case, all these steps should be completed in less than

ten seconds.

CHAPTER 6. MEASUREMENTS 79

From the user’s perspective, the search is instant, taking around one second at

maximum, as it was noted earlier in this chapter.

The last step, which is the file download, takes the most time. The download

signaling takes one or two seconds, but the actual content transfer takes time de-

pending on the requested file size. Looking at the measured transmission rates

in table 6.2, it can be noted that the duration of the download process starts to

dominate when the file size is larger than 100 kilobytes. Below this, the signaling

and user performance dictate the total performance.

6.5 Conclusions on Measurements

It must be noted that these measurements only give an indication of what the

performance might be. As noted earlier, there was no way to monitor the sig-

nal strength, or the quality of the link. Delays also depend on the load level and

queuing in the network, and on the load of the super-peer. However, these mea-

surements indicate clearly that the application performance is high enough for a

satisfying user experience. Delays perceived by the user are minimal for searches,

and the file transfer rates are around ten kilobytes per seconds.

Chapter 7

Conclusions

In this chapter we will revisit the initial objectives and present the results of the

study based on the measurements presented in chapter 6. Last, we will discuss

how this application could be further developed in the future.

7.1 Objectives Revisited

As a reminder, we revisit the objectives for the mobile peer-to-peer system as

stated in the first chapter.

The mobile peer-to-peer application will be used to evaluate the feasibility of the

peer-to-peer concept in the mobile domain, considering the following points:

• Does a modern mobile phone have enough resources to run a peer-to-peer

application?

• Is the SIP a suitable protocol for peer-to-peer signaling?

• Is the software performance satisfying in user perspective?

By implementing a peer-to-peer client for Series 60 platform, we studied how

these objectives could be met.

80

CHAPTER 7. CONCLUSIONS 81

7.2 Results

The working prototype of the peer-to-peer application proves that the peer-to-peer

file sharing can be implemented on a mobile platform, and that performance of the

mobile peer-to-peer application is good. The peer-to-peer application ran without

problems even when several other applications were started in the background and

the delays perceived by the user stayed low.

SIP seems to be a good protocol for peer-to-peer signaling with some remarks.

SIP has large signaling overhead when compared to binary based protocols. Con-

sidering measurements reported in chapter 6, it can be noted that this overhead is

not an issue on modern WCDMA networks. Also, being an integral part of the

future mobile networks, SIP is a fine choice for mobile peer-to-peer signaling.

For the application user, the performance of the software is good enough. Searches

can be performed in a few seconds, and most of search delay is induced by the

user himself while typing in the search strings. Also download rates in modern

mobile networks are satisfying for files up to a few megabytes.

All in all, this mobile peer-to-peer application shows that there are no major issues

bringing peer-to-peer applications to the mobile domain, so that the users could

get access to a vast number of files anywhere, anytime.

7.3 Further Discussion

The system is implemented as a hybrid peer-to-peer architecture, which allows

the administrator of the super-peer to have full control on the content available

in the network. This fulfills the mobile operators’ requirements for the service.

On the other hand, all users are not comfortable with the idea of the operators

having ability to censor files in the network. These users might be willing to run

super-peers of their own — which is also possible with the software presented

here. The same users might also be willing to use decentralized mobile peer-to-

peer applications — the marketplace is left open for decentralized mobile peer-

to-peer applications. However, the performance of a large decentralized peer-

CHAPTER 7. CONCLUSIONS 82

to-peer application is assumed to be quite low even in today’s high-speed cellular

networks. On the other hand, if the network is small enough (some tens of people),

even the pure peer-to-peer architecture might be feasible for mobile use.

Another issue hindering the popularization of mobile peer-to-peer is the current

bandwidth pricing in the mobile networks. With current pricing models users

have to pay both for the sent and received bytes. This model is not good peer-

to-peer-wise, because users have to pay for files they are sharing. Pricing models

should be changed so that users could get compensation for the uploaded files.

This would result in more shared data available in the network and thus in more

downloads.

