
Load balancing of elastic data streams in

cellular networks

Kaiyuan Wu

January 25, 2005

Contents

1 Introduction 3

1.1 Background . 3
1.2 Statement of the problem . 4
1.3 Research method . 5
1.4 Structure of work . 5

2 Data traffic in cellular networks 6

2.1 GPRS . 6
2.2 EGPRS . 10
2.3 UMTS . 11
2.4 WLAN . 12
2.5 Load balancing . 15

3 Flow level traffic modeling 18

3.1 Data traffic modeling . 18
3.2 Processor sharing queue . 21

4 Markov decision processes 23

4.1 Markov chains . 23
4.1.1 Continuous-time Markov chains 23
4.1.2 Birth-death process . 25
4.1.3 Quasi-birth-death process 26

4.2 Markov decision process . 26
4.2.1 Components of MDP 28
4.2.2 Howard’s equation . 29
4.2.3 Policy iteration . 33

5 Problem formulation 36

5.1 Assumptions and notations . 36
5.2 General method . 40

1

6 Symmetric case study 42

6.1 Static policy . 42
6.2 Dynamic policies . 44

6.2.1 Join the shortest queue scheme 44
6.2.2 First policy iteration 44
6.2.3 FPI∗, a variation of FPI 46
6.2.4 Further policy iterations 47

7 Asymmetric case study 51

7.1 Static policy . 51
7.2 Dynamic policy . 53

7.2.1 Least ratio routing . 53
7.2.2 First policy iteration 53
7.2.3 FPI∗, a variation of FPI 53

8 Numerical experiments 55

8.1 Performance of the symmetric case 55
8.1.1 FPI and further iterations 56
8.1.2 FPI∗ and further iterations 58
8.1.3 FPI variations . 63
8.1.4 Systematic study . 64

8.2 Performance of the asymmetric case 64
8.2.1 FPI and further iterations 67
8.2.2 FPI∗ and further iterations 67
8.2.3 FPI variations . 69
8.2.4 Systematic study . 71

9 Conclusion 74

9.1 Summary . 74
9.2 Future work . 75

2

Chapter 1

Introduction

This Master’s thesis focuses on minimizing the delay of data flows in the
packet-switched cellular networks, including General Packet Radios Service
(GRPS), Enhanced Data rates of Global Evolution (EDGE), Universal Mo-
bile Telecommunications Service (UMTS) network and Wireless LAN (WLAN).

1.1 Background

Conventional voice call services and Short Message Service (SMS) are prevail-
ing in people’s daily life. And new data services like Multimedia Messaging
Service (MMS) and video streaming are improving users’ experience in the
new generation of communication networks. For these boosting data services,
the packet-switched network such as GPRS and EDGE are widely deployed
nowadays to provide coverage in the urban and suburb areas to fulfill such
service requests. Another active technology to provide such services is the
WLAN. It offers much higher data access, rather increased flexibility.

In the long run, the development of communication network proceeds to-
wards all-IP networks, where all the services are delivered via packet-switched
networks [7]. Therefore, from the network’s point of view, the data requests
including pictures, video clips, files are the byte streams. These streams are
also called data flows, meaning a stream of data packets that are delivered
from a source to a certain destination.

Above Internet Protocol (IP), TCP is the main workhorse that provides a
reliable, sequenced service on an unreliable network [17]. Two most potential
problems that adversely affect the services performance are network capacity
and receiver capacity. To avoid congestion from these capacity problems, a
few mechanisms are defined to alleviate such fluctuations of the capacity by
varying the transmission rate [17]. The fluctuation in data rate will cause

3

the data flows to experience different rates during their service periods. This
is why flows or TCP connections are elastic in terms of their tolerance in
transmission rates.

TCP is originally designed to work over fixed networks, though in the-
ory TCP should be quite independent of the technology that used by TCP’s
underlying protocol. However, deploying TCP over wireless networks brings
some challenges: narrower bandwidth, longer delay and larger delay vari-
ations than in a fixed network [7]. Thus, more endevours are required to
alleviate these drawbacks and deliver appealing data services to the users
with reasonable performance.

1.2 Statement of the problem

The network in the thesis is assumed to be a packet-switched cellular network.
In such networks, relatively small units of data containing the address of
destination or packets, are transmitted. The advantage of breaking data into
small units is that the same data path can be shared among all the packets
that may belong to different data services. In the network’s perspective, this
mechanism is notably efficient compared with the circuit-switched network.
In its counterpart, the connection is dedicated to an individual user after
establishing the connection even though the user most probably cannot utilize
the entire resources.

To simply model such networks, only two adjacent cells are considered
in the thesis. Furthermore, the congestion control mechanism in TCP is
assumed to function well enough so that network resources are statistically
shared by the flows in the network. In a whole, we assume the network works
in a Processor Sharing (PS) manner [3].

Nowadays, load balancing (LB) has been widely used to improve the
system performance in the computing systems. Sometimes, jobs rush into
the system, especially to a specific server and force it work quite heavily. In
the meantime, some different servers might be rather idle even though there
are still jobs waiting for the services. The motivation of the load balancing
is to address such problems. The basic idea of LB is to distribute the jobs
to several servers according to a certain scheme to make the entire system
work more efficiently. Some works have been explored to apply this technique
into the WLAN and adopting LB in cellular networks [13, 18] brings great
improvement.

The main objective of the thesis is to propose an load balancing scheme
for the data flows in the overlapping area of two adjacent cells in cellular
networks. The aim of such scheme is to minimize the mean delay at the flow

4

level. A reasonable LB scheme should achieve a considerably low system
delay and is not difficult to derive. Applying such scheme can absolutely
increase the network efficiency to improve the users’ satisfaction.

1.3 Research method

The research problem is modeled after a literature review in the related fields.
Queueing theory, especially M/M/1 − PS queue along with the process op-
timization tool like Markov Decision Process (MDP) plays a very important
role in the analysis of the model. Policy iteration in MDP is the main tool
to continuously refine the process generated from the research problem. It
is from these repeated operations that we seek a load balancing scheme to
achieve a great progress in the flow delay performance.

Quite a few numerical experiments are implemented in Mathematica to
support the previous analytic results. They also report the difference among
various schemes obtained through heterogeneous algorithms.

Roughly speaking, this work can be divided into two parts. First, an-
alytic results are examined after modeling the research problem. Secondly,
numerical experiments are implemented to verify the analytic results and
also to further study of various schemes in a systematic way.

1.4 Structure of work

The remainder of the thesis is organized like follows. Fundamental knowledge
of different cellular networks are covered including both mobile networks and
WLAN in Chapter 2. Chapter 3 presents the basic ideas of flow level traffic
modeling and Chapter 4 introduces MDP, and an example of implementing
MDP is demonstrated as a case study. In Chapter 5, the research problem is
formulated along with some observations of the related model. The research
problem is studied in the symmetric case in Chapter 6 and the asymmetric
case is covered in Chapter 7. Furthermore, some numerical experiments for
both cases are presented in Chapter 8 to provide supporting evidences for
the analytic results and insight into various LB algorithms. Conclusions
are drawn and future works for this research problem are also proposed in
Chapter 9.

5

Chapter 2

Data traffic in cellular networks

The past few years have witnessed a rapid and significant development in the
cellular networks: various new technologies have been developed and stan-
dardized, new components in networks have been widely deployed globally
and different data services boom to improve the users’ experience beyond
imagination. For a long time, users expect to enjoy the services through
mobile network as if they are connected to the wired network. Nowadays,
this demand is manifested by the exponential growth of data services in
wireless network, typically like receiving and sending mails and downloading
data files. To meet the increasing needs, GPRS has been introduced by May
2001, which enables packet data rates of up to 20 kbps per time slot over the
existing GSM network [12]. Ever-increasing demand in data traffic further
contributes to the development of Enhanced GPRS (EGPRS), which is part
of Enhanced Data rates for Global Evolution (EDGE). In theory, it triples the
bit rate of a GPRS network because of adopting a new modulation method
[12]. Some basic features of Universal Mobile Telecommunication Services
(UMTS) network will be introduced briefly. Another prevailing and promis-
ing technology in communication area is the wireless LAN (WLAN). It has
already provided higher speed data access and it is believed to be a comple-
mentary part of cellular network in 3G telecommunication system. At last,
load balancing is explored along with a case study.

2.1 GPRS

GPRS is known as one of the cautious steps to the 3G mobile network, which
features the packet-based communication services for mobile devices. Mainly
because of its enhanced connection speed, GPRS is regarded to as a 2.5G
technology upgrade, highlighting that such system bridges the gap between

6

BSC MSC/VLR

SGSN

SGSN

PSTN

External
IP network

External
X.25 network

HLR

GPRS
register

GGSN

GGSN

Backbone
IP network

GMCS

PCU

 AIR
 INTERFACE

MS

Figure 2.1: GPRS network architecture, the dashed line indicates the
connection from MS to the Internet

2G and 3G system.
Circuit-switched connection is mostly suitable for real-time services such

as conventional voice service because they are really sensitive to the delay.
During such service, the connection is dedicated to an individual user even
though most probably one fails to utilize one hundred percent of the re-
sources. In this sense, circuit-switched connection is not ideal for the non
real-time services when taking account of the network efficiency because such
applications have rather loose delay requirements. Packet-switched connec-
tion is more efficient because a data path can be absolutely exploited by all
the packets that may belong to different data services.

There are quite a few key advantages of GPRS over GSM:

1. Speed
In theory, the maximum data rate of GPRS is 171.2 kbps combined
with standard GSM time slots. In real use, the user can expect a speed
rate of 20-50 kbps, which is a lot more better than the unsatisfactory
9.6 kpbs or 14.4 kbps in GSM.

2. Always-on connectivity
Unlike in GSM, one does not need to dial up to access the data service.

3. More applications
With the increase of the connection speed, GPRS enables most of the

7

Internet applications. And surely the experience of the usage is more
pleasant than that in GSM.

4. Billing
The user is charged according to the data volume that is used rather
than the time when connection is established, most of which is waiting.

GPRS is an overlay network over GSM, meaning that GPRS keeps almost
all the existing GSM hardware. In fact, many of the infrastructures in GPRS
are shared with those in the GSM network, which implies that the operator
can avoid deploying the GPRS network from scratch. This reuse of the GSM
network can save considerable cost and makes it possible to rapidly and
widely implement such packet-switched update.

Some modifications are required in software, hardware or even both in
the Base Station Controller (BSC) , Mobile Switching Center (MSC) and
some new components are required to support the new data services. Part
of the changes can be seen in Figure 2.1. It shows the general architecture of
GPRS network and actually the components of the GSM are still included in
the graph, where they coexist and cooperate together to provide satisfying
services to Mobile Stations (MS). The radio tower in the figure stands for
the Base Station (BS) which transmits and receives the radio power to cover
a geographical area and meanwhile provides various services to the MSs that
are within its coverage via the air interface. Base Station Controller (BSC)
takes care of a number of BSs to manage the radio resource allocation to
these several BSs and collects necessary information about all the BSs under
its control periodically.

The new components in GPRS are the Packet Control Unit (PCU),
Serving GPRS Support Node (SGSN) and Gateway GPRS Support Node
(GGSN). A brief review of these units is given below:

• PCU functions to differentiate the circuit switched data for the GSM
network and packet switched data that is destined for the GPRS net-
work.

• SGSN is in charge of the routing and IP address assignment. One
SGSN controls a couple of Base Station Controllers (BSC). When the
handset is moving through different cells, SGSN figures out which BSC
the user belongs to and how to route the packets to the MS. Sometimes
user may move to the cells that are in the charge of different SGSN. In
such a circumstance, a hand-over will be performed to the new SGSN
which is transparent to the MS.

8

APP

TCP/UDP

IP

SNDCP

LLC

RLC

MAC

GSM RF

RLC BSSGP

MAC NW sr

GSM RF L1bis

SNDCP

LLC

BSSGP

NW sr

L1bis

MS
Um

BSS SGSN
Gb

GTP

UDP/TCP

IP

L2

L1

GGSN

L1

L2

IP

UDP/TCP

GTP

IP

Gn Gi

Figure 2.2: EGPRS protocol stack from MS to GGSN

• GGSN is the last part to connect to an Internet Service Provider (ISP)
or company’s network. Basically, it is a gateway, router and firewall
combination.

In practice, former components of GSM network still handle the voice
service while the GPRS network focuses on the data services. This coexis-
tence is based on the fact there is no dedicated channel for the new GPRS
sector.

The dashed line in Figure 2.1 indicates the connection from MS to the IP
network, which illuminates that all the contents that the Internet offers is also
obtainable via the GPRS network in theory. Actually, the main driving force
behind GPRS technology is to access Internet or Intranet through wireless
devices.

The GPRS consists of layered protocols that provide quite a few control
mechanisms, such as error correction and retransmission. Figure 2.2 shows
the protocols between MS and SGSN. A brief introduction of some protocols
is given below:

• Internet Protocol (IP) provides a best-effort way to transport data-
grams from source to destination

• Transmission Control Protocol (TCP) is designed specifically to pro-
vide a reliable end-to-end connection over an unreliable internetwork.
Congestion control is implemented in TCP to effectively avoid conges-
tion caused by heavy load.

• Subnetwork Dependent Convergence Protocol (SNDCP) maps the net-
work level packet data units onto the underlying logical link control

9

layer. It also provides optional compression functionality of both the
TCP/IP header and the data content.

• Logical Link Control (LLC) provides a reliable ciphered link between
SGSN and MS.

• Radio Link Control (RLC) provides reliable transmission of data ac-
cording to optional Automatic Repeat-reQuest (ARQ) functionality.

• Medium Access Control (MAC) controls MS access to the air interface
and provides scheduling for associated signaling.

• Base Station System GPRS Protocol (BSSGP) manages the routing
and Qos information for the BSS

• GPRS Tunneling Protocol (GTP) tunnels the protocol data units through
the IP backbone

All these protocols cooperate together to avoid traffic congestion and
guarantee a rather reliable services to the MS.

In brief, network efficiency in GPRS is improved because channels can
be shared simultaneously by both voice and data packets. When a specific
user does not transmit data on the channel, the share that he possesses then
can be used by any other customers, which promises that the channels can
always be utilized at a high efficiency.

2.2 EGPRS

Generally, EDGE was developed and standardized in 1999 to further in-
crease the data speed in the existing cellular network. When applying into
the GPRS cellular network, the new combination is called Enhanced GPRS
(EGPRS). The kernel of the EDGE technique is the application of the 8-
PSK modulation scheme which provides a higher data transmission rate per
radio time slot than that is achieved with Gaussian Minimum-Shift Key-
ing (GMSK) modulation in GSM. An 8-PSK signal can carry three bits per
symbol over the radio path rather than one in GMSK case. In EGPRS, even
around 60 kbps per time slot can be reached in ideal environment. It also
features nine modulation and coding schemes (MCS), by which network can
instantaneously switch over these MCSs in response to a change of radio in-
terface parameters. When the EGPRS is on operation, some time slots are
reserved for data traffic. The number of such slots can be adjusted dynami-
cally depending on the network situation and data traffic demand. Thus, it

10

is possible to always choose a proper MCS or number of time slots to reach
the best throughput when the radio parameters vary. The benefit of this
flexibility is undoubtedly immense, when taking account of the highly fluctu-
ating radio environment where MSs tend to roam frequently and may suffer
from different signal fading influenced by the MS movements or geographical
environment.

