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Abstract— A good understanding of contact patterns in delay Dartmouth data
tolerant networks (DTNSs) is essential for the design of effectw . o )
routing schemes. Prior work has typically focused on inter-  This connectivity data set has been inferred from traces col

contact time patterns in the aggregate. In this paper, we argue |ected in the Wi-Fi access network of Dartmouth College [5].
that pairwise inter-contact patterns are a more refined and The traces track users’ sessions in the wireless netwotkigo

efficient tool for characterizing DTNs. We provide a detailed sta- the time at which nodes associate and dissociate from access
tistical analysis of pairwise inter-contact times in three reference

DTN data sets. We characterize heterogenities in inter-contact POINts. Although the Dartmouth data is not from a DTN
times, and find that the empirical distributions tend to be well network, we use it because it is perhaps the richest data set
fit by log-normal curves, with exponential curves also fitting a publicly available that tracks users in a campus setting, an
significant portion of the distributions. because of its quality.

I. INTRODUCTION A few judicious assumptiqns are required to ad_apt the
i . ) i Dartmouth data for DTN studies. First, we only consider the
_ Understanding mobility of nodes in DTNs is of utmosgpqet of users who were present in the network every day
importance. A large number of design issues such as routinds veen January 62004 and March 1" 2004, an academic
content dissemination or resource management much depﬁ@ﬂod during which we expect nodes’ activity to be fairly
upon what one expects in terms of node mobility. _ stationary. This data set contains 834 users, or nodes., Then
i Initial DTN work focused on exploiting scheduled mgetlngve assume that two nodes are in contact if they are attached
times [6]. Focus then turned to the sort of randomness in-Megf 1o same time to the same access point (AP). Finally, we
ing times [4], [8], [9], and characterised in mobility moslel fytor the data to remove the well knowping-pong effect.

such as Random Way-Point, and Random Walk. These modgjejess nodes, even non-mobile ones, can oscillate atha hig
yield homogeneous patterns, where all nodes share a singlg,,ancy between two APs. To counter this, we filter all the
inter-contact time distribution. More recent work has gsetl ior-contact times below 1.800 seconds.

experimental data sets [5], [1], [3] that record actual rinte

contact patterns that occurred between people in a number of iMote data
different environments. Chaintreau et al. [1], from obstions . . . I
on those data sets, proposed to model the sequence of macg:hamtreau et al. [1] used iMotes to acquire proximity

as a discrete renewal process, and study power-law dimdbu&v%rlltgﬁz tg?tthc;cn(;g&en? Z%Ztsvvﬁeesr;a??ﬁ'gfrﬁgtrzn@e thsetuzgriim
inter-contacts. Karagiannis et al. [7] analyse the mahitiaices P :

. . . : . were asked to carry one of these sensors in their pocket at all
and explain the observed exponential tail behavior of intet ) .
es. Due to Bluetooth’s short range, authors logged nt&ts.

contact times with a simple random walk on a two dimensionvgt\men eople were close to each other (typically within 10
torus followed by all nodes in the network. peop ypicaly

In this paper, we advocate that researchers should Iookné?t.ers)' They collected data from 41 iMotes over 3 days. The

pairwise inter-contact patterns. We provide a detailetistizal devices performed Bluetooth inquiry scans every 2 minutes.

analysis of pairwise inter-contact patterns in three mfee For each pair of nodeg, j), we considered thatand j were

DTN data sets. Previous work has studied inter—contactstim'g contact if either one saw the other.

in the aggregate, across all pairs of nodes. It has combémet, MIT data

thus obscured, the individual effects of pairwise intenteats. ] o ]

We characterize heterogenities in inter-contact timed,fard 1€ Reality Mining experiment [3] conducted at MIT cap-
that distributions of inter-contact times tend to be welldaled fured proximity information from 97 subjects over the caurs
by log-normal curves. Exponential curves also tend to fitra ff @n academic year. Each participant had an application

portion of distributions. running on their mobile phone to record proximity with other
through periodic Bluetooth scans (every 5 minutes) in alaimi
Il. PAIRWISE INTERACTIONS fashion to that of the iMote experiment. We used the first 95
A. Experimental data sets days of data.

We describe here the contexts in which the data sets trm}./rve will refer to these data sets @sartmouth, iMote and

we used have been collected.



proportion of pairs that were rejected for all three hyptidé
distributions.

One notable observation is that log-normal tends to fit bette
than exponential or Pareto for all three data sets. Almost
no pair of nodes has been found fit only an exponential or

P(X>x)
P(X>x)

0- ‘ . N a Pareto. For Dartmouth, for examplel@ of node pairs
0 El[f]g’ 2e+06 0 5002[2](5)100000 are exponential only, and the same proportion are Pareto
only, while 364% of node pairs only match a log-normal
(a) E(r) on Dartmouth (b) E(r) on iMote distribution.
Dartmouth iMote MIT
1 ‘ . Number of pairs tested 20,211 755 2,174
08 - . Exponential 428% | 79 % 56.3 %
2 06- Pareto 342% | 123% | 265%
3 oa. M ) Log-normal 85.8% | 99.4% | 96.9%
e ', None 129%| 0.4 % 2.7 %
0.2 - ] -
! [
0- ‘ .o TABLE |
0 2e+06 4e+06
E[T] (s) FITTING RESULTS.

(c) E(r) on MIT
From these observations, it seems reasonable, in these data
Fig. 1. CDF of mean inter-contact timest( sets, to consider pairwise inter-contact time distrigias
log-normal rather than power law or exponential. This speak
to the heterogeneity of the distributions. The log-norraatity
B. Heterogeneity in expectations is better capable of modeling the variations of behavioressc

This section looks at times that enlapse between instaffi€ Pairs of nodes. The reasons are probably twofold. Hirst,
when pairs of nodes are in contaéttér-contact times). We covers a large span of asymptotic behaviors at the origim(fr

focus on heterogeneity, looking at the distributions fonatle °rizontal to vertical asymptotes). Second, it can caplfgre
pairs. tailed behavior as well as some heavy tailed behavior, while

Fig. 1 shows the cumulative distribution, for all nodéalways maintaining a finite expectation and/or variance.
pairs, of mean inter-contact times. We denote witlr)Bhe I1l. CONCLUSION

_expectation of_inter-contact_ times, yvitht_)ei_ng the process of In this paper, we argue for the wisdom of using pairwise
inter-contact times for a given pair. Similarly, Fig. 1 sWnier_contact patterns to characterize DTNs. We have peabi
the distribution of EQ), the expected contact times of nodg, giatistical study using widely-used DTN data sets in which
pairs. We can see that the distributions are heterogeneqys, characterize heterogeneity of interactions betweeresiod
with the means spanning over three orders of magnitude. TR show that pairwise inter-contact times processes, which

mean inter-contact time is 28})h9urs for Dartmouth, with @ 56 a great impact on routing, are heterogeneous and dis-
standard deviation of 218 hours; 49 hours for iMote, with tributed in log-normal for a large number of node pairs.

a standard deviation of.& hours; and 387 hours for MIT,
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