Asymmetric connections being developed for the future mobile networks are not

most suitable for mobile peer-to-peer communication because increased down-

load rates have no effect when everyone’s upload bandwidth is restricted much

lower. The only way to get decent performance out of these upcoming high speed

technologies in mobile peer-to-peer is to build caching into the fixed network so

that popular content does not have to be uploaded every time through narrowband

mobile links.

7.3.1 Further Research Possibilities

There are many issues relevant to mobile peer-to-peer systems, which we did not

address in this thesis; such as, trust, reputation, accountability, security, and inter-

operability of different peer-to-peer networks.

Also grouping and authentication mechanisms for handling different user groups

must be studied more thoroughly to find out how to implement efficient file shar-

ing among closed user groups.

Caching of the popular files into the fixed network like in the mobile eDonkey

architecture is also something that has to be looked into. Caching the popular

content into the fixed network can greatly reduce the traffic over the air iterface.

Caching can be implemented in our architecture for example by creating separate

caching nodes that cache the interesting files. Then, super-peers can only list these

CHAPTER 7. CONCLUSIONS 83

cache-peers in the search replies for the popular file queries.

Development of the software will continue during year 2006. Further findings will

be published in separate papers.

References

[1] 3GPP. Service requirements for the Internet Protocol (IP) multimedia core

network subsystem (IMS); Stage 1. TS 28.228.

[2] Amjad Akkawi, Sibylle Schaller, Oliver Wellnitz, and Lars Wolf. A Mobile

Gaming Platform for the IMS. InSIGCOMM’04 Workshops, pages 77–84.

ACM, 2004.

[3] Peter J. Alexander. Peer-to-Peer File Sharing: The Case of the Music

Recording Industry. InReview of Industrial Organization, volume 20, pages

151–161. Kluwer Academic Publishers, 2002.

[4] J. Arkko, G. Kuijpers, H. Soliman, J. Loughney, and J. Wiljakka. Internet

Protocol Version 6 (IPv6) for Some Second and Third Generation Cellular

Hosts. RFC 3316, April 2003.

[5] Nadia Ben Azzouna and Fabrice Guillemin. Experimental Analysis of the

Impact of Peer-to-Peer Applications on Traffic in Commercial IP Networks.

European Transactions on Telecommunications: Special Issue on P2P Net-

working and P2P Services, November – December 2004.

[6] Balázs Bakos, Gergely Csúcs, Lóránt Farkas, and Jukka K. Nurminen. Peer-

to-Peer Protocol Evaluation in Topologies Resembling Wireless Networks.

An Experiment with Gnutella Query Engine. InInternational Conference

on Networks. IEEE, September – October 2003.

[7] Salman A. Baset and Henning Schulzrinne. An Analysis of the Skype Peer-

to-Peer Internet Telephony Protocol. September 2004.

84

REFERENCES 85

[8] Nicklas Beijar, Marcin Matuszewski, Juuso Lehtinen, and Tuomo Hyyryläi-

nen. Mobile Peer-to-Peer Content Sharing Services in IMS. InThe Interna-

tional Conference on Telecommunication Systems, Modelling and Analysis

2005, ICTSM2005, Dallas, Texas, USA, November 2005.

[9] Vannevar Bush. As we may think.Atlantic Monthly, July 1945.

[10] Gonzalo Camarillo and Miguel A. García-Martín.The 3G IP Multimedia

Subsystem (IMS) - Merging the Internet and the Cellular Worlds. John Wiley

& Sons, Ltd, 2004.

[11] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle. Ses-

sion Initiation Protocol (SIP) Extension for Instant Messaging. RFC 3428

(Proposed Standard), December 2002.

[12] Philippe Charas. Peer-to-Peer Mobile Network Architecture. In1st Inter-

national Conference on Peer-to-Peer Computing (P2P 2001), pages 55–61.

IEEE Computer Society, August 2001.

[13] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.

Freenet: A Distributed Anonymous Information Storage and Retrieval Sys-

tem. In H. Federrath, editor,Anonymity 2000, LNCS 2009, pages 46–66.

2001.

[14] Yonina Cooper and Hal Berghel. World Wide Web 10 Years Later (Part 1).

I+D Computación, 1(2), November 2002.