The deployment of EGPRS needs modifications and updates in the BTS,
BSC and MS as well in both hardware and software. However, the entire
change is rather small when considering the whole infrastructure. Basically,
EGPRS can achieve a rather high data rate so that quite a few 3G services
thus can also be carried out in such a cellular network.

2.3 UMTS

Universal Mobile Telecommunications Service (UMTS) network is the Euro-
pean version of third generation (3G) mobile communication system. It is a
next-generation cellular technology standard proposed by international stan-
dards organizations that include the Third Generation Partnership Project
(3GPP) and International Telecommunication Union (ITU). The radio ac-
cess technology that UMTS uses is called Wideband Code Division Multiple
Access (WCDMA), which increases the voice capacity and greatly enhances
data rates. There are other proposals for the air access technologies such as
CDMA 2000 and TD-SCDMA [7], which are not covered here.

To well understand the differences between the second generation and the
third generation systems, we may look at the new requirements of the third
generation systems which are listed below:

1. Bit rates up to 2 Mbps

2. Variable bit rate to offer bandwidth on demand

3. Multiplexing of service with different quality requirements on a single
connection, for example, speech, video and packet data

4. Delay requirement from delay-sensitive real time traffic to flexible best-
effort packet data

5. Quality requirements from 10 % frame error rate to 10−6 bit error rate

6. Co-existence of second and third generation systems and inter-system
handovers for coverage enhancements and load balancing

11

WCDMA GSM
Carrier spacing 5 Mhz 200 kHz
Frequency reuse factor 1 1-18
Power control frequency 1500 Hz 2 Hz or lower
Quality control Radio resource manage-

ment algorithms
Networking(frequency)
planning

Frequency diversity 5 Mhz bandwidth gives
multi-path diversity with
Rake receiver

Frequency hopping

Packet data Load-based packet
scheduling

Time slot based schedul-
ing with GPRS

Downlink transmit diversity Support for improving
downlink capacity

Not supported by the
standard, but can be ap-
plied

Table 2.1: GSM vs. WCDMA in air interface

7. Support of asymmetric uplink and downlink traffic, e.g. web browsing

8. High spectrum efficiency

9. Co-existence of FDD and TDD modes

Table 2.1 lists the main differences between WCDMA and GSM in terms
of air interface, which presents the new requirements and new features of
WCDMA technology.

UMTS uses the same fundamental architecture for voice and data ser-
vices as GPRS/EDGE. UMTS is divided into two main sectors: the UMTS
Terrestrial Radio Access Network (UTRAN) and the UMTS core network.
The biggest difference between GPRS/EDGE networks and UMTS networks
is the deployment of WCDMA in the radio access network [12].

2.4 WLAN

WLAN is a high-bit rate solution for local areas with rather limited mobility
support, however it is still flexible in terms of the exemption of the trouble-
some planning and deployment of the wires, especially in the terrains where
wire solution is inconvenient or even impossible. Within the coverage area,
user can freely roam his WLAN enabled terminal or station and get access
to high data speed. First of all, the dominant standard that it came up with

12

is named 802.11. Actually, it has been developed to a series of standards by
the IEEE 802 working group. The most popular 802.11 family members in
the series are

• IEEE 802.11a 54 Mbps, 5 GHz standard

• IEEE 802.11b Enhancements to 802.11 to support 5.5 and 11 Mbps
using 2.4 ISM (Industrial, Scientific and Medical) band allocation.

• IEEE 802.11g 54 Mbps 2.4 GHz standard (backwards compatible with
802.11b) in ISM band

In addition to these basic versions, there are quite a few standards avail-
able for the service enhancement, extension or even corrections to previous
specifications.

WLAN consists of four basic components: Distribution System (DS),
Access Points (AP), Wireless medium and Mobile Station (MS), which are
depicted in Figure 2.3. A brief introduction is given below.

• Distribution System: DS is a backbone network that connects several
access points or Basic Service Sets (BSSs). It could be either wireless
or wired.

• Access Point: AP is basically a station in the BSS that is connected
to the DS. The dominant function of AP is to perform the bridging to
the backbone. The AP can be analogous to a base station in cellular
network, however, the former one’s coverage radius might be much
smaller.

• Wireless Medium: It is the bridge that connects the MS and AP and
several physical layer technologies are well defined in this part such as
Frequency Hopping, Direct Sequence Spread Spectrum and Infra-Red.

• Mobile Station: The WLAN-enabled terminal such as laptop, handset,
etc.

Generally, IEEE 802.11 network can have two topologies to provide dif-
ferent scales:

1. Basic Service Set (BSS): It is composed of a group of stations under
the direct control of a single coordination function. All stations in a
BSS can communicate with any other stations directly.

2. Extensive Service Set (ESS): Several BSSs are involved in this case and
they are connected by a DS. ESS can provide larger network coverage,

13

Access
Point

(a) (b)

Access
Point

Access
Point

(c)

Distribution system DS

Wireless
Media

MS

ESS BSS

(Ad Hoc Mode)(Infrastructure Mode)

IBSS

Figure 2.3: WLAN: working modes and main components (a) Infrastructure
mode ESS (b) Infrastructure mode BSS (c) Ad hoc mode IBSS

which is also illustrated in Figure 2.3.
As to the flexibility, IEEE 802.11 standard is able to work in two different

working modes, with or without AP. They are Infrastructure Mode and Ad
Hoc Mode illustrated in Figure 2.3. In Infrastructure Mode, Access Point
is required to bridge the wireless clients access to the wired network. In
such mode, networks offer the advantage of scalability, centralized security
management and improved accessibility. In Ad Hoc Mode, stations can even
communicate directly with each other without a WLAN coverage. This case
is also regarded as peer-to-peer or an independent BSS (IBSS) mode. Com-
pared with the infrastructure mode, this mode is quicker to set up where
wireless infrastructure does not exist. A simple example is several people
sitting together in a room without WLAN coverage and having their WLAN
enabled terminals connected to each other directly.

Nowadays, WLAN is widely deployed in airports, hotels, universities and
even upscale coffee shops and is boosting a revolution in the access to the
Internet. This application further strengthens the mobility of the laptop so
that within the AP coverage, users can enjoy multiple data service without
the limitation of the wire.

14

2.5 Load balancing

Load balancing (LB) can be applied in many fields, but mostly it plays an
important role in the parallel and distributed computing systems. Assume
we have a finite number of processors that handle the coming jobs in a
system. In some circumstances, new arriving assignments may rush to a
specific processor, which make it work quite heavily while the rest might be
rather idle on the other hand. The total performance of the system is likely
to degrade in this case and the utilization of the computing resource keeps
relatively low. The motivation behind LB is to address such a problem:
In essence, LB is designed to equally partition the work loads to several
computing units such as processors in the manner to maximize the system
utilization and performance.

In a cellular network, it is analogous to look BS in mobile network and
AP in WLAN as the processors in computing system. Table 2.1 implies that
load balancing has been standardized in UMTS and the packet data will be
balanced according to the cell load [12]. And a case study of LB will be
introduced in a WLAN system in the end of the section.

In order to achieve a high utilization of the resource, the load balancing
should be ’fair’ in some sense. One option, for example, is to distribute the
total work to several optional computing units to minimize the work load
difference between the busiest and idlest units. The practical implementation
might be transferring the jobs from heavily loaded servers to rather idle serves
so that jobs can be handled more efficiently and new assignments may enter
the system without long waiting outside.

In general, we can broadly categorize load balancing algorithms into static
or dynamic. For a static algorithm, the information for making the decision
is collected before the assignment enters the system. And the state of the
system will not affect the decision when the assignment is scheduled to a
certain computing unit, in other words, the decision-making procedure is
state independent. On the other hand, a dynamic allocation mechanism maps
the assignment to the resources as they arrive in the system and states of the
system have a great impact on its decision. In this way, decisions are made
’on the fly’ and involve the working information in other computing units.
In a word, dynamic load balancing is more complex to implement because
it needs to make the decision dynamically, depending on the information in
other computing units. On the other hand, static load balancing mechanism
prescribes the decisions even before the assignments enter the system and
totally independent to the states.

In terms of the implementation, load balancing can also be broadly cat-
egorized into two classes: centralized or distributed algorithm. In a central-

15

ized load-balancing algorithms, the global load information is collected into
a scheduling processor such as a centralized access server which makes all the
load balancing decisions for individual node according to such load messages.
In a distributed algorithm, each node broadcasts its load information to the
other nodes so that load balance tables are maintained locally and load of
each node changes according to such table to achieve a better performance
of the system. Normally, a centralized algorithm imposes less overheads but
operates with rather low reliability because the collapse of the scheduling
processor really means a disaster to the entire system. The information of
the loads thus cannot be maintained properly or at least be messed up so
that the realization of the load balancing is inaccurate or even impossible to
approach. In contrast, a distributed algorithm is easier to implement despite
of its rather low ability [21].

Some key components in load balancing are load metric, load measure-
ment and load balancing operation. Load metric is the quantity to evaluate
whether a system is balanced or not. Frequently used metrics are number
of calls, blocking probability, packet loss, throughput, delay and so forth.
It is also the goal for designing a load balancing scheme to optimize. Load
measurement is the realization to calculate the load metric because always
the load metric and other system information are quantifiable. There are
options for either global or local servers being involved in the load balancing
process. In the global situation, jobs migrate from the heavy loaded servers
to any of the servers within the entire system if necessary while in the local
case only servers in the scope of predefined area can accept the transferred
jobs. Then based on load measurements, proper server is selected among
all the candidates to redistribute the workload to realize the load balancing
globally or locally according to the predefinition.

Case Study

Hector Velayos et al. [18] tried to avoid overloaded and underloaded cell
to increase the total throughput performance in WLAN. We now take it as
an example for studying load balancing in real WLAN scenario.

The model in [18] contains a few APs that are connected to the same
Ethernet backbone. As claimed, AP in WLAN can be viewed as a server of
computing units. Load Balancing Agent (LBA) is installed in each AP, by
which load information of corresponding AP is broadcasted periodically to
the common backbone. Based on these messages, an individual LBA figures
out whether the load is balanced or not among the neighboring APs.

The load metric in this case is the throughput in each AP in bytes per
second. Basically, the load situation of an AP can be broadly categorized

16

into three segments: overloaded, balanced and underloaded, respectively.
The throughput at APi is realized by the balance index β defined as,

β =
(
∑

Bi)
2

(n
∑

B2
i)

, (2.1)

where n is the number of neighboring APs over which the load is distributed
and Bi is the throughput of APi. The balance index is 1 when all APs
have the same throughput and tends to 1/n when the throughput is severely
unbalanced. For classifying the load, an average load L is first defined as

L =

∑

Bi

n
, (2.2)

along with a relatively small δ. The APs with load between L and L + δ
are defined as balanced. Greater than L + δ or smaller than L is assumed
to be overloaded or underloaded. The setting of δ is tricky: by adjusting
δ, the range of balanced area is changing so that the number of unbalanced
(overloaded and underloaded) varies correspondingly. In this sense, different
amount of job load migrations are needed to eventually fix the system in a
rather balanced condition. However, it is a tradeoff between the unbalance
tolerance and job migrations workload.

The load balance implementation location in this case is global because all
the APs are possibly involved when a workload migration occurs. The policy
of load transfer deployed in [18] is a so-called best candidate scheme, which
generates much less load transfers compared with the simple random selection

policy. The best candidate scheme picks the stations whose throughput is
the closest to the difference between the throughput of overloaded AP and
the average load L.

The numerical experiment part verifies that this balancing scheme in-
creases the total network throughput and decreases the cell delay consider-
ably.

17

Chapter 3

Flow level traffic modeling

In this chapter, an overview of flow level modeling is explored from some
observations of literatures. Some basic ideas of M/M/1 − PS queue are
then followed to introduce the service discipline that is associated with some
simple but powerful results. Statistical bandwidth sharing is a relatively
young field [16], but there are already a few papers in this area. This study
is concerned about the behavior of the flow level traffic in data network,
in which these flows are required to adjust their transmission rates to fully
exploit of their bandwidth. With this statistical sharing, some simple and
explicit performance expressions are derived. Under the perfect fair sharing
assumption, the powerful results for processor sharing (PS) are accessible
[14]. A general study is presented in [3], in which behaviors of Poisson arrival
data traffic are examined in the flow level. In the cellular networks, Borst [4]
showed that in certain cases, the flow-level performance may be evaluated
by means of a multi-class PS model, where the total service rate varies with
the total number of the user in the cellular network.

3.1 Data traffic modeling

Traffic in the packet-switched network is composed of data flows, which is
normally embodied by individual transactions of packets stream correspond-
ing to certain digital documents in the data network such as web pages,
emails or data files. In [14, 3], the distribution of document size is modeled
as one of the heavy-tailed distribution, the Pareto distribution:

Pr(size > x) ∼ (
k

x
)α, (3.1)

where the exponent α satisfies 1 < α ≤ 2 (α ≤ 1 results in a distribution with
infinite mean). This distribution implies that the majority of flows are very

18

small while only few ones are considerably large. The flow is mainly realized
by one or several TCP connection, by which it is transmitted at any rate up
to the limit imposed on the link and the system capacity. This flexibility in
the transmitting rate explains why such flows are called ’elastic’.

Characteristics of IP traffic at packet level is notoriously complicated, the
great variability in which can be manifested by the asymptotic self-similarity
during the time scale smaller than the round trip time (RTT) [3]. It makes
packet-level modeling quite complex to be analyzed. In contrast, flow mod-
eling captures the behaviors of the dynamic users’ demand. Thus, when
examining the throughput of the system, it more naturally calls for the char-
acterization at the flow level, where bandwidth sharing can be achieved by
TCP congestion control algorithm. It is basically a resource allocation prob-
lem involving many flows, links and complicated global dynamics. In this
algorithm, there are two windows to maintain the transmission work prop-
erly. One is the window that is approved by the receiver, the other is called
congestion window defined by the sender. However, they both stand for the
number of bytes the sender may transmit from either entity’s point of view.
Besides, there is a third parameters called threshold. The possible number
of sending the contents is the minimum of the two windows. The basic idea
is that each sender needs to maintain these two windows and ensures that
the transmission rate is not beyond either window. And when congestion
window is below the threshold, this window grows exponentially, otherwise,
it increases linearly.