[15] S. Donovan. The SIP INFO Method. RFC 2976 (Proposed Standard), Octo-

ber 2000.

[16] EarthLink. SIPshare: SIP-based P2P Content Sharing Prototype.http:

//www.research.earthlink.net/p2p/ . Referenced: 8th October

2005.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft

Standard), June 1999. Updated by RFC 2817.

REFERENCES 86

[18] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327

(Proposed Standard), April 1998. Updated by RFC 3266.

[19] Erkki Harjula, Mika Ylianttila, Jussi Ala-Kurikka, Jukka Riekki, and Jaakko

Sauvola. Plug-and-Play Application Platform: Towards Mobile Peer-to-

Peer. InMUM 2004. ACM, 2004.

[20] Anthony J. Howe. Napster and Gnutella: a Comparison of two Popular Peer-

to-Peer Protocols. February 2002.

[21] Douglas Howie, Mika Ylianttila, Erkki Harjula, and Jaakko Sauvola. State-

of-the-Art SIP for Mobile Application Supernetworking. InNordic Radio

Symposium 2004, 2004.

[22] ITU-T. Packet Based Multimedia Communication Systems. Recommenda-

tion H.323 (07/03), July 2003.

[23] Alan B. Johnston.SIP Understanding the Session Initiation Protocol. Artech

House Publishers, 2nd edition, November 2003.

[24] Thomas Karagiannis, Andre Broido, Nevil Brownlee, kc claffy, and Michalis

Faloutsos. Is P2P Dying or just Hiding? InGlobecom 2004, November –

December 2004.

[25] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard),

April 2001.

[26] Nathaniel Leibowitz, Aviv Bergman, Roy Ben-Shaul, and Aviv Shavit. Are

File Swapping Networks Cacheable? Characterizing P2P Traffic. Technical

report, Expand Netwoks, Tel-Aviv, Israel, 2002.

[27] Marcin Matuszewski. Economics of Peer-to-Peer – Music Industry Case

Study. In Raimo Kantola, editor,Peer to Peer and SPAM in the Internet,

pages 104–114. 2003.

[28] Microsoft. Microsoft Visual Studio Developer Center.http://msdn.

microsoft.com/vstudio/ . Referenced: 25th December 2005.

REFERENCES 87

[29] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim

Pruyne, Bruno Richard, Sami Rollins, and Zhichen XU. Peer-to-Peer Com-

puting. Technical report, HP Labs, Rutgers University and University of

California at Santa Barbara, 2002.

[30] Aymeric MOIZARD. The partysip SIP proxy server.http://www.

partysip.org/ . Referenced: 25th December 2005.

[31] A. Niemi. Session Initiation Protocol (SIP) Extension for Event State Publi-

cation. RFC 3903 (Proposed Standard), October 2004.

[32] Klaus Nieminen. Legal Issues in P2P Systems. In Raimo Kantola, editor,

Peer to Peer and SPAM in the Internet, pages 115–124. 2003.

[33] Nokia. Series 60 Platform SDK’s for Symbian OS, for C++.http://

www.forum.nokia.com/main/0,6566,034-4,00.html . Refer-

enced: 25th December 2005.

[34] Nokia. SIP Plug-in for Series 60 SDK.http://www.forum.nokia.

com/main/0,6566,034-561,00.html . Referenced: 25th Decem-

ber 2005.

[35] Jens O. Oberender, Frank-Uwe Andersen, Hermann de Meer, Ivan Dedin-

ski, Tobias Hoßfeld, Cornelia Kappler, Andreas Mäder, and Kurt Tutschku.

Enabling Mobile Peer-to-Peer Networking. InLecture Notes in Computer

Science, volume 3427, pages 219–234, 2005.

[36] Jens O. Oberender and Hermann de Meer. P2P Replication Revisited: Mo-

bile Infrastructures. InKiVS Kurzbeiträge und Workshop, pages 211–214,

2005.

[37] Lakshmish Ramaswamy and Ling Liu. Free Riding: A New Challenge to

Peer-to-Peer File Sharing Systems. InProceedings of the 36th Hawaii Inter-

national Conference on System Sciences (HICSS’03). IEEE Computer Soci-

ety, 2002.

[38] A. B. Roach. Session Initiation Protocol (SIP)-Specific Event Notification.

RFC 3265 (Proposed Standard), June 2002.

REFERENCES 88

[39] J. Rosenberg. The Session Initiation Protocol (SIP) UPDATE Method. RFC

3311 (Proposed Standard), October 2002.

[40] J. Rosenberg. A Session Initiation Protocol (SIP) Event Package for Regis-

trations. RFC 3680 (Proposed Standard), March 2004.

[41] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session

Description Protocol (SDP). RFC 3264 (Proposed Standard), June 2002.

[42] J. Rosenberg and H. Schulzrinne. Reliability of Provisional Responses in

Session Initiation Protocol (SIP). RFC 3262 (Proposed Standard), June

2002.

[43] J. Rosenberg and H. Schulzrinne. Session Initiation Protocol (SIP): Locating

SIP Servers. RFC 3263 (Proposed Standard), June 2002.

[44] J. Rosenberg, H. Schulzrinne, and G. Camarillo. The Stream Control Trans-

mission Protocol (SCTP) as a Transport for the Session Initiation Protocol

(SIP). draft-ietf-sip-sctp-06.txt, January 2005.

[45] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.

RFC 3261, June 2002.

[46] Stefan Saroui, P. Krishna Gummadi, and Steven D. Gribble. Measurement

Study of Peer-to-Peer File Sharing Systems. Technical report, Department

of Computer Science & Engineering, University of Washington, 2002.

[47] Rüdiger Schollmeier. A Definition of Peer-to-Peer Networking for the Clas-

sification of Peer-to-Peer Architectures and Applications. InProceedings

of the First International Conference on Peer-to-Peer Computing (P2P’01).

IEEE Computer Society, 2002.

[48] Henning Schulzrinne and J. Rosenberg. A Comparison of SIP and H.323 for

Internet Telephony. InProceedings of International Workshop on Network

and Operating System Support for Digital Audio and Video (NOSSDAV),

pages 83–86, 1998.

REFERENCES 89

[49] Henning Schulzrinne and Jonathan Rosenberg. The Session Initiation Pro-

tocol: Internet-Centric Signaling.IEEE Communications Magazine, pages

134–141, 2000.

[50] Stephen Simon. Peer-to-Peer Network Management in an IBM SNA Net-

work. IEEE Network Magazine, 1991.

[51] Anurag Singla and Christopher Rohrs. Ultrapeers: Another Step Towards

Gnutella Scalability. December 2001.

[52] Tuomo Sipilä. Session Initiation Protocol in 3G. Technical report, Nokia

Research Center, Helsinki, Finland, 2001.

[53] R. Sparks. The Session Initiation Protocol (SIP) Refer Method. RFC 3515

(Proposed Standard), April 2003.

[54] Marie Thilliez, Thierry Delot, Sylvain Lecomte, and Nadia Bennani. Hybrid

Peer-to-Peer Model in Proximity Applications. InProceedings of the 17th

International Conference on Advanced Information Networking and Appli-

cations (AINA’03). IEEE Computer Society, IEEE, 2003.

[55] Tim Hsin ting Hu, Binh Thai, and Aruna Seneviratne. Supporting Mobile

Devices in Gnutella File Sharing Network with Mobile Agents. InProceed-

ings of the Eight IEEE International Symposium on Computers and Commu-

nications (ISCC’03). IEEE Computer Society, IEEE, 2003.

[56] Toddsoftware.com. SyExpat for Symbian. http://www.

toddsoftware.com/ . Referenced: 22nd September 2005.