The congestion control algorithms in TCP are implemented to exploit the
available capacity while adjusting the sending rate of competing transfers
[17]. In this sense, it allocates the bandwidth between different flows, so the
quality of service of elastic flow is rather relaxed. It has also been proved
the performance of the flow is quite dependent on the number of flows in
the link when a specific flow enters, which varies as new flows arrive and
existing flows complete their jobs. This fluctuation in flow number can be
viewed as a stochastic process. In [3], the arrival process is assumed to be
Poisson process and quite a few simulations are conducted in an isolated link
to gain insight into how TCP functions with all the flows and its resulting
performance. Experiments illuminate that if there is no restriction on the
receiver window and each involving flow has the same RTT, the behaviors
of the entire flows are comparable to the simulation of the considered fair
sharing system, where bandwidth tends to be equally shared among all the
flows in progress, at least for the large flows. It is understandable when
realizing that all the individual flows tend to experience different transmission
rates which are quite determined by the extremely fluctuating flow number
in the system upon their arrival. On the other hand, the receiving rate for

19

big flows is more stable statistically.
Let π(n) be the probability of n flows in the link at any instance and

R(s) be the expected response time of a flow of size s. Let ρ = λδ/C denote
link load, where λ is the Poisson arrival rate, δ is mean of job size and C is
the link capacity. In the fair sharing, it is observed that the number of flows
in progress is comparable to the number of customers in a M/G/1 − PS
queue, which will be introduced in the next section. Since the behaviors of
the flows in fair sharing discipline can resemble the flow behaviors achieved
by TCP, therefore, the performance of TCP connections can be modeled as
an M/G/1 − PS queue to some extent.

The fair sharing in bandwidth allows the powerful results from M/G/1−
PS queue. However, unfair sharing might be more realistic in practice be-
cause various factors adversely affect the ’fairness’. Differentiated services
mechanism is commonly implemented because geographical environments
vary a lot in cellular network and flows tend to have different RTT. Sharing
with bias always happens deliberately or not. Size-dependent scheme, for
example, is observed to achieve better performance by scheduling flow trans-
missions according to their document size [14]. However, this mechanism
preserves the performance for the majority of smaller flow and may system-
atically discriminate the larger documents. Borst [4] proposed a multi-class
Processor-Sharing model when examining the flow level performance, which
again reveals that user population is interrelated to the throughput charac-
teristics and parameter setting.

To have an insight into the flow level traffic, one needs to understand
bandwidth sharing among all the links of a network. Let the network be a
set of links l ∈ L and denote the capacity of each link l be Cl. A route r is
then a subset of links in this network. Let flows on route r arrive at rate λ
with mean size δr. Thus, the load of an individual link would be

ρl =
∑

r3l

λrδr

Cl

,

where ρl < 1. A notable conclusion is drawn in [3] that the bandwidth
shared by small flows might vary widely because of the significant fluctuation
because the number of flows in the system changes largely and frequently.
It partially explains why it does not make more sense when the operator
provides very precise promises in terms of the average throughput. However,
for long flows, generally throughput is loosely constrained by the expected
available capacity Cl(1 − ρl) [3].

Based on such a capacity constraint, we assume that the flow traffic is
perfectly fluid implying that the network bandwidth sharing is realized in-
stantaneously as the number of the concurrent flows in the system changes.

20

In this way, flow control protocol realizes the ideal fairness and then the
expected flow throughput performance is a simple function of the document
size and capacity of each link [16]. In fact, an individual flow is likely to
experience other flows coming and departing during its stay in the system.
Thus, its obtained capacity from its TCP connection in a certain time scale
is approximated to be Cl/nl, where Cl is the capacity of the link it shares
and nl concurrent flows in it. Furthermore, the arrival process of flows is
supposed to be a Poisson process and the document size can be arbitrary
distributed.

This is really a model in an ideal situation because in the real world many
factors affect the bandwidth sharing. In general, due to the highly unreli-
able wireless transmission, the throughput performance of cellular network
suffers more complexity compared with the wired data network [17]. The
capacity of cellular network may vary greatly because of the fluctuation of
the transmit power and the increase of interference. Also, different RTTs for
individual flows may make such balanced fairness even impossible to realize
in the cellular network.

However, the ideal and simple M/G/1 − PS queue still can model the
wireless network to some extent and it provides some explicit and powerful
formulae to describe the flow level performance.

3.2 Processor sharing queue

Many systems can be roughly generalized as a contention for limited resources
by its users. Sometimes, conflicts arise when users request resources simulta-
neously especially when the workloads are considerably large compared with
the resources. To avoid plunging system into a messy situation and keep
it function properly as it is designed to be, a scheduling algorithm then is
needed to allocate the resources to users properly. Basically, it is a set of rules
to decide which customer is served and for how long. From now on, when
talking about user we really specify the flows in the packet-switched cellu-
lar network to match the contents in the previous section though it is very
straightforward to generalize the user definition to other applications. So, the
period when a flow keeps in service is referred to as its quantum. A variety
of service disciplines are developed to address the conflicts which adversely
affect the system performance. Common disciplines are listed as following:
FCFC (First Come, First Served), LCFS (Last Come, First Served), RR
(Round-Robin with a fixed quantum), PS (Processor Sharing), SPT (Short-
est Processing Time first) and SRPT (Shortest Remaining Process Time
first).

21

When employing RR discipline, for example, flows take turns to get served
for a pre-fixed time period, or quantum. If the quantum is much smaller than
the total service time of a specific flow, the RR discipline evolves into the PS
case, where flows are served simultaneously as soon as they enter the system.
Denote the capacity of a server by C and the number of flows in the system
by i . Using the PS discipline, the capacity of the server is equally shared
by these i flows. The advantage of this discipline is that upon the arrival
of a specific flow, it can be served by a certain portion of C without any
waiting. The most appealing property about PS queue is that its average
properties are insensitive to the distribution of the service demands of the
customers, which makes it possible to apply it in more general situations.
Partially because of its fairness and insensitivity, this PS discipline is widely
adopted in modeling the bandwidth sharing system.

Assume that the arrival process of flows is Poisson with intensity λ and
total service intensity is with parameter µ. At an instance, assume i flows in
system, the overall departing probability per time unit is µ as long as i > 0.

The queue length distribution of the PS queue is the same as the ordinary
M/M/1-FIFO queue [19].

E[N] =
ρ

1 − ρ
E[T] =

1/µ

1 − ρ
, (3.2)

where, E[N] is the average number of customers in the queue and E[T] is
the average delay for this queue.

As said, these notable results are insensitive to the distribution the of job
size, in other words, they still hold for the M/G/1 − PS queue.

22

Chapter 4

Markov decision processes

In this chapter, we highlight the Markov Decision Process (MDP), which is
the main optimization tool for refining the system. First, continuous-time
Markov chains is brushed up. Then the fundamental ideas of MDP are
introduced along with a case study. People make decisions every day. After
that, it produces an immediate cost and generates possibilities to transfer
to some other situations. As time evolves, quite a few consequences are
collected to form the whole performance. In many ways, decisions are not
isolated: a reasonable immediate result does not promise an excellent overall
performance. The objective of Markov Decision Process (MDP) is to optimize
the performance for a Markovian model in terms of some specific metrics.

4.1 Markov chains

In this section, continuous-time Markov chains (CTMC), a special type of
Markov process, will be reviewed.

4.1.1 Continuous-time Markov chains

In CTMC, the states s ∈ S are discrete and a state transition occurs at
any random time and after that, system stays at that specific state for an
exponentially distributed time.

A stochastic process is regarded as a Markov process if the next state
(random variable) solely depends on the preceding state. In other words, the
whole information that influences the future of the process has been fully
summarized in the current state. Thus,

P [X(tn+1) = xn+1 | X(tn) = xn, . . . , X(t1) = x1]

23

= P [X(tn+1) = xn+1 | X(tn) = xn], (4.1)

which is referred to as the Markov property.
A CTMC can be described by a transition rate matrix, in which the basic

elements are defined as

qi,j = lim
∆t→0

P{Xt+∆t = j | Xt = i}
∆t

, i 6= j, (4.2)

which is the probability per time unit that the system transits from state i
to state j.

The diagonal entries in transition rate matrix are defined as qi,i = −qi,
where qi denote the total transition rate out of state i , qi =

∑

j 6=i qi,j. The
time that system spends in some state is exponentially distributed and the
mean is inversely proportional to qi as 1/qi.

Due to the exponential distribution characteristics, we have

P{Xt+∆t = i | Xt = i} = 1 − qi∆t + o(∆t), (4.3)

where o(∆t) is negligible compared with ∆t → 0. Hence, qi∆t + o(∆t)
corresponds to the probability that the system transfers to another state in
time unit ∆t. Also, we write the probability from state i to certain state j ,

P{Xt+∆t = j | Xt = i} = qi,j∆t + o(∆t), j 6= i. (4.4)

So far, a basic idea of embedded discrete time Markov Chain is intro-
duced, in which concentration is more at the transition instances. We ignore
the exact time for an individual stay in some state and more focus on the
probability by which one state transfers to another. The transition probabil-
ity of such embedded Markov chain is given as

pi,j = lim
∆t→0

P{Xt+∆t = j | Xt+∆t 6= i ,Xt = i} (4.5)

Combined with conditional probability, (4.3) and (4.4), rewrite pi,j as

pi,j = lim
∆t→0

P{Xt+∆t = j ,Xt+∆t 6= i | Xt = i}
P{Xt+∆t 6= i | Xt = i}

=

{

qi,j

qi
i 6= j

0 i = j
(4.6)

We also define the state probability in balance

πj = lim
t→∞

P{Xt = j | X0 = i}, j ∈ S

24

1

λ λ

µ µ

...........

λ

µ

0 2

λ

µ

n n+ 1

Figure 4.1: M/M/1, a typical birth-death process

This probability of process in state j is independent of state i because, as
time passes by, the information of the initial state will be “washed out”. In
the stable states, the transition frequency from state i to state j equals the
one from state j to state i, where i 6= j. Thus,

∑

i6=j

qj,iπj =
∑

i6=j

πiqi,j, (4.7)

with the normalization condition

∑

j

πj = 1.

Combined with π · Q = 0, a solution of the stationary probabilities is
derived. The results are easier for computer processing especially when state
set S is large

π = e · (Q + E)−1, (4.8)

where E is an n × n index matrix with elements 1 and e is the vector with
elements 1.

4.1.2 Birth-death process

Birth-death process is a special case of Markov chains, in which a state tran-
sition only occurs between neighboring states. Its name comes from the fact
that such process is appropriate for modeling the changes in the size of popu-
lation in Figure 4.1. In state i , the population size is i . Moreover, a transition
from state i to state i − 1 stands for a “death” whereas a transition from
state i to state i + 1 signifies a “birth” in the population.

Case study

A typical example is the M/M/1 queue depicted in Figure 4.1 in which
customers arrive according to a Poisson process with rate λ and the service

25

times are independent and identically distributed exponential random vari-
ables with mean 1/µ. Let pi,i−1 and pi,i−1 denote the transition probabilities
from current state to neighboring states, respectively (i ≥ 1).

pi,i−1 =
µ

λ + µ
pi,i+1 =

λ

λ + µ
,

which corresponds to the results in (4.6).

4.1.3 Quasi-birth-death process

A quasi-birth-death (QBD) process has two dimensions for possible transi-
tions. In Figure 4.2, the y-axis stands for the different levels and x-axis for
the various phases inside particular level. When the process is in level i1
and phase i2, we define that it is in state (i1, i2). The transition between
states can only occur within neighboring levels by the definition of the QBD
process (transitions between level 0, 1 and 2 in Figure 4.2).

A simple model, for example, is studied in [1], in which packets arrive
in the system according to a Poisson process with intensity λ and capacities
of two servers are µ1 and µ2, respectively. Let i1 denote the number of
packets in server 1 and i2 for server 2, correspondingly. If we consider the
granularity of the packets, i1 and i2 thus only increment by rate 1. If we let
x-axis represent i1 and y-axis for i2, it results in a QBD. In this case, even in
the same level of the QBD, the transition can only occur in the neighbouring
state (transitions between level i − 1, i and i + 1 in Figure 4.2).

In brief, in this specific case it has a more stringent requirement, where
state (i1, i2) can only transfer to the next state (̃i1, ĩ2), where | ĩk − ik |≤
1, k = 1.2.

4.2 Markov decision process

This section explores the fundamental ideas of Markov Decision Process
(MDP), which is widely used in the inventory management, hardware main-
tenance, communication models, etc. , as an effective systematic optimization
tool. First, a few key components in MDP are introduced briefly. Secondly,
the important concept called relative cost will be explained with a case study.
The last section features an important tool: policy iteration to optimize a
MDP. Practical implementation will also be examined with a case study. In
the remainder of the section, the main focus is on the semi-Markov deci-
sion model, where the consecutive decision instances are not identical but
random.

26

V
E

L
E

L

PHASE

2

1

0

320 1 M

i + 1

i

i − 1

Figure 4.2: A quasi-birth-death process

27

4.2.1 Components of MDP

A symbolical model of decision making is given in Figure 4.3. First we go
through a decision-making scenario, which features some important compo-
nents in MDP to be explained later. Suppose we observe a process at time
epoch t = t0, t1, t2 · · ·, at which the process is in state i ∈ I. These states
are discrete and can be enumerated by a nonnegative integers i = 0, 1, 2,
When process is in a specific state, multiple actions a ∈ A are available and
one of them must be chosen. Note that the actions for each individual state
are possibly different. However, in the scope of this thesis, we suppose the
available actions a ∈ A for each state are the same.

In state i, if the process chooses an action a, two major consequences
occur:

1. an immediate cost Ci(a) is generated as the product of the cost rate
Ri(a) and the average accumulating time 1/qi(a)

2. process evolves to a new state j according to a transition probability
pi,j(a).

Basically, Ri(a), 1/qi and pi,j(a) are the functions of the current state i and
the chosen action a. In practice, we assume that before taking any actions,
the process has the necessary information to select a specific a ∈ A including
the immediate cost Ci(a) and pi,j(a). In order to choose actions in all states
for the process, a policy α is needed. In this way, a policy is a rule to
select the action in each state. In the scope of the thesis, the focus is on an
important subset of policies called stationary policies, where a specific action
is determined when a process is in a specific state i. A notable fact is that if
a stationary policy α is implemented, the state sequence Xt forms a Markov
chain with the transition probabilities pi,j(αi) that is determined by such a
policy. We assume the process is time-homogeneous meaning that as long as
the process selects the action a in state i, Ci(a) and pi,j(a) keep unchanged
even if the decision times vary.

In brief, several components have been introduced in action taking sce-
nario:

1. policy for choosing actions α

2. a set of system states i ∈ I

3. a set of available actions a ∈ A

4. a set of immediate cost rate Ri(a) and average accumulating time 1/qi

dependent on the state and the action

28

ACTION

PRESENT DECISION
EPOCH

NEXT DECISION
EPOCH

ACTION

PRESENT NEXT
STATESTATE

COST COST

Figure 4.3: Diagram of a Markov decision problem

5. a set of transition probabilities dependent on state and action pi,j(a)

As mentioned, once a stationary policy α is settled, an action in each
state i is fixed correspondingly based on the given policy. Thus, policy α can
be regarded as a mapping from the state set I to the action set A. Let αi

denote the action taken in state i under policy α.
As time evolves, one can collect a series of costs from each occupied states.