Appendix A

Signaling Flows

A.1 Registering to the SIP Registrar

Figure A.1: Registering to the SIP registrar

REGISTER sip:192.168.0.2 SIP/2.0

Route: <sip:192.168.0.2;lr>

Via: SIP/2.0/UDP 62.71.210.134:5060;branch=z9hG4bK6SxyAxXNPYPVc

From: sip:karl@realm;tag=EflyAI9Gkc

To: sip:karl@realm

Contact: sip:karl@62.71.210.134;expires=3600

Supported: sec-agree

CSeq: 150646 REGISTER

90

APPENDIX A. SIGNALING FLOWS 91

Call-ID: ZrByAGG7KI_fX07jNtVH64UIRfxls2

Max-Forwards: 70

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP 62.71.210.134:5060;branch=z9hG4bK6SxyAxXNPYPVc

From: <sip:karl@realm>;tag=EflyAI9Gkc

To: <sip:karl@realm>;tag=1710802886

Call-ID: ZrByAGG7KI_fX07jNtVH64UIRfxls2

CSeq: 150646 REGISTER

Contact: <sip:karl@62.71.210.134>;expires=3600

Content-Length: 0

APPENDIX A. SIGNALING FLOWS 92

A.2 File List Update

Figure A.2: Updating file list to the superpeer

MESSAGE sip:sp@realm SIP/2.0

Route: <sip:192.168.0.2;lr>

Via: SIP/2.0/UDP 62.71.212.186:5060;branch=z9hG4bKLUg-Wh1k431dG

To: sip:sp@realm

From: sip:kenny@realm;tag=Q44-Wqgypj

Supported: sec-agree

CSeq: 150378 MESSAGE

Call-ID: 0aU-WjQ5mPzdwMmjHOpsA198dzURHZ

Max-Forwards: 70

Content-Type: text/xml

Event: mp2p_contentupdate

Content-Length: 219

<?xml version="1.0" standalone = "yes" ?>

<contentupdate>

<clearall/>

<add>

<type>File</type>

<hash>d21db042fdb9312c</hash>

<cluster></cluster>

<name>Kirja.jpg</name>

<extended type="size">25410</extended>

</add>

</contentupdate>

SIP/2.0 200 OK

Via: SIP/2.0/UDP 62.71.212.186:5060;branch=z9hG4bKLUg-Wh1k431dG

From: <sip:kenny@realm>;tag=Q44-Wqgypj

To: <sip:sp@realm>

APPENDIX A. SIGNALING FLOWS 93

Call-ID: 0aU-WjQ5mPzdwMmjHOpsA198dzURHZ

CSeq: 150378 MESSAGE

Max-forwards: 70

Content-Length: 0

APPENDIX A. SIGNALING FLOWS 94

A.3 Searching for a File

Figure A.3: Commiting search

INVITE sip:sp@realm SIP/2.0

Route: <sip:192.168.0.2;lr>

Via: SIP/2.0/UDP 62.71.212.186:5060;branch=z9hG4bKAEg-WsPfzPkUr

From: sip:kenny@realm;tag=XmE-WsITD7

To: sip:sp@realm

Contact: sip:kenny@62.71.212.186

Supported: sec-agree

CSeq: 150379 INVITE

Call-ID: 2rE-WnyV-zpuGcjTxXHPeoiLhz_MTR

Max-Forwards: 70

Content-Type: text/xml

Content-Length: 74

<?xml version="1.0" standalone = "yes" ?>

<request>

<name>J</name>

</request>

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 62.71.212.186:5060;branch=z9hG4bKAEg-WsPfzPkUr