The problem to minimize the overall cost in this context can be regarded as
a Markov decision problem.

4.2.2 Howard’s equation

In this section, relative cost will be introduced along with a case study. The
transition rates qi,j = pi,jqi of a Markov decision problem can be fixed if a
stationary policy α is applied. Afterwards, πi can be easily derived from qi,j

with the fact that
∑

i πi = 1 in a similar way introduced in the section 4.1 .
An average cost rate of a given policy α can be viewed as the expectation

of the immediate cost rate like R̄(α) =
∑

i πi(α)Ri(αi), where πi(α) is the
stationary probability when system occupies state i and Ri(αi) is the imme-
diate cost rate when process takes action αi in a specific state under policy
α.

We may first introduce relative value and Howard’s equation, which facil-
itates the later discussion. Denote Vn(i, α) as the expected cumulative cost
over n steps meaning the sum of the consequential costs over n steps when
the process starts from state i and always takes decisions by policy α. Figure

29

4.4 illustrates that the cost increments tend to converge to the average cost
as decision epochs evolves in time [19]. In fact, under a given α, starting from
different state i usually generates the same Vn(i, α) when n→∞. However,
in order to evaluate the difference among these different consequences caused
by various starting states, a comparison is made between Vn(i, α) and the
average culmulative cost. This is the motivation of the relative value vi and
it reports the evaluation among different starting points under a given α:

vi(α) = lim
n→∞

(Vn(i, α) − τn(i, α) · R̄(α)),

where τn(i, α) is the culmulative time from state i under policy α.
Generally, relative value vi(α) of state i tells us under policy α how much

greater cost is expected if the process begins from state i rather than from
equilibrium.

Numerically, it might be difficult to realize n →∞. Howard’s equation
describes the relative cost in a slightly different way. The five key components
listed in the previous section are included in such equation and their relevance
is revealed somehow.

vi(α) =
1

qi

· Ri(αi) −
1

qi

· R̄(α) +
∑

j 6=i

pi,j(αi)vj(α) ∀i ∈ I, (4.9)

where pi,j = qi,j/qi. The term 1
qi
· Ri(a) − 1

qi
· R̄(α) explicitly explains under

policy α compared with the average cost, how much greater cost is consumed
if process transfers to state i when we only take account of the immediate
cost of state i. The latter term

∑

j 6=i pi,j(a)vj(α) stands for the weighted
sum of the relative costs for each possibly states j as the next state for the
process.

This notable equation paves the way for optimizing a process numerically
because actions in each state thus can be intentionally chosen among all the
options by examining the expected cost for each possible states.

Case study

Before discussing the powerful optimization tool: policy iteration, we first
look into a case study of a typical MDP.

Let’s first study the M/M/1 queue depicted in Figure 4.1. The parame-
ters are the same as those in the case study in section 4.1. First, we clarify
the key components to establish the Howard’s equation. Let i, a nonnegative
integer, denote the number of customers in this M/M/1 queue. As to the im-
mediate cost Ci(a), we refer to the cumulative time in the queue. Intuitively,

30

0 1 2 3 4 5 n−1 n

(α)C

tttttttt

1/n Vn (i,)α

Figure 4.4: Terms in cumulative cost compared with
the average cost

the larger user number in the queue, the higher rate the time is accumu-
lated. So, basically the immediate cost rate is the number of customers in
the queue. Another factor that influence the cost is the accumulating time.
It means the average time, during which the rate is collected in a specific
state. The average accumulating time is 1/(λ + µ) except in state 0 because
in state 0 the cost only accumulates after the first arrival, which results in
an average collecting time to be 1/λ.

From the knowledge about the M/M/1 queue, when in equilibrium, the
mean queue length or the cost rate is

g = E[N] =
ρ

1 − ρ
=

λ

µ − λ
,

where ρ = λ/µ is the load of the system.
When the process is in a given state i, there are always two options for

actions, which is simply transferring to either new state i + 1 or i− 1 in this
situation. As explained in the case study in section 4.1, the probabilities for
such transitions are

pi,i−1 =
µ

λ + µ
pi,i+1 =

λ

λ + µ
,

for i ≥ 1. In state 0, p0,1 = 1.
Thus, Howard’s equation for state 0 is

v0 = −g

λ
+ 1 · v1. (4.10)

31

Similarly, for state i where i > 0, Howard’s equations are

vi =
i

λ + µ
− g

λ + µ
+

λ

λ + µ
vi+1 +

µ

λ + µ
vi−1 ∀i > 0. (4.11)

Now, a follow-up study is carried out to derive the relative cost for an
additional user in an M/M/1 queue. In (4.11), multiplying by λ + µ in both
sides of the equal sign results in

i − ρ

1 − ρ
+ λ(vi+1 − vi) + µ(vi−1 − vi) = 0.

Let un = µvn and rewrite the above equation as

i − ρ

1 − ρ
+ ρ(ui+1 − ui) + (ui−1 − ui) = 0

ρ(ui+1 − ui −
i + 1

1 − ρ
) = ui − ui−1 −

i

1 − ρ
.

Thus,

ui+1 − ui =
i + 1

1 − ρ
, (4.12)

which implies that

vi+1 − vi =
i + 1

µ − λ
∀i > 0. (4.13)

Furthermore, for state 0, (4.10) implies

v1 − v0 =
λ

µ − λ
· 1

λ
,

which also satisfies (4.13).
Finally, we come to

vi+1 − vi =
i + 1

µ − λ
∀i ≥ 0, (4.14)

the marginal cost of an additional customer. By definition of relative cost,
vi − vj tells how much more it costs if the process starts from state i rather
than j. Accordingly, marginal cost informs us the cost resulting from the ar-
rival of an additional customer, which is manifested by the difference between
vi+1 and vi.

32

4.2.3 Policy iteration

A few tools are proposed to optimize the process performance according to
the MDP, they are:

• Policy iteration,

• Value iteration,

• Linear programming.

In the remainder of the section, after a brief introduction of policy iteration,
we examine how to implement it in a case study.

The key element of the policy iteration is a basic policy α, on which re-
finement is carried out through iteration. Howard’s equations are established
in each state that the studied process can experience. By setting the relative
cost for a reference state be zero, we can solve the relative cost of each state
vi(α) and the average cost rate R̄(α) under the given policy α.

As claimed in the previous section, when the process is in state i, various
actions a can be taken and probably cause distinct immediate costs Ci(a) and
probabilities pi,j(a) to next possible states. The basic idea of policy iteration
is to test any possible action a one by one and choose the action with the
least expected cost. During this process, we employ the average cost rate
R̄(α) and the relative costs for next possible states vj(α) directly from the
previous policy. The expression of such expected cost is given below. Note
that all the relative costs and the average cost in evaluating the expected
cost are calculated under the previous policy α. Such ’best action’ test shall
be implemented in each state i, thus an iterated policy α

′

is composed by all
these newly selected actions with the least expected costs in each state.

In brief, policy iteration consists of the following three steps:

1. Choose a basic policy α as a starting-point.

2. For the given policy α, solve a set of relative value equations vi(α) =
1
qi

Ri(a) − 1
qi

R̄(α) +
∑

j 6=i pi,j(a)vj(α) i ∈ I along with R̄(α) by setting
the relative cost of a reference state i be zero.

3. For each state i ∈ I, find an action a among ones available in the state
i to fulfill the least expected value while keeping the previous R̄(α) and
vi(α) unchanged. In mathematical form,

α
′

i = arg min
a∈A

{ 1

qi

Ri(a) − 1

qi

R̄(α) +
∑

j 6=i

pi,j(a)vj(α)}, (4.15)

33

λ

µ1

µ2

Figure 4.5: Basic routing problem

where α
′

i stands for the best action that is selected in state i based on the
given policy α. In theory, α

′

i for the new policy α
′

can never be worse than
the αi for the given basic policy α because the latter policy consists of all
the ’best actions’ that are selected intentionally based on the previous pol-
icy. By choosing the optimal action in each state we obtain a policy that is
more likely to minimize the cost. Iteration goes on until the average revenue
of the improved policy equals the one of the previous policy. And the final
improved policy is regarded as optimal policy α∗.

Case study

Now, we apply the policy iteration in the problem depicted in Figure 4.5
as a case study. In fact, it is discussed in [1] with deliberation.

Now in Figure 4.5, packets arrive according to a Poisson process with
intensity λ (packets/s) and they can either be routed to node 1 or node 2
whose capacities are denoted by µ1 and µ2 respectively, where µ1 > µ2. Let
α0 denote the static randomized policy, in which λ is routed to node 1 with
probability p and to node 2 with probability 1−p. This also implies that the
whole system can be modeled by two separate M/M/1 queues with arrival
intensities λ1 = pλ, λ2 = (1 − p)λ, respectively. Now, one can denote the
action set A = {1, 2}, meaning routing packet to node 1 or 2 and try to
derive a stationary policy based on α0.

Let in denote the user number in node n, n = 1, 2. If i1 stands for ’phase’
and i2 for ’level’ in QBD on page 27, the user number in the nodes can thus
be regarded as a QBD in section 4.1.3.

Let î denote (i1, i2). When the process is in each state î and upon packets
arriving, there are only two available actions that can be taken: route packets
either to node 1 or 2. Now we are trying to implement the policy iteration to

34

form a better policy α
′

based on α0. When process is in state î the immediate
cost Cî(a) is the accumulating rate multiple the average staying time in this
state. The average cost C̄î(α) is derived as the weighted sum of the two
separate average costs from the policy α0.

In this specific case, Cî(a) actually does not even necessarily involve the
action that probably varies from time to time. It solely depends on the state
î itself, in other words, Cî(a) remains the same to both actions that belong
to the same state. Thus, the first two terms in (4.15) are the same for either
action and the only difference lies in the relative cost.

We now attempt both two actions a ∈ {1, 2} in turn and find the very
one with a less expected cost. Suppose under a static policy, the process is
in state (i1, i2), the relative value of this state is v(i1, i2) = v1(i1) + v2(i− 2)
because in static policy, we can model the two stations separately. Therefore,
the relative costs for each action are v1(i1 + 1) + v2(i2) for routing the flow
to BS1 and v1(i1) + v2(i2 + 1) for BS2. Because the immediate cost and the
average cost are fixed for a specific state in (4.15), now the only element
that affects the expected value is the relative value of a possible next state,
namely, (i1 + 1, i2) or (i1, i2 + 1). A comparison of the expected values like
v1(i1 +1)+v2(i2)− [v1(i1)+v2(i2 +1)] evolves to v1(i1 +1)−v1(i1)− [v2(i2 +
1) − v2(i2)]. Thus, a comparison between two marginal marginal costs is
sufficient to finally decide the ’best action’.

According to (4.14), one can write the marginal cost for either node i with
arriving intensity λi. A comparison is conducted between these two marginal
costs as below:

t(i1, i2) =
i1 + 1

µ1 − λ1
− i2 + 1

µ2 − λ2
, (4.16)

where the former term is the marginal cost for node 1 and latter for node 2.
If t(i1, i2) is negative, it shows that the expected cost of routing a packet to
node 1 in state (i1, i2) is smaller than routing to node 2. However, t(i1, i2)
being zero means in state (i1, i2), routing a packet to either node results in
the same expected cost. This is actually how ’best action’ a

′

is selected.
When applying it in each state of the process, one can find a curve at which
the expected costs are the same for both nodes. We thus construct the new
policy α

′

, which can be completely characterized by such a curve

l(i1) =
µ2 − λ2

µ1 − λ1

i1 +
µ2 − λ2

µ1 − λ1

− 1. (4.17)

Thus, when the process is in the states that are above the curve, it is better
to route packets to node 1. On the other hand, it costs less in the long run
to route packets to node 2 when the process is in the states below the curve.

35

Chapter 5

Problem formulation

In this chapter, the research problem is formulated in detail, and it involves
almost all the knowledge that has been covered in the previous chapters.
Assumptions and notations that are used in the study will also be introduced
generally. Some papers have already been addressed the related problems so
far. In [1], an optimal routing problem in a connectionless packet-switched
network is studied. The metric of optimization is the mean packet delay,
which is also the mean length of queue according to Little’s result.

5.1 Assumptions and notations

In the thesis, the focus is on the packet-switched cellular networks, especially
the air access subsystem. A few hypotheses and notations are here claimed
to facilitate the problem formulation. For simplicity, only two adjacent cells
are considered in the scope of the thesis. Between these two neighboring
base stations, there is an overlapping area in between, which is depicted in
Figure 5.1.a. We can simply split the entire area into three parts. Let region
3 denote the overlapping area and 1 abd 2 stand for the left or the right part,
respectively.

When Mobile Stations (MS) are in regionn, n = 1, 2, the data flows will
be directly routed to the BSn, where n = 1, 2. In this case, these flows are
called dedicated flows. Sometimes MSs may move to region 3 thus the flows
generated within this region could be routed either to BS1 or BS2, meaning
that data services might be provided by either of the BSs. Consequently, the
flows are regarded as flexible flows.

Assume the flow arrival processes to be Poisson processes of rate λi for
the dedicated streams in BSn, n = 1, 2, and of rate ν for the flexible stream.
Without loss of generality, we assume that λ1 ≥ λ2. We also suppose the

36

BS1

BS2

λ1

λ2

µ1

µ2

νBS1 BS2

1 2 3

(a) (b)

Figure 5.1: (a) two base stations with overlapping area (b) traffic
allocation model

service times to be exponentially distributed with the parameter µi, where
i = 1, 2. Here, we specify that service time refers to the time span to transfer
the demanded bytes with the full BS capability. We also assume that each BS
works in a processor sharing (PS) manner so that all the flows in process can
share the BS capacity equally. We denote the number of flows in each base
station by i1 and i2, which can be regarded as a stochastic processes. When
there are i1 flows in BS1 and i2 flows in BS2, we define that the process is in
state (i2, i2). Figure 5.1.b depicts the flow traffic that is described above.

Based on this information, we route flexible flows into appropriate BS to
decrease the average flow delay in the system on the arrival of a new flexible
flow. However, decisions can be made based on different levels of information
of this system, which most likely results in different policies. Both static and
dynamic policies are considered in the thesis. Static policies are determined
based on time independent information of the system and decisions could be
randomized according to the probability p. Dynamic policies depend on the
time dependent knowledge and in this case, it should be stationary. So for
a dynamic scheme, the action set for each state is totally the same: either
route the flexible flow to BS1 or BS2, denoted by a ∈ A = {1, 2}.

The model in Figure 5.1.b is very similar as we discussed in Figure 4.5 and
the main difference is that each node or BS now has a dedicated flow to deal
with, which leads to the change in the arrival rate. However, it is still QBD
as discussed in section 4.1.3 if we think i1 as phase and i2 as level on page 26
so that we can enumerate states by the flow number in either BS like state
(i1, i2). Thus, most states have four states as the next possible destination to
transition, all of which are bounded to the same level or phase. State (i1, i2)
denoted by a circle in Figure 5.2, for example, can possibly transit to the
states that are restricted to (̃i1, ĩ2), where | ĩn − in |≤ 1, n = 1, 2. However,
states (i1, i2), where i1 = 0 or i2 = 0, differ a little bit from the interior states

37

(1, 2)i i

λ2
µ1

µ2
λ1+ν

λ2
µ1

µ2
λ1+ν

λ2+ν

λ1

λ2

µ2 µ1

λ1µ1

µ2

λ1+ν

λ2+ν

c 1

c 2

i1

i2

λ1+ν
λ2

0

1

10

(1, 2)c c

Figure 5.2: The flow diagram

in the transition degree situation. Inevitably, no departure could ever happen
when there is no flow in a certain BS, which makes only three possible states
to transfer for these kinds of states. Two typical examples are illustrated in
Figure 5.2. One represents a state where i1 = 0 and the other one is for a
state in which i2 = 0. Note that the actions in each state depicted in the
Figure 5.2 is assumed to have been already selected.

In theory, since the bandwidth can be shared by all the flows statistically,
a BS can hold almost an infinite number of flows if the network combats
interference effectively and there is no lower bound of the transmission rate.
Nevertheless, to study the model numerically we need to truncate the flow
number to approximate the infinite situation. The chosen number taken into
account for truncation will be discussed in chapter 8. Now, we just denote
the number for truncation to be cn for BSn, where n = 1, 2 so that the state
space is given as S = {(i1, i2) | i1 ≤ c1, i2 ≤ c2}. As discussed in the previous
chapter, as long as a stationary policy α is fixed, the sequence of states Xt

forms a Markov chain with probabilities pi,j, see section 4.2.1 on page 28.
Because we denote the state in the problem with two arguments, we denote

38

1 2

0

c1

1

2 c10 1
0 1 2 ... c2 0,1,2... c2 0,1,2,......c2 0 1 2 ... c2 0 1 2.. c2

1

3

0 1 2 ... c2 0,1,2... c2 0,1,2,......c2 0 1 2 ... c2

4

(i , i)

2

Figure 5.3: Building transition probability matrix

39

the state (i1, i2) by î. Correspondingly, the transition probabilities pi,j evolve
into pî. In Figure 5.3, We may look these state transitions in the form of a
transition probability matrix.

The larger numbers from 0 to c1 above each square represent the number
of flows in BS1 and the small number from 0 to c2 over an individual square
for the number of flows in BS2. Thus, each state can be viewed as a circle in
Figure 5.3. Take the same state (i1, i2) as in Figure 5.2, for example, its next
possible states are restricted to states (̃i1, ĩ2), where | ĩn − in |≤ 1, n = 1, 2.
And the action in this state is still assumed to route the flexible flow to the
BS2. We enumerate the four possible transitions with their probabilities to
make it clearer,

1. Arrival to BS1 (i1, i2) → (i1 + 1, i2) with probability λ1

λ1+λ2+µ1+µ2+ν

2. Arrival to BS2 (i1, i2) → (i1, i2 + 1) with probability λ2+ν
λ1+λ2+µ1+µ2+ν

3. Departure from BS1 (i1, i2) → (i1−1, i2) with probability µ1

λ1+λ2+µ1+µ2+ν

4. Departure from BS2 (i1, i2) → (i1, i2−1) with probability µ2

λ1+λ2+µ1+µ2+ν
.

5.2 General method

In Figure 5.1.a, the question is what is the appropriate scheme to route
the flexible flow whenever there is one entering the system, provided all the
information is known as introduced before. In this context, scheme shares
the same meaning with the policy, which is discussed in the previous chapter.
The goal of the proposed scheme is to minimize the flow delay for the entire
system, such that delay problem can be alleviated by an optimized load
balancing scheme.

Hajek [6] has studied the general case (µ1 ≥ µ2) and also proved that in
the two station context, a switch-over strategy is optimal. It is defined by
a curve l(i1), where i1 is the user number in station 1. Such a policy can
minimize an average cost in the long run, such as blocking probability [13]
and mean delay [1]. Actually, (4.17), a scheme from such two station problem
in the previous chapter provides a convincing verification of the “switch-over
curve” argument.

In [13], the same model is examined at the call level. A robust and sub-
optimal scheme is proposed by ignoring the flexible flow generated in the
overlapping area. We shall explore whether it still works effectively at the
flow level so that it could be proposed as an efficient load balancing scheme
to significantly mitigate the flow delay.

40

MDP
ITERATION

QUEUE
M/ M / 1− PS MDP

ITERATION

MDP
ITERATION

SCHEME

PROPOSED

MODEL STATIC
SCHEME

DYNAMIC
SCHEME

DYNAMIC
SCHEME

SAME TO
THE OLD
SCHEME

OPTIMAL
SCHEME

NO

YES

Figure 5.4: General method to address problem in the study
model

Up to now, we have actually explored almost all the knowledge and in-
formation to address such a problem in the study model. We go through the
general method depicted in Figure 5.4 to solve the problem, which is served
as an outline of the coming chapters.

In the beginning of this chapter, we have already introduced the assump-
tions and notations to model a packet-switched network. Next, with the
knowledge of the M/M/1−PS queue, we shall derive an optimized random-
ized scheme which is denoted by α0. It serves as a basis of the further scheme
optimization to obtain a dynamic (stationary) scheme αi as i iterations are
implemented. Policy iteration continues until the iterated policy αi+1 is to-
tally the same as the original policy αi. Thus, we define the iterated policy
αi+1 as the optimal scheme α∗. However, when we take account of the easy
accessibility, it might be a little bit frustrating because probably a few steps
are required before deriving it. In reality, when the number of the system
states is considerably large, such workload problem exaggerates inevitably
and the approach of α∗ tends to be arduous. This is the motivation that
we are trying to propose a suboptimal scheme which can be achieved within
limited steps.

41

Chapter 6

Symmetric case study

This chapter studies the delay performance at flow level in packet-switched
cellular networks described in chapter 2. The problem has already been
formulated in the previous chapter. Furthermore, in this chapter, capacities
of both base stations are assumed to be equal, denoted by µ (µ1 = µ2). The
asymmetric case will be discussed in the next chapter. As described in the
general method in Figure 5.4, we first study Optimized Random Routing
(ORR), a static scheme as our starting point for the policy optimization.
Then for first policy iteration (FPI) and its variation FPI∗, we more or less
mimic the procedures described in section 4.2.3 on page 34. For the later
policies, we use policy iteration in MDP to achieve the smaller average delay
of the model, whose general ideas are introduced in this chapter. However,
the numerical results will be given and commented in chapter 8.

6.1 Static policy

In this section we mainly consider Optimized Random Routing (ORR) policy,
a basic static policy.

Optimized Random Routing (ORR) is a basic static policy and its main
idea is to divide the flexible flows into the two base stations as evenly as
possible.

A random routing policy is here described by probabilities p, 1 − p that
are mentioned in Figure 5.1. Denote p1 = p to be the probability by which
the flexible flow is routed to BS1 and similarly let p2 = 1 − p denote the
probability related to BS2.

Under a static policy, the system can be modeled as two separate M/M/1−

42

PS queues. Thus, the mean delay for an M/M/1 − PS queue, is

E[Di] =
1

µ − λi − piν
. (6.1)

The mean delay of the model is actually the weighted sum of these two
separate queues’ delay as

E [D] =
2

∑

i=1

λi + piν

λ1 + λ2 + ν
· 1

µ − λi − piν
(6.2)

In the remainder of this section, write E[D] as a function of p, the prob-
ability to route the flexible flow to BS1.

f (p) =
λ1 + pν

λ1 + λ2 + ν
· 1

µ − λ1 − pν
+

λ2 + (1 − p)ν

λ1 + λ2 + ν
· 1

µ − λ2 − (1 − p)ν
(6.3)

To solve the optimal p∗ ∈ [0, 1] which minimizes (6.3) is a mathematical
routine under the assumptions claimed before.

Write the first derivative of f(p) as

df(p)

dp
=

ν(µ − λ1 − pν) + ν(λ1 + pν)

(λ1 + λ2 + ν)(µ − λ1 − pν)2

− ν(µ − λ2 − (1 − p)ν) + ν(λ2 + (1 − p)ν)

(λ1 + λ2 + ν)(µ − λ2 − (1 − p)ν)2
(6.4)

Rewrite the equation above and try to find the p∗ by setting (6.4) to zero,

νµ

λ1 + λ2 + ν
[

1

(µ − λ1 − pν)2
− 1

(µ − λ2 − (1 − p)ν)2
] = 0 (6.5)

The optimal probability p∗ turns out to be

p∗ =

{

1
2
− λ1−λ2

2ν
, ν ≥ λ1 − λ2, LB

0, ν < λ1 − λ2, NLB
(6.6)

which shares the same form as that in [13].
The condition ν ≥ λ1 − λ2 in (7.6) is defined as load balance (LB) con-

dition. Literally, with LB, the system is always able to find a certain p to
equalize the entire flow traffic in the model by allocating the flexible stream
by probability p to BS1 and the rest to BS2. On the other hand, in not load
balance (NLB) condition, system is not capable to balance the loads com-
pletely and from (7.6) all the flexible flows are routed to the BS2, the one

43

with the less dedicated flow. Apparently, λ2 + ν < λ1 in NLB, which means
that the sum of the BS2’s dedicated flow and the total flexible flow intensities
is still less than the intensity of the BS1’s dedicated flow. In this sense, it is
understandable that BS1 only needs to deal with its own dedicated flow and
the system forwards all the flexible flows to BS2. In the remainder of this
chapter, both LB and NLB cases will be considered.

6.2 Dynamic policies

Now we try to design a scheme based on the time dependent information by
policy iteration after introducing a fundamental and robust dynamic policy.

6.2.1 Join the shortest queue scheme

Join the shortest queue (JSQ) or shortest discipline has been well studied
for a long time [20, 6]. Winston [20] considered the symmetric case, where
servers have the same capacities (µ1 = µ2). Hajek [6] covered the general
case (µ1 ≥ µ2) and proved that a switch-over strategy is optimal for this two
stations problems. In the context of a basic dynamic load balancing model,
JSQ can be described as:

• When a user arrives, it is assigned to a server with the minimum queue
length. If multiple servers achieve the minimum length, the user is
assigned to one of them randomly with equal probability.

The switch-over curve in the context of model in Figure 5.1.a is defined by

l(i1) = i1, (6.7)

where i1 is the number of flows in BS1.
Hajek [6] discovered that an optimal policy can always be characterized

by a switch-over curve. Therefore, the object for designing a load balancing
scheme can embody such curves derived by policy iterations mathematically
or numerically.

6.2.2 First policy iteration

In this section, we will derive the scheme after first policy iteration (FPI)
based on ORR.

First, we begin with an M/M/1 − PS queue with arrival rate λ and
service rate µ as described in Figure 4.1.

44

As discussed in the case study in section 4.2.2, the marginal cost of the
additional user is

vi+1(α) − vi(α) =
i + 1

µ − λ
∀i ≥ 0.

Now, come back to the whole model given in Figure 5.1. It is very similar
to the model that is discussed in the case study in section 4.2.3 on page 34.
The only difference lies in the existence of the dedicated flow for each base
station in the research model.

Based on the ORR policy, the entire system can be modeled by two
separate M/M/1 queues, which is characterized by arrival intensities λ1+p1ν,
λ2 +p2ν and capacity µ. To form a better policy, when process is in state i, it
needs to choose an action that is associated with less expected cost according
to (4.15):

α
′

i = arg min
a∈A

{ 1

qi

Ri(a) − 1

qi

R̄(α) +
∑

j 6=i

pi,j(a)vj(α)}.

The immediate cost 1
qi

Ri(a) here is the product of accumulating rate and the
average staying time in state i, which is the same for a particular state no
matter what action is finally taken. The average cost C̄i(α) can be derived
as the weighted sum of the two separate average costs under ORR. So, the
selecting criterion is again the relative costs of the next possible states.

Thus, it is very handy to directly utilize the result derived in (4.16).
However, in the current case, the arrival intensities for either BS need to
change a little bit according to the previous static policy, ORR.

t(i1, i2) =
i1 + 1

µ − λ1 − p1ν
− i2 + 1

µ − λ2 − p2ν
. (6.8)

In a given state î = (i1, i2), if t(i1, i2) < 0, it reflects that in the long run
less cost can be achieved to route the flexible flow to BS1. Otherwise, to BS2
is the better alternative.

Similarly, by setting (6.8) to zero, a switch-over curve l(i1) is easy to
derive:

l(i1) =
µ − λ2 − p2ν

µ − λ1 − p1ν
i1 +

µ − λ2 − p2ν

µ − λ1 − p1ν
− 1. (6.9)

Because the FPI is based on the ORR, a more explicit expression of this
switch-over curve is easily obtainable if the optimal probability p∗ is applied
in (6.9). Corresponding to the two cases for p∗ , we also have two sets of

45

switch-over curves in LB and NLB. In the LB case, p∗ = 1
2
− λ1−λ2

2ν
. Thus,

the switch-over curve is:
µ − λ2 − p2ν

µ − λ1 − p1ν
= 1.

We now rewrite the switch-over curve for LB as

l(i1) = i1, (6.10)

which exactly turns out to be JSQ. Winston [20] has proved that it is the
optimal policy for the symmetric case (λ1 = λ2).

In the NLB case, p∗ = 0, therefore,

µ − λ2 − (1 − p∗)ν

µ − λ1 − p∗ν
=

µ − λ2 − ν

µ − λ1
> 1.

The switch-over curve in NLB case turns out to be

µ − λ2 − ν

µ − λ1
i1 +

µ − λ2 − ν

µ − λ1
− 1 (6.11)

In conclusion,

l(i1) =

{

i1, ν ≥ λ1 − λ2 LB
µ−λ2−ν

µ−λ1

i1 + µ−λ2−ν
µ−λ1

− 1 ν < λ1 − λ2 NLB
(6.12)

which completely characterizes the FPI based on ORR.

6.2.3 FPI∗, a variation of FPI

From [13], a study in the same model at the call level, a notable observation
is that when totally ignoring the flexible flows in the model, the resulting
FPI denoted by FPI∗ can much more closely resemble the optimal policy.
Similar to such operation in [13], the section tries to derive the FPI∗ at the
flow level by ignoring the flexible flows.

In FPI∗ case, the only criteria to select an action is the variant marginal
cost like

in + 1

µ − λn

for BSn, where n = 1, 2. The flexible flows are completely ignored.
Thus, the comparison of two expected costs or two variant marginal costs

in this context turns out to be

t(i1, i2) =
i1 + 1

µ − λ1
− i2 + 1

µ − λ2
(6.13)

46

Still by setting (6.13) to zero, the switch-over curve is given by:

l(i1) =
µ − λ2

µ − λ1
i1 +

µ − λ2

µ − λ1
− 1 (6.14)

Only if the arriving rates of the two dedicated flows are the same (λ1 =
λ2), the switch-over curve evolves into

l(i1) = i1.