From: <sip:kenny@realm>;tag=XmE-WsITD7

APPENDIX A. SIGNALING FLOWS 95

To: <sip:sp@realm>

Call-ID: 2rE-WnyV-zpuGcjTxXHPeoiLhz_MTR

CSeq: 150379 INVITE

Content-Length: 0

SIP/2.0 606 Not Acceptable

Via: SIP/2.0/UDP 62.71.212.186:5060;branch=z9hG4bKAEg-WsPfzPkUr

From: <sip:kenny@realm>;tag=XmE-WsITD7

To: <sip:sp@realm>

Call-ID: 2rE-WnyV-zpuGcjTxXHPeoiLhz_MTR

CSeq: 150379 INVITE

Max-forwards: 70

Content-Type: text/xml

Content-Length: 652

<?xml version="1.0" encoding="ISO-8859-1"?>

<reply status="OK">

<content type="File">

<hash>69c8e045cc452233</hash>

<name>Mugi.jpg</name>

<extended type="size">22751</extended>

<cluster></cluster>

<location>

<username>sip:karl@realm</username>

<ipaddress>127.0.1.1</ipaddress>

</location>

</content>

<content type="File">

<hash>8f42eece4b9ffb74</hash>

<name>16112005.jpg</name>

<extended type="size">29875</extended>

<cluster></cluster>

<location>

<username>sip:karl@realm</username>

<ipaddress>127.0.1.1</ipaddress>

</location>

</content>

</reply>

ACK sip:sp@realm SIP/2.0

Via: SIP/2.0/UDP 62.71.212.186:5060;branch=z9hG4bKAEg-WsPfzPkUr

Route: <sip:192.168.0.2;lr>

From: sip:kenny@realm;tag=XmE-WsITD7

To: sip:sp@realm

Supported: sec-agree

Call-ID: 2rE-WnyV-zpuGcjTxXHPeoiLhz_MTR

CSeq: 150379 ACK

Max-Forwards: 70

Content-Length: 0

APPENDIX A. SIGNALING FLOWS 96

A.4 Starting a Download

Figure A.4: Starting file download

INVITE sip:karl@mp2p.selfip.com SIP/2.0

Route: <sip:mp2p.selfip.com;lr>

Via: SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

From: sip:kenny@mp2p.selfip.com;tag=SJIHAKpZP9

To: sip:karl@mp2p.selfip.com

Contact: sip:kenny@62.71.214.87

Supported: sec-agree

CSeq: 3777 INVITE

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 151

v=0

o=kenny 7426438806558691742 7426438806558691743 IN IP4 10.10.10.10

s=69c8e045cc452233

c=IN IP4 10.10.10.10

t=0 0

m=application 1234 TCP MP2P

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

APPENDIX A. SIGNALING FLOWS 97

From: <sip:kenny@mp2p.selfip.com>;tag=SJIHAKpZP9

To: <sip:karl@mp2p.selfip.com>

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 INVITE

Content-Length: 0

INVITE sip:karl@62.71.208.198 SIP/2.0

Via: SIP/2.0/UDP 84.249.8.247:5060;branch=z9hG4bKfbed2cf2bef8ed3570354ae6e93c964f8.0

Via: SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

From: <sip:kenny@mp2p.selfip.com>;tag=SJIHAKpZP9

To: <sip:karl@mp2p.selfip.com>

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 INVITE

Contact: <sip:kenny@62.71.214.87>

Supported: sec-agree

Max-forwards: 69

Content-Type: application/sdp

Content-Length: 151

v=0

o=kenny 7426438806558691742 7426438806558691743 IN IP4 10.10.10.10

s=69c8e045cc452233

c=IN IP4 10.10.10.10

t=0 0

m=application 1234 TCP MP2P

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 84.249.8.247:5060;branch=z9hG4bKfbed2cf2bef8ed3570354ae6e93c964f8.0,

SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

To: sip:karl@mp2p.selfip.com

From: sip:kenny@mp2p.selfip.com;tag=SJIHAKpZP9

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 INVITE

Content-Length: 0

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 84.249.8.247:5060;branch=z9hG4bKfbed2cf2bef8ed3570354ae6e93c964f8.0,

SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

From: sip:kenny@mp2p.selfip.com;tag=SJIHAKpZP9

To: sip:karl@mp2p.selfip.com;tag=TExNC681xyj3R964

Contact: sip:karl@62.71.208.198

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 INVITE

Content-Length: 0

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

From: <sip:kenny@mp2p.selfip.com>;tag=SJIHAKpZP9

APPENDIX A. SIGNALING FLOWS 98

To: <sip:karl@mp2p.selfip.com>;tag=TExNC681xyj3R964

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 INVITE

Contact: <sip:karl@62.71.208.198>

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP 84.249.8.247:5060;branch=z9hG4bKfbed2cf2bef8ed3570354a