In FPI∗, we fully ignore the flexible stream. Another option is to admit
the new generated flexible flows with a probability p into the system. Such,
there are still quite a few variations of FPI which are most likely to have
different delay performance. Before we look into them in Chapter 9, we
first introduce two parameters to facilitate the later discussion. Let f be
the fraction of the flexible flow to be taken into consideration and p be
the probability by which the flexible flow is routed to BS1. Each different
combination of f and p forms a unique FPI variation. The delay performances
of all these FPI variations are reported in Chapter 8.

6.2.4 Further policy iterations

In the previous section, we derived the switch-over curves that can fully
characterize FPI and FPI∗. In this section, the focus is on the further it-
erations and the derivation of the optimal policy α∗. However the further
policy iterations are based on the dynamic policy rather than static, the
action taken in each state thus can not be randomized selecting by some
probability any more. Consequently, the average delay is not so straightfor-
ward as a weighted sum of the two M/M/1 queues and the relative cost of a
specific state î cannot hold like that in (4.14) since its separate style model
even breaks. Therefore, we need to think the numbers of flows in both base
stations as a whole when considering the cost rate of each state. Indeed, it is
more practical to solve such a problem numerically. This section is more or
less served as an introduction about practical methods used in deriving the
further iterations. Results of numerical experiments are implemented and
given in chapter 8.

The basic ideas of deriving an iterated policy are the same as introduced
in the previous chapter. We start with an original policy α that prescribes
the actions in each state like a = αi, ∀i ∈ I. Correspondingly, the state
sequence is a Markov chain by transition probabilities pî,ĵ. The iterated

policy is composed by all the actions a
′

= α
′

i, ∀i ∈ I re-selected according to

47

the equation:

α
′

i = arg min
a∈A

{ 1

qi

Ri(a) − 1

qi

R̄(α) +
∑

j 6=i

pi,j(a)vj(α)}.

For the convenience of the calculation, we often choose a reference state
and set its relative cost zero. The number of unknown relative costs thus
decreases by one likewise, however, the average cost C̄(α) is also an unknown
parameter that is solely dependent on the policy α. In principle, by building
up Howard’s equations in all the states, we can solve the relative values and
average cost of the system under a given policy so as to select less costly
action a ∈ A in each state and construct an optimized policy α

′

.
When implementing Howard’s equation numerically, we truncate the in-

finite number of flows into a specific finite number cn, n = 1, 2 for feasible
operation. Then, we split the states in Figure 5.2 into several parts according
to their different transition degrees, reflecting the possible number of their
next destinations, namely,

• 0 < i < c, 0 < j < c

• i = 0, 0 < j < c

• j = 0, 0 < i < c

• i = 0, j = 0

• i = c, 0 < j < c

• j = c, 0 < j < c

• i = c, j = c

• i = 0, j = c

• i = c, j = 0.

When the process is in state (0, 0), for example, the only possible moves are
to state (1, 0) and (0, 1) in Figure 5.2 and no departure could ever happen in
this state.

Howard’s equation in each state is built up according to (4.9) under a
given policy α. An interior state (i1, i2), for example, has four possible states
for next transition. The average period until next event (departure or arrival)
is 1/(λ1 + λ2 + ν + 2µ). However, in a dynamic policy, the cost rate is
composed by the number of flows in both BSs as a whole. So, in each state

48

(i1, i2), it turns out to be i1 + i2. Now, for simplicity, denote the relative
cost in state i1, i2 by v(i1, i2). And assume that the new one still keeps the
original policy α during the procedures of establishing Howard’s equations
and solving relative costs. For a certain state (i1, i2), we assume that the
flexible flow is entirely routed to BS1. Therefore, Howard’s equation in this
state is given:

v(i, j) =
i + j

λ1 + λ2 + ν + 2µ
− g

λ1 + λ2 + ν + 2µ

+
λ1 + ν

λ1 + λ2 + ν + 2µ
v(i + 1, j)

+
λ2

λ1 + λ2 + ν + 2µ
v(i, j + 1)

+
µ

λ1 + λ2 + ν + 2µ
v(i − 1, j)

+
µ

λ1 + λ2 + ν + 2µ
v(i, j − 1). (6.15)

The transition probabilities for transferring to state v(i + 1, j) or v(i, j + 1)
change correspondingly if the flexible flow is routed to BS2.

Like in section 4.2.2, the average time until the next event in different
parts (as suggested in the previous page) varies accordingly. State (0, 0),
for example, its mean period until next happening is only 1/(λ1 + λ2 + ν).
The average staying time also changes in the boundary states compared with
those in the interior states.

As said, we truncate the number of flowsin either BS by cn, n = 1, 2 to
approximate the infinite number of flows in the system. However, some tricks
are needed to deal with the adverse consequences from the truncation. When
constructing Howard’s equation for states in the upper or right bounder, in
theory, all the relative costs of possible next states should be involved to
build up Howard’s equation even though some outer states are excluded in
the consideration because of the truncation.

We assume that the relative costs increase linearly. In such a case, op-
eration is able to carry on with the exemption of the states (i1, i2), where
in > c, n = 1, 2. Take state (c, c), where c = c1 = c2 in Figure 5.2 for an
example, we now write the modified Howard’s equation for boundary states:

v(i, j) =
c + c

λ1 + λ2 + ν + 2µ
− g

λ1 + λ2 + ν + 2µ

+
λ1 + ν

λ1 + λ2 + ν + 2µ
{v(c, c) +

1

c
[v(c, c) − v(c, 0)]}

49

+
λ2

λ1 + λ2 + ν + 2µ
{v(c, c) +

1

c
[v(c, c) − v(0, c)]}

+
µ

λ1 + λ2 + ν + 2µ
v(i − 1, j)

+
µ

λ1 + λ2 + ν + 2µ
v(i, j − 1). (6.16)

With (6.15) and (6.16), Howard’s equations are built up in each state
based on the given policy α. For calculation convenience, state (0, 0) is
regarded as the reference state whose relative cost is thus set to be zero.
Thus, all the other relative costs v(i1, i2) along with the average queue length
can be solved from all Howard’s equations afterwards.

Deriving the optimal policy needs to repeat the policy iteration for several
time. However, the basic ideas of the iterations are the same as introduced
in section 6.2.3. The immediate cost for a given state Cî(α) keeps the same
for either action a ∈ {1, 2}. Furthermore, the average cost rate is constant
for a fixed policy α. Thus it is sufficient to compare the relative costs for
the next states to derive the action a

′

for the iterated policy α
′

. The action
which leads to the state with less expected cost is picked according to the
policy iteration algorithm on page 34 and an iterated policy α

′

is formed by
repeating this action selection in every state.

This iteration continues until nothing changes, indicating the derivation
of the optimal policy α∗ eventually.

50

Chapter 7

Asymmetric case study

In the previous chapter, we assumed that the base stations have the same
capacities. However, capacities of the base stations in one system are more
likely to vary due to the different manufactures and settings. In this chapter,
we discuss the delay performance when two BSs have different capacities.
Without loss of generality, µ1 > µ2. First, Optimized Random Routing
(ORR) scheme is studied which features the optimal probability p∗ in the
new context. Secondly, a basic dynamic load balancing scheme Least Ratio
Routing (LRR) is introduced briefly and we deduce FPI and FPI∗ as in the
symmetric case.

7.1 Static policy

In a randomized manner, the system can be modeled as two separate M/M/1
queues when considering the static allocation scheme. We are now trying to
find out the optimal probability p∗ to minimize the mean queue length. Let
p1 = p denote the probability by which the flexible flow is routed to BS1 and
p2 = 1 − p to BS2. The mean delays of the system is the weighted sum of
the two separate M/M/1 queues’ delay:

E[D] =
2

∑

i=1

λi + piν

λ1 + λ2 + ν
· 1

µi − λi − piν
. (7.1)

As a function of p, the mean delay reads as:

f(p) =
λ1 + pν

λ1 + λ2 + ν
· 1

µ1 − λ1 − pν

+
λ2 + (1 − p)ν

λ1 + λ2 + ν
· 1

µ2 − λ2 − (1 − p)ν
. (7.2)

51

The first derivative of the equation above turns out to be,

df(p)

dp
=

1

λ1 + λ2 + ν
· ν(µ1 − λ1 − pν) + ν(λ1 + pν)

(µ1 − λ1 − pν)2

− 1

λ1 + λ2 + ν
· ν(µ2 − λ2 − (1 − p)ν) + ν(λ2 + (1 − p)ν)

(µ2 − λ2 − (1 − p)ν)2

=
ν

λ1 + λ2 + ν
[

µ1

(µ1 − λ1 − pν)2
− µ2

(µ2 − λ2 − (1 − p)ν)2
]. (7.3)

Set (7.3) to be zero to derive the p to minimize the mean delay, then

√
µ1

µ1 − λ1 − pν
=

√
µ2

µ2 − λ2 − (1 − p)ν
. (7.4)

From the equation above, we calculate the optimal probability p∗,

p∗ =

√
µ2

ν(
√

µ2 +
√

µ1)
(µ1 − λ1 −

√
µ1µ2 +

√

µ1

µ2
(λ2 + ν)). (7.5)

We bound p∗ ∈ [0,1]. In other words, if p∗ is less than zero, we set p∗ to
be zero. On the other hand, if p∗ is greater than one, we set p∗ to be one. If
we fix the capacities of both base stations (µ1 ≥ µ2), then p∗ = 0 if

λ1 ≥
√

µ1

µ2

λ2 +
√

µ1(
√

µ1 −
√

µ2) +

√

µ1

µ2

ν.

On the other hand, p = 1 if

λ1 ≤
√

µ1

µ2

λ2 +
√

µ1(
√

µ1 −
√

µ2) − ν.

In brief, p∗ is given as:

p∗ =

1, λ1 ≤
√

µ1

µ2

λ2 +
√

µ1(
√

µ1 −
√

µ2) − ν

0, λ1 ≥
√

µ1

µ2

λ2 +
√

µ1(
√

µ1 −
√

µ2) +
√

µ1

µ2

ν
√

µ2

ν(
√

µ2+
√

µ1)
(µ1 − λ1 −

√
µ1µ2 +

√

µ1

µ2

(λ2 + ν)), otherwise.

(7.6)

52

7.2 Dynamic policy

7.2.1 Least ratio routing

The Least Ratio Routing (LRR) scheme, another basic dynamic routing
model is also a variation of the Least Load Routing [2]. When an arriv-
ing flexible flow enters the system, it is assigned to the base station with
the least relative load. It is defined for each BSn as the ratio of the flow
number in the base station to the capacity of it, namely in/µn, n = 1, 2. The
switch-over curve in this case is defined by

l(i1) =
µ2

µ1

· i1.

In the symmetric case where µ1 = µ2, the switch-over curve of LRR
evolves to l(i1) = i1 which is exactly the JSQ allocation policy.

7.2.2 First policy iteration

We have already obtained the optimal probability p∗ of ORR in asymmetric
case. Now based on this scheme, we are going to reveal the switch-over curve
of first policy iteration (FPI). Refer to (6.9), we write

l(i1) =
µ2 − λ2 − p2ν

µ1 − λ1 − p1ν
i1 +

µ2 − λ2 − p2ν

µ1 − λ1 − p1ν
− 1, (7.7)

where p1 = p∗, p2 = 1 − p∗.
Because p∗ is in a rather complex form in (7.5), the term

µ2 − λ2 − p2ν

µ1 − λ1 − p1ν

is not as explicit as that in (6.12). However, from (7.7) we can speculate that
FPI can still be characterized by a switch-over curve.

7.2.3 FPI∗, a variation of FPI

As in the symmetric case, we neglect the flexible stream totally when com-
paring the marginal costs of the two base stations:

t(i1, i2) =
i1 + 1

µ1 − λ1
− i2 + 1

µ2 − λ2
. (7.8)

53

Denote the iterated policy to be FPI∗. If we set the above expression to
be zero, the final switch-over curve is given as

l(i1) =
µ2 − λ2

µ1 − λ1
i1 +

µ2 − λ2

µ1 − λ1
− 1. (7.9)

54

Chapter 8

Numerical experiments

Now, we report some numerical experiments to support the results derived
in the previous two chapters. The system model considered here is the same
as described in Figure 5.1. Generally, we have two sets of experiments. One
is for the symmetric case (µ1 = µ2) and the other is for the asymmetric case
in which the capacities are different (µ1 > µ2).

8.1 Performance of the symmetric case

In this section, we present the system performances in the symmetric case.
First, we discuss the appropriate number in truncation to approximate

the infinite user number in the system. In Table 8.1 and 8.2, the experiments
are implemented while using different number for truncation under the same
system parameter assumptions. The results for using 60, 70 as truncation
number are completely the same as using 50, which illuminates that 50 is
sufficient to approximate the infinite flow number scenario because increasing
the considered number for truncation does not render any change in the delay
performance. Thus, in Figure 8.1 and 8.2, we take the flow number limitation
as 50 to approximate the infinite flow number. From these plots (a)-(d) in
these figures , we still see flaws remain in the upper boundary states, however,

NORR NFPI NFPI∗ N∗

50 2.210 2.010 1.984 1.984
60 2.210 2.010 1.984 1.984
70 2.210 2.010 1.984 1.984

Table 8.1: Comparison of performances applying different truncation number
with system parameters: µ = 20, λ1 = 10, λ2 = 6 and ν = 5.

55

NORR NFPI NFPI∗ N∗

50 2.583 2.467 2.464 2.463
60 2.583 2.467 2.464 2.463
70 2.583 2.467 2.464 2.463

Table 8.2: Comparison of performances applying different truncation number
with system parameters: µ = 25, λ1 = 15, λ2 = 8 and ν = 5

(λ1, λ2, ν) µ p∗ NORR NFPI NFPI∗ N∗

(5,5,5) 15 0.5 2 1.689 1.689 1.689
(10,8,5) 15 0.3 6.571 5.220 5.178 5.172
(10,5,4) 20 0 1.818 1.719 1.719 1.718
(15,10,4) 20 0 5.333 5.048 5.025 5.017

Table 8.3: Performance of FPI and FPI∗ compared with the optimal policy

it does not adversely affect the delay performance results.

8.1.1 FPI and further iterations

Table 8.3 shows the performance of FPI and FPI∗ in some instances, where
N stands for the average queue length in the model. It is proportional to
the average delay in a stable system according to Little’s Result. And the
subscripts like ORR and FPI represent the different load balancing schemes
applied. Note that N ∗ is the result from the optimal policy. The results in
the table imply that compared with FPI, FPI∗ is equally good or even better.
Furthermore, it is very close to the optimal result.

The four plots from (a) to (d) in Figure 8.1 correspond to some specific
iteration policies, in which the latter one is derived numerically based on the
previous policy. Especially, (a) stands for the FPI that has been discussed
in Chapter 7. Each plot is completely characterized by a switch-over curve
between the dark grey and light grey sections. The x-coordinate represents
the number of flows in BS1 while y-coordinate stands for the flow number
in BS2. The dark grey part in these plots shows the decisions in which the
flexible flows are routed to BS1 while light grey part for situation in which
flexible flows to BS2. Some black points in the switch-over curve indicate
that it is equal for the flexible flow to be routed to either base station. For
each plot (a)-(d), the transition rate matrix is built up according to the
policy because from the plot it is straightforward to identify which BS is
the destination of the flexible flows when the process is in a certain state.
Through the balance equations, the probability that the system stays in

56

each state can be solved out numerically. Then, under a certain policy α,
the average cost rate of the system, is the mean number of flows i1 + i2 in
each state multiplies the state probability as

∑

î∈I

πî(α)(i1 + i2),

where î stands for the state (i1, i2). In Figure 8.1.e, a comparison of average
delay performance of each policy is then displayed to illustrate how great
improvement is achieved after each policy. For ORR, policy α0, which does
not appear in Figure 8.1, the mean cost rate for LB case corresponds to
E[N] = 2 · λ1+pν

µ−λ1−pν
. From the plot, the curve plunges in the first iteration

which stands for the fact that a great improvement is achieved in the first
iteration. However, it is in the second iteration that mean delay bottoms to
the optimal result.

Figure 8.1.f reports the corresponding load of either base station under
each policy iteration in Figure 8.1.(a)-(d). The load under the ORR is cal-
culated as ρi = λi+piν

µi
for BSi while the load under a dynamic algorithm

is calculated as ρi = P{Ni > 0} for BSi, meaning the probability that the
considered base station is not empty. From the plot, the loads of the two
BSs are the same because ORR tends to evenly distribute the flexible flow by
an optimal probability. However, when the system achieves the lowest mean
queue length the load of BS1 is higher than that of BS2.

Figure 8.2 correspond to the NLB case (ν > λ1−λ2), where µ = 25, λ1 =
15, λ2 = 8, ν = 5. From (a)-(d), each plot stands for a policy while the
notation of the figure is the same as that in the LB case. Also, the method
to calculate the average queue length of system under a certain policy α is the
same. A slight difference lies in the calculation of the E[N] of the policy α0,
ORR. The mean queue length is E[N] = λ1

µ−λ1

+ λ2+ν
µ−λ2−ν

, because in the NLB
case all the flexible flows are routed to BS2. One notable observation is that,
compared that in LB case, the FPI in the NLB case can more closely resemble
the optimal policy. It is further verified in Figure 8.2.e, a comparison among
different iterated policies, in which the average delay almost bottoms to the
optimal result in FPI in the NLB case. Figure 8.3.f verifies that the load of
either base station cannot be balanced in the NLB case. The load under the
ORR is calculated as ρi = λi+piν

µi
. Even though the system distributes all the

flexible flows to BS2, the load of BS1 is still higher than that of BS2 in ORR
in the symmetric case because ν > λ1 − λ2. In the latter policy iterations,
the load is ρi = P{Ni > 0} for BSi.

In both cases, the iterations bottom to the optimal result completely in
the second iteration and significant decrease in the average delay is achieved

57

in the FPI. In the NLB case, a greater improvement is achieved in the first
iteration compared with the LB case in Figure 8.2.e. The reason behind
this can be explored by reviewing (6.12). In the LB case, the switch-over
curve only depends on the flow number in BS1. The load balancing process
covers the important information of the difference between λ1 and λ2 which
can originally aid the optimization in policy iterations. In the NLB case,
the flexible stream is not able to completely balance the difference between
λ1 and λ2. Such unbalanced dedicated flow information takes part in the
decision of the switch-over curve to contribute better performance in the
first iteration policy in the NLB case compared with LB case.

In brief, from these two figures, the mean delay plunges in the first iter-
ation and bottoms to the optimal result in the second iteration.

8.1.2 FPI∗ and further iterations

Now, we present the average delay performance of FPI∗ as described in (6.14)
and its iterated policies.

Figure 8.3 is for the LB case while Figure 8.4 is for the the NLB case.
Furthermore, we make two pairs of the mentioned figures:

1. Figure 8.1 and Figure 8.3 LB

2. Figure 8.2 and Figure 8.4 NLB,

where each pair has the same system parameters.
From FPI and FPI∗ in each pair, we observe two phenomena. First, com-

pared with FPI, FPI∗ more closely resembles the optimal policy. Secondly, in
Figure 8.3.e and 8.4.e, both FPI∗s bottom to the optimal result, representing
a better performance than the FPIs. When applying FPI, significant decrease
can be achieved based on the ORR policy but it takes another iteration to
derive the optimal policy. In short, normally, FPI∗ can almost achieve the
optimal result, which is one step faster than the FPI. Figure 8.3.f and 8.4.f
indicate that the load of each BS can also be balanced in the first iteration
when FPI∗ achieves the sub-optimal average delay in the system.

Two tables below summarize these two sets of experiments that we have
explored. Table 8.4 is for the experiments in the LB case while Table 8.5 is for
the experiments in the NLB case. N in the tables means the average queue
length under a corresponding load balancing policy. Both tables verifies that
FPI∗ is superior among all the considered policies except the optimal one.

58

0 10 20 30 40 50
0

10

20

30

40

50

(a)

0 10 20 30 40 50
0

10

20

30

40

50

(b)

0 10 20 30 40 50
0

10

20

30

40

50

(c)

0 10 20 30 40 50
0

10

20

30

40

50

(d)

0 1 2 3 4
Iteration #

2

2.05

2.1

2.15

2.2

N

(e)

0 1 2 3 4
Iteration #

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

L
o
a
d

BS1 load
BS2 load

(f)

Figure 8.1: Load-Balance case (ν ≥ λ1 − λ2): (a) FPI (b) second policy
iteration (c) third policy iteration (d)fourth policy iteration (e) mean queue
length of the model vs. iteration (f) load condition. The dark grey blocks
correspond to α=1, the light grey blocks to α=2. System parameters: µ =
20, λ1 = 10λ2 = 6 and ν = 5

59

0 10 20 30 40 50
0

10

20

30

40

50

(a)

0 10 20 30 40 50
0

10

20

30

40

50

(b)

0 10 20 30 40 50
0

10

20

30

40

50

(c)

0 10 20 30 40 50
0

10

20

30

40

50

(d)

0 1 2 3 4
Iteration #

2.48

2.5

2.52

2.54

2.56

2.58

N

(e)

0 1 2 3 4
Iteration #

0.5

0.6

0.7

0.8

L
o
a
d

BS1 load
BS2 load

(f)

Figure 8.2: No-Load-Balance case (ν < λ1 − λ2): (a) FPI (b) second policy
iteration (c) third policy iteration (d) fourth policy iteration (e) mean queue
length of the model vs. iteration (f) load condition. The dark grey blocks
correspond to α=1, the light grey blocks to α=2. System parameters: µ =
25, λ1 = 15, λ2 = 8 and ν = 5

60

0 10 20 30 40 50
0

10

20

30

40

50

(a)

0 10 20 30 40 50
0

10

20

30

40

50

(b)

0 10 20 30 40 50
0

10

20

30

40

50

(c)

0 10 20 30 40 50
0

10

20

30

40

50

(d)

0 1 2 3 4
Iteration #

2

2.05

2.1

2.15

2.2

N

FPI* based

FPI based

(e)

0 1 2 3 4
Iteration #

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

L
o
a
d

BS1 load
BS2 load

(f)

Figure 8.3: Load-Balance case (ν ≥ λ1 − λ2): (a) FPI∗ (b) second policy
iteration (c) third policy iteration (d) fourth policy iteration (e) mean queue
length of the model vs. iteration (f) load condition. The dark grey blocks
correspond to α=1, the light grey blocks to α=2. System parameters: µ =
20, λ1 = 10, λ2 = 6 and ν = 5

61

0 10 20 30 40 50
0

10

20

30

40

50

(a)

0 10 20 30 40 50
0

10

20

30

40

50

(b)

0 10 20 30 40 50
0

10

20

30

40

50

(c)

0 10 20 30 40 50
0

10

20

30

40

50

(d)

0 1 2 3 4
Iteration #

2.48

2.5

2.52

2.54

2.56

2.58

N

FPI* based
FPI based

(e)

0 1 2 3 4
Iteration #

0.5

0.6

0.7

0.8

L
o
a
d

BS1 load
BS2 load

(f)

Figure 8.4: No-Load-Balance case (ν < λ1 − λ2): (a) FPI∗ (b) second policy
iteration (c) third policy iteration (d) fourth policy iteration (e) mean queue
length of the model vs. iteration (f) load condition. The dark grey blocks
correspond to α=1, the light grey blocks to α=2. System parameters: µ =
25, λ1 = 15, λ2 = 8 and ν = 5

62

µ = 20, λ1 = 10,
λ2 = 6, ν = 5 p∗ or switch-over curve BS1 load BS2 load N

ORR p∗ = 0.1 0.525 0.525 2.211
JSQ l(ii) = i1 0.599 0.451 2.010
FPI l(ii) = i1 0.599 0.451 2.010
FPI∗ l(ii) = 1.4i1 + 1 0.564 0.486 1.984

Optimal l(ii) = 1.4i1 + 1 0.565 0.485 1.984

Table 8.4: Summary of experiments in the LB case

µ = 25, λ1 = 15,
λ2 = 8, ν = 5 p∗ or switch-over curve BS1 load BS2 load N

ORR p∗ = 0 0.600 0.520 2.583
JSQ l(ii) = i1 0.668 0.452 2.503
FPI l(ii) = 1.2i1 + 1 0.644 0.476 2.468
FPI∗ l(ii) = 1.75i1 + 1 0.637 0.483 2.464

Optimal l(ii) = 1.75i1 + 1 0.638 0.482 2.464

Table 8.5: Summary of experiments in the NLB case

8.1.3 FPI variations

Figure 8.5.a shows the average queue length E[N] performance of a plenty
of the FPI variations, see section 6.2.3 on page 47. The E[N] jumps dra-
matically around p = 0, f = 1 area. In Figure 8.1.a, the entire flexible flow
is accounted for in the FPI and the optimal probability is p∗ = 0.1 in those
system parameters, which exactly lies in the mentioned convex area near
p = 0, f = 1. For FPI∗, it totally ignores the flexible flows, correspond-
ing to f = 0 in the same figure. This pocily achieves the minimal average
queue length. Thus, it is not surprising that the FPI performance is poorer
compared with that of FPI∗.

Compared with the FPI (Figure 8.2.a), FPI∗ (Figure 8.3.a) more likely
resembles the optimal policy (Figure 8.2.d or 8.4.d). But performance differ-
ence is very slight between FPI and FPI∗, either of which greatly decreases
and almost achieve the optimal result. This can also be explained by Figure
8.5.b), the optimal probability p∗ of FPI is zero according to (7.6) in the
NLB case. So the point that corresponds to FPI in Figure 8.5.b is p = 0 and
f = 1. And the line of f = 0 can represent the mean queue length perfor-

63

mance of the FPI∗, which is only a little bit lower than the FPI performance
(p = 0, f = 1). This tiny difference in the the height corresponds to the very
small difference of FPI and FPI∗ manifested by Figure 8.4.e.

Figures 8.5.a and 8.5.b indicate that it always render a better first pol-
icy iteration if we ignore the flexible stream totally when considering the
marginal cost of an additional flow in (6.8).

8.1.4 Systematic study

Two systematic experiments are implemented to examine how each allocating
policy varies in the mean queue length performance when increasing λ1 or ν
and keeping the other system parameters unchanged. Performance of each
policy is normalized by the optimal queue length from the optimal policy.
And in these experiments the varying parameters may not always take all
the possible values because of numerical reasons.

In Figure 8.6, we fix all the system parameters except the intensity λ1 of
dedicated flow to BS1. It also means that we gradually increase the difference
between the two dedicated flows. Note that when we increase λ1, the load
of the system also increases proportionally. ORR, as the basic static policy,
has the weakest performance in almost all the situations. As a basic dynamic
policy, JSQ achieves much better performance compared with ORR, however,
increasing λ1 also considerably deteriorates JSQ’s performance. FPI∗ is the
best policy which almost perfectly resembles the optimal policy which always
derived within one or two steps in this case. FPI works well when the system
is in the NLB case, however, it conincides with the JSQ in LB case.

Another experiment is illustrated in Figure 8.7. We increase the intensity
of the flexible flow ν while keeping the other parameters unchanged. The
ORR still has the poorest performance among these four allocating policies.
Moreover, its performance deteriorates proportionally when ν grows higher.
In contrast, JSQ and FPI in this case can almost achieve the optimal result.
But, inevitably, FPI∗ performs the best among the four.

8.2 Performance of the asymmetric case

This section gives the numerical experiment results under the asymmetric
assumption. Similar to the symmetric section, a comparison is implemented
to observe the mean delay performances when applying different truncation

64

0

0.25

0.5

0.75

1

p

0

0.25

0.5

0.75

1

f

1.985

1.99

1.995

2

N
�

0

0.25

0.5

0.75

1

p

(a)

0

0.25

0.5

0.75

1

p

0

0.25

0.5

0.75

1

f

2.48

2.5N
�

0

0.25

0.5

0.75

1

p

(b)

Figure 8.5: (a) Load-Balance case (ν ≥ λ1 − λ2): Performances of variations
of FPI for different combinations of f and p. Parameters: µ = 20, λ1 =
10, λ2 = 6 and ν = 5 (b) No-Load-Balance case (ν < λ1 − λ2): Performances
of variations of FPI for different combinations of f and p. Parameters: µ =
25, λ1 = 15, λ2 = 8 and ν = 5

65

0.3 0.4 0.5 0.6 0.7 0.8
Λ1

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

T
i
m
e
s

ORR
JSQ
FPI
FPI*

LB NLB

Figure 8.6: Comparison of different policies when increasing
λ1 ∈ [0.3, 0.82] and µ = 1.0, λ2 = 0.3 and ν = 0.2. All
results are normalized by the optimal result. The left part
corresponds to the NLB case and the right part is the LB
case.

0 0.2 0.4 0.6 0.8 1
Ν

1

1.2

1.4

1.6

1.8

T
i
m
e
s

ORR
JSQ
FPI
FPI*

NLB LB

Figure 8.7: Comparison of different policies when increasing
ν ∈ [0, 1.2], values plotted by divided by optimal result. Pa-
rameters: µ = 1.0, λ1 = 0.5 and λ2 = 0.3. All results are
normalized by the optimal result. The left part corresponds
to the LB case and the right part is the NLB case.

66

NORR NFPI NFPI∗ N∗

50 3.50758 3.23556 3.22496 3.22488
60 3.50758 3.23556 3.22496 3.22488
70 3.50758 3.23556 3.22496 3.22488

Table 8.6: Comparison of performances applying different truncation number
with system parameters: µ1 = 25, µ2 = 15, λ1 = 12, λ2 = 12 and ν = 5

number. The results reported in Table 8.6 imply that 50 number of flows in
the system is enough to approximate the infinite number scenario. Increasing
the truncation number larger than 50 does not influence the entire average
flow performance as observed in Table 8.6.

8.2.1 FPI and further iterations

Figure 8.8 presents the FPI and further iterations based on ORR. The mean
queue length of ORR is calculated as:

E[N] =
λ1 + pν

µ1 − λ1 − pν
+

λ2 + (1 − p)ν

µ2 − λ2 − (1 − p)ν
.