e6e93c964f8.0,SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

To: sip:karl@mp2p.selfip.com;tag=TExNC681xyj3R964

Contact: sip:karl@62.71.208.198

From: sip:kenny@mp2p.selfip.com;tag=SJIHAKpZP9

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 INVITE

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bKssYHAIIIxViYM

From: <sip:kenny@mp2p.selfip.com>;tag=SJIHAKpZP9

To: <sip:karl@mp2p.selfip.com>;tag=TExNC681xyj3R964

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 INVITE

Contact: <sip:karl@62.71.208.198>

Content-Length: 0

ACK sip:karl@62.71.208.198 SIP/2.0

Route: <sip:mp2p.selfip.com;lr>

Via: SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bK_HkY0zKV4tWPD

To: sip:karl@mp2p.selfip.com;tag=TExNC681xyj3R964

From: sip:kenny@mp2p.selfip.com;tag=SJIHAKpZP9

Supported: sec-agree

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 ACK

Max-Forwards: 70

Content-Length: 0

ACK sip:karl@62.71.208.198 SIP/2.0

Via: SIP/2.0/UDP 84.249.8.247:5060;branch=z9hG4bKle6e73de3d298aac70867de5fde62e8f5

Via: SIP/2.0/UDP 62.71.214.87:5060;branch=z9hG4bK_HkY0zKV4tWPD

From: <sip:kenny@mp2p.selfip.com>;tag=SJIHAKpZP9

To: <sip:karl@mp2p.selfip.com>;tag=TExNC681xyj3R964

Call-ID: 1W4HADZqYFsswpghHSyB6CsaXBBP53

CSeq: 3777 ACK

Supported: sec-agree

Max-forwards: 69

Content-Length: 0

APPENDIX A. SIGNALING FLOWS 99

A.5 Deregistering from the SIP Registrar

Figure A.5: Deregistering from the SIP registrar

REGISTER sip:mp2p.selfip.com SIP/2.0

Route: <sip:mp2p.selfip.com;lr>

Via: SIP/2.0/UDP 62.71.208.198:5060;branch=z9hG4bKkoihx5nEIjVIh

Contact: sip:karl@62.71.208.198;expires=0

To: sip:karl@mp2p.selfip.com;tag=835845152

From: sip:karl@mp2p.selfip.com;tag=SwehxeZsKU

Supported: sec-agree

Call-ID: OAGhx8uNkoQC60njEj8pXgBbpo0EGt

CSeq: 5510 REGISTER

Max-Forwards: 70

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP 62.71.208.198:5060;branch=z9hG4bKkoihx5nEIjVIh

From: <sip:karl@mp2p.selfip.com>;tag=SwehxeZsKU

To: <sip:karl@mp2p.selfip.com>;tag=835845152

Call-ID: OAGhx8uNkoQC60njEj8pXgBbpo0EGt

CSeq: 5510 REGISTER

Content-Length: 0

Appendix B

Document Type Definitions

B.1 File List Update

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT contentupdate (clearall?, (add|remove)*)>

<!ELEMENT clearall EMPTY>

<!ELEMENT add (type, hash, name, cluster?, extended?)>

<!ELEMENT remove (hash)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT hash (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT cluster (#PCDATA)>

<!ELEMENT extended (#PCDATA)>

<!ATTLIST extended type (size|bitrate) #REQUIRED>

100

APPENDIX B. DOCUMENT TYPE DEFINITIONS 101

B.2 Search Request

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT request (type?, hash?, cluster?, name?, extended?)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT hash (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT cluster (#PCDATA)>

<!ELEMENT extended (#PCDATA)>

<!ATTLIST extended type (size|bitrate) #REQUIRED>

APPENDIX B. DOCUMENT TYPE DEFINITIONS 102

B.3 Search Reply

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT reply (content*)>

<!ELEMENT content (hash, name, cluster?, extended?, location+)>

<!ELEMENT hash (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT cluster (#PCDATA)>

<!ELEMENT extended (#PCDATA)>

<!ELEMENT location (username, ipaddress?, phonenumber?)>

<!ELEMENT username (#PCDATA)>

<!ELEMENT ipaddress (#PCDATA)>

<!ELEMENT phonenumber (#PCDATA)>

<!ATTLIST reply status (ok|error) #REQUIRED>

<!ATTLIST content type (file|stream|chat) #REQUIRED>

<!ATTLIST extended type (size|bitrate) #REQUIRED>