Then, the average number of flows in the system under an iterated policy α
is the weighted sum of queue length in each state as:

∑

î∈I

πî(α)(i1 + i2),

where î stands for the state (i1, i2). Furthermore, the load for each BS is
calculated in the same way as in the symmetric case.

In Figure 8.8.e, FPI plunges greatly, reflecting a significant reduce in the
mean queue length from that of ORR policy. The load of each BS does not
vary too much even though a great decrease is obtained in the mean queue
length.

The dedicated flows in this parameter setting are the same (λ1 = λ2 = 12)
while the capacities of BSs are different (µ1 > µ2). Naturally, the load bal-
ancing scheme tends to allocate more flexible flow to BS1 which is associated
with a higher capacity. This explains why the system tends to makes deci-
sions to route the flexible flow to BS1 in most states in Figure 8.8.d.

8.2.2 FPI∗ and further iterations

Figure 8.9 is based on the FPI∗ given in (7.9). Observe FPI and FPI∗ depicted
in Figure 8.8.a and 8.9.a, respectively, we shall see FPI∗ resembles the optimal

67

0 10 20 30 40 50
0

10

20

30

40

50

(a)

0 10 20 30 40 50
0

10

20

30

40

50

(b)

0 10 20 30 40 50
0

10

20

30

40

50

(c)

0 10 20 30 40 50
0

10

20

30

40

50

(d)

0 1 2 3 4
Iteration #

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

N

(e)

0 1 2 3 4
Iteration #

0.62

0.64

0.66

0.68

L
o
a
d

BS1 load

BS2 load

(f)

Figure 8.8: (a) FPI (b) second policy iteration (c) third policy iteration (d)
fourth policy iteration (e) mean queue length of the model vs. iteration
(f) load condition. The dark grey blocks correspond to α=1, the light grey
blocks to α=2. System parameters: µ1 = 25, µ2 = 20, λ1 = 12, λ2 = 12 and
ν = 5

68

µ1 = 25, µ2 = 20
λ1 = 12, λ2 = 12, ν = 5 p∗ or switch-over curve BS1 load BS2 load N

ORR p∗ = 0.911 0.662 0.622 3.608
LRR l(ii) = 0.8i1 0.606 0.693 3.247
FPI l(ii) = 0.88i1 0.617 0.679 3.236
FPI∗ l(ii) = 0.62i1 0.626 0.667 3.225

Optimal l(ii) = 0.6i1 0.621 0.674 3.225

Table 8.7: Summary of experiments in the asymmetric case

policy much better than FPI does. Despite of the considerable difference
in these two policies, in Figure 8.9.e, only a slight improvement in mean
queue length is achieved by FPI∗ compared with the FPI. Besides, the load
of each BS does not change too much under ORR or the different iterated
policies. From FPI∗ to the second iteration (Figure 8.9.b), the derivative of
the switch-over curve decreases. It also indicates an increase in the number
of the states, in which the flows are better to route to BS1. This should
lead a rise in the load of BS1 and a decrease in load of BS2 in the meantime.
However, the results from the load condition in Figure 8.9.f do not correspond
to the arguement above. The unexpected load change is probably caused by
numerical problems.

Table 8.7 summarizes the conducted experiments in the asymmetric case,
which indicates that the FPI∗ is a very robust policy. Note that N in the
table means the average queue length under a corresponding load balancing
policy.

8.2.3 FPI variations

As in the symmetric case, we implement the comparison of different FPI
variations.

From Figure 8.10, the mean queue length jumps dramatically around
p ∈ [0, 0.25], f ∈ [0.6, 1] area. In Figure 8.8.a, FPI takes full consideration
of the flexible flow and the optimal probability is p∗ = 0.9108 from (7.5) in
those system parameters. Its performance is slightly poorer compared with
the performance of FPI∗, where f = 0.

It provides the evidence why there is only little progress in Figure 8.9.e
between FPI and FPI∗.

Figure 8.10 indicates that it also leads to a better first policy iteration in
the asymmetric case if we ignore the flexible stream totally when considering
the marginal cost of an additional flow in (6.8).

69

0 10 20 30 40 50
0

10

20

30

40

50

(a)

0 10 20 30 40 50
0

10

20

30

40

50

(b)

0 10 20 30 40 50
0

10

20

30

40

50

(c)

0 10 20 30 40 50
0

10

20

30

40

50

(d)

0 1 2 3 4
Iteration #

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

N

FPI* based

FPI based

(e)

0 1 2 3 4
Iteration #

0.62

0.64

0.66

0.68

L
o
a
d

BS1 load
BS2 load

(f)

Figure 8.9: (a) FPI∗ (b) second policy iteration (c) third policy iteration
(d) fourth policy iteration (e) mean queue length of the mocel vs. iteration
(f) load condition. The dark grey blocks correspond to α=1, the light grey
blocks to α=2. System parameters: µ1 = 25, µ2 = 20, λ1 = 12, λ2 = 12 and
ν = 5

70

0

0.25

0.5

0.75

1

p

0

0.25

0.5

0.75

1

f

3.24

3.26

3.28

3.3

N
�

0

0.25

0.5

0.75

1

p

Figure 8.10: Performances of variations of FPI for different
combinations of f and p. Parameters: µ1 = 25, µ2 = 20, λ1 =
12, λ2 = 12 and ν = 5

8.2.4 Systematic study

This section exhibits the performances of different load balancing policies, in-
cluding FPI, FPI∗, LRR, JSQ, ORR. They are all normalized by the optimal
policy.

Figure 8.11 discloses the difference between policies when the flexible flow
intensity increases while keeping the other system parameters fixed. In this
experiment, the dedicated flow intensities of each base station are the same.
In Figure 8.11, ORR has the weakest performance. This situation gets even
worse when ν increases. LRR has the best performance among all the policies
in this case. FPI and FPI∗ both can closely resemble the optimal policy with
the growth of the flexible flow intensity. FPI∗ performs a little bit better
than FPI does.

In Figure 8.12, the intensities of dedicated flows are not the same (λ1 >
λ2). It shows that all the dynamic policies group together and all tend to

71

0 0.2 0.4 0.6 0.8 1 1.2
Ν

1

1.05

1.1

1.15

1.2

1.25

1.3

T
i
m
e
s

ORR
JSQ
FPI
FPI*

LRR

Figure 8.11: Comparison of different policies when increasing
ν ∈ [0, 1.25]. Parameters: µ1 = 1.5, µ2 = 1.0, λ1 = 0.5 and
λ2 = 0.5.

have a good representation of the optimal policy. JSQ jumps at ν = 0.75,
which results in a weaker performance. LRR works as well as FPI∗ does.
Actually, for FPI∗, the decision rule is n1+1

µ1−λ1

− n2+1
µ2−λ2

and in this experiment’s

context it turns out to be n1+1
1.0

− n2+1
0.7

. When both two terms multiple 2/3,
the result is given as n1+1

1.5
− n2+1

1.05
. It is quite similar to the decision rule of

LRR n1

1.5
− n2

1.0
especially when n1, n2 are fairly large. In this sense, LRR is as

suboptimal as FPI∗ is.
In Figure 8.13, the performances of different policies are compared when

increasing the difference between two dedicated flow intensities (λ1 > λ2).
Generally speaking, JSQ and LRR perform worse than the other load bal-
ancing policies. And FPI and FPI∗ both closely resemble the optimal policy
though near λ1 = 0.8, the performance deteriorates a little bit.

The numerical experiments illustrate that FPI
∗

can always resemble the
optimal policy closely no matter how the system load varies. In most of the
real applications, the number of states tend to grow very large so that the
further policy iterations are almost impossible to implement. In this context,
FPI∗ can efficiently be served as a reasonable approximation of the optimal
load balancing scheme regarding to its superior mean delay performance at
the flow level.

72

0 0.25 0.5 0.75 1 1.25 1.5
Ν

1

1.1

1.2

1.3

1.4

1.5
T
i
m
e
s

ORR
JSQ
FPI
FPI*

LRR

Figure 8.12: Comparison of different policies when increasing
ν ∈ [0, 1.45]. Parameters: µ1 = 1.5, µ2 = 1.0, λ1 = 0.5 and
λ2 = 0.3.

0 0.2 0.4 0.6 0.8 1 1.2
Λ1

1

1.01

1.02

1.03

1.04

1.05

T
i
m
e
s

ORR
JSQ
FPI
FPI*

LRR

Figure 8.13: Comparison of different policies when increasing
λ1 ∈ [0.05, 1.2]. Parameters: µ1 = 1.5, µ2 = 1.0, λ2 = 0.2 and
ν = 0.1.

73

Chapter 9

Conclusion

9.1 Summary

So far we have explored a basic cellular model of two adjacent base stations
both in symmetric and asymmetric case at the flow level. And we found
that load balancing algorithm can significantly improve the flow delay per-
formance in the cellular network by applying MDP as an optimization tool.

In both cases, ORR as a basic and simple static load balancing scheme is
first examined. Later, based on ORR, FPI is derived by comparing marginal
costs of an additional coming flow in either base station. Furthermore, FPI∗,
as a variation of FPI is also obtained by ignoring the flexible flow totally in
the comparison. Some other variations of FPI have also been observed but it
proves that omitting the flexible flows tends to achieve a greater improvement
than the other variations in terms of the first policy iteration.

The results from the numerical experiments are in line with Hajek’s con-
clusion [6] that a switch-over strategy is optimal, minimizing the long run
cost. Furthermore, from the experiments, all the dynamic policies can be
characterized by a linear curve when we ignore the truncation effect.

In the symmetric case in section 8.1.2, FPI∗ performs better than FPI
does in both the LB and NLB cases. The comparison among different FPI
variations proves this observation again in section 8.1.3. However, in the
NLB case, the improvement from FPI∗ is more significant than that in the
LB case. It is verified by the figures in the systematic study part later.
No matter how we increase the load by adding dedicated or flexible flow
intensity, FPI works almost like FPI∗ does when system in the NLB case.
Roughly speaking, ORR has the weakest performance while FPI∗ is always
next to optimal.

In the asymmetric case, FPI performs fairly well as FPI∗ does though

74

little improvement is achieved by the latter policy. This argument still holds
in the systematic study, in which the performance of these two policies are
almost the same while the system load varies. FPI∗ is also more stable policy
and the variation of its performance is even negligible compared with other
polices.

In brief, FPI∗ is an effective and efficient load balancing scheme to de-
crease the mean delay of entire system by balancing the elastic flows in the
overlap between two adjacent cells.

9.2 Future work

As mentioned, the optimal policies from the numerical experiments can be
characterized by switch-over curves, which corresponds to Hajek’s [6] state-
ment. Furthermore, these curves are also linear, which most probably comes
from the mathematical relationship between system parameters. Up to now,
we have only derived the results in explicit mathematical form for the first
iteration based on static policy. If the analytic results for further iterations
are obtainable, we can verify our numerical experiments in a converse way.

The flow size in the data network is often modeled as heavy-tailed and
the common one is the Pareto distribution [14, 3] rather than the exponential
distribution we assume in the thesis. However, such heavy-tailed distribu-
tions like Pareto are not easy to analyze because the ‘memoryless’ property
does not hold so that MDP may not apply in this case. Nevertheless, one
approach is to approximate such heavy-tailed distribution by the convenient
short-tailed distribution like hyperexponential distribution.

For simplicity, only two adjacent cells are considered in the thesis. How-
ever, the more real situation could be that flow is generated in the overlapping
area among three cells. Generalizing the two cells into more cells might be
more practical.

In this thesis, flows are not classified to different priorities. As Borst [4]
suggested, it is more real that in certain cases, the flow-level performance
may be evaluated by means of a multi-class PS model where the total service
rate varies with the total number of the flows. Results in this context may
be more practical.

75

Bibliography

[1] S.Aalto, J.Virtamo, Basic packet routing problem, COM-
BINE/VTT/WP 1/027/1, April 1994.

[2] M. Alanyali and B. Hajek, “Analysis of Simple Algorithms for Dynamic
Load Balancing,” vol. 22, lss. 4, Nov 1997.

[3] S. Ben Fredj, T. Bonald, A. Proutiere, G. Régnié, J.W. Roberts, Statisti-
cal Bandwidth Sharing: A study of congestion at flow level, Proceedings
of ACM SIGCOMN, 2001.

[4] S. Borst, User-level performance of channel-aware scheduling algorithms
in wireless data networks, Performance Evaluation vol. 49, issue 1-4, Sep
2002.

[5] G. Bianchi, I. Tinnirello, “Improving Load Balancing mechanisms in
Wireless Packet Networks,” Communivations, 2002. ICC 2002, IEEE
International Conference on, vol. 2, 28 April-2 May 2002.

[6] B. Hajek, “Optimal Control of Two Interacting Services Stations,” IEEE
Transactions on Automatic Control, vol. AC-29, No. 6, June 1984.

[7] H. Holma, A. Toskala, WCDMA For UMTS Radio Access For Third
Generation Mobile Communication, John Wiely & Sons, LTD 2001.

[8] R. A. Howard, Dynamic Programming and Markov Process, New York,
NY: John Wiley & Sons, 1960.

[9] K. R. Krishnan, “Markov Decision Algorithms for Dynamic Routing.”
IEEE Communication Magazine, Oct 1990.

[10] L. Kleinrock, Queueing System, Vol. 2, Wiley, New York, 1975.

[11] G. Koole, “A simple proof of the optimality of a threshold policy in a
two-server queueing system,” System & Control Letters 26, 1995.

76

[12] J. Laiho, A. Wacker, T. Novosad, Radio network planning and optimiza-
tion for UMTS, Chichester Wiley cop. 2002.

[13] J. v. Leeuwaarden, S. Aalto, J. Virtamo, “Load balancing in cellular
networks using first policy iteration,” COST279 TD(02)23, 2002.

[14] L. Massoulié and J. W Roberts, “Bandwidth sharing and admission
control for elastic traffic,” Telecommunication System 15, 2000.

[15] M. L. Puterman, Markov Decision Processes Discrete Stochastic Dy-
namic Programming, New York Wiley, 1994.

[16] J.W. Roberts, “A survey on statistical bandwidth sharing,” Computer
Networks, vol. 45, 319-332, 2004.

[17] A. S Tanenbaum, Computer Networks, Englewood Cliffs NJ Prentice-
Hall, 1981.

[18] H. Velayos, V. Aleo, G. Karlsson, “Load balancing in overlapping wire-
less LAN cells,” Communications, 2004 IEEE International Conference
on, vol. 7, 20-24 June 2004.

[19] J. Virtamo, Teletraffic theory Lecture notes, Helsinki University of Tech-
nology, Spring 2004.

[20] W. Winston, Optimality of the shortest line discipline, J.Appl. Prob.
14, 181-189, 1977.

[21] A. Y. Zomaya and Y.H. Teh, “Observations on using genetic algorithms
for dynamic load-balancing,” IEEE Trans. Parallel and distributed sys-
tems, vol. 12, no. 9, Sep 2001.

77

