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ABSTRACT

In this paper we study the use of a semantically rich storage
model in order to fulfill the data transmission requirements
of challenged networking environments, which are charac-
terised by long delays and frequent communication disrup-
tions. Practical experience shows us that the highly success-
ful data abstractions of mainstream storage systems (e.g.
monolithic file representation) operate poorly in emergent
networking environments such as Delay Tolerant Networks
(DTNSs); short contact times do not allow for complete file
or bundle transmissions. We have ported and integrated two
systems in order to provide a solution that overcomes many
of the data transmission challenges of DTNs: a semanti-
cally rich storage system (Datom) and a network framework
capable of exploiting this augmented expressive power (Hag-
gle). Our solution, Bedouin, enables both systems to run on
resource-constrained devices. It facilitates meaningful data
exchanges in challenged networks supporting the principle of
infrastructure-independent networking, and exploiting hu-
man mobility and opportunistic connectivity. The design
and function of a proof-of-concept Bedouin-based peer-to-
peer file sharing application for human networks, called Car-
avan, is included. Experimental results demonstrate that
our solution enables applications to work correctly in spite
of intermittent data exchanges and disruptions while max-
imising the amount of useful data delivered to applications.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Network communications; E.2
[Data Storage Representations|: Linked representations.

General Terms: Design.

Keywords: challenged networks, data management.

1. INTRODUCTION

In this paper, we put forward the integration and strong
cooperation of the network, storage functionality, and appli-
cations to overcome the challenges posed by data exchange
in DTNs [7,22]. Unlike traditional infrastructure-based com-
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munication systems, data transmission in DTNs suffer from
long and variable communication delays and arbitrary pe-
riods of link disconnection. We consider that the current
networking and storage abstractions [4,11,15] suffer impor-
tant limitations when taking into account the data transmis-
sion requirements of resource-constrained devices working
on DTNs.

In the networking context, the way in which data encapsu-
lation and fragmentation is performed by the network makes
it unaware of the semantics of the data being transmitted
and, thus, unable to cooperate with overlaying applications.
At the application layer of the network stack, application
data is mostly seen as a flat stream of bits to be fully and
reliably transmitted to a destination node.

Moreover, additional constraints are posed by the storage
abstractions. The file API handles applications’ requests in
a generic way, which is mainly concerned with storing appli-
cation data as blocks of bytes and with managing a reduced
set of associated attributes [11,15]. From a networking per-
spective, writing code supported on the file abstraction suf-
fers various shortcomings. Any semantic knowledge about
applications’ persistent abstractions that is present at run
time is lost within the data stream representing the file data.
Data manipulation through the file API greatly assumes ac-
cess to a file as a whole, or in the best case to opaque regions
of data within the file.

With these two shortcomings, it is impossible for the net-
work to prioritise which part of the data stream should be
transmitted; an important disadvantage in the context of
DTNs since connections may die suddenly without complet-
ing the transmission of the whole data stream. Corrupted
data has to be discarded, or in the best case stored to be
reconstructed using a subsequent data exchange.

The lack of flexibility of the network to effectively fulfill
applications’ data transmission requirements in challenged
environments creates the need for a mediator. With the in-
tegration and support of a more evolved data model, DTN
networking architectures could improve data transmission
tasks based on the synergy between the network and ap-
plications. If the appropriate data abstractions are used,
cooperation can be enabled and meaningful data units can
be efficiently transmitted across temporal paths based on
fine-grained data access, and data transmission prioritisa-
tion according to the application and user preferences.

Although other storage abstractions, such as those offered
by XML file formats [10,21] and databases [27], may be used
to provide augmented levels of abstraction and fine-grained
persistent data access, they introduce overhead and pro-



gramming models which make their usage impractical; since
efficient use of resources such as energy, bandwidth, memory,
storage, and CPU cycles, is important when resource-limited
mobile devices are considered.

The rest of this paper presents Bedouin, our attempt to
provide a solution to the difficulties stated above. Bedouin
incorporates ideas from two existing systems: Datom [18]
and Haggle [22]. Datom is a semantically rich storage layer
that moves from the traditional view of file content as a
monolithic element by exposing the structure, relationship,
and type of persistent data in a systematic way. Haggle
represents a network framework capable of exploiting the
augmented expressive power provided by Datom. Thus, the
contribution of our work is the integration of existing con-
cepts in the areas of persistent data management and net-
working in a novel manner.

Sections 2 and 3 of this paper introduce Datom and Hag-
gle, respectively. Section 4 presents their integration into
Bedouin; both systems have been ported and adapted to
work on resource-constrained mobile devices. We have tested
the Bedouin implementation using Caravan, a peer to peer
file sharing application for human networks, which was in-
stalled and deployed on a collection of mobile phones; this
evaluation is presented in Section 5. We analyse related
work in Section 6. Finally, Section 7 concludes this paper
and presents potential research directions for this work.

2. AN ABSTRACT VIEW OF DATA

Because of the characteristics of data transmission in DTNs
(e.g. short contact times, common disruptions and discon-
nection, intermittency, and delays) the interaction of the
network and storage layers is of fundamental importance.
The network’s incapacity to understand any degree of ab-
straction in application data brings on many limitations.
For example, the network is incapable of acting on its own
to transmit application-meaningful portions of information
in an opportunistic way or to prioritise which part of a
data stream should be transmitted if connectivity is lim-
ited, or intermittent. Also, corrupted data streams have to
be commonly discarded, or in the best case stored to be re-
constructed using a subsequent data exchange, which might
only take place much later.

The file abstraction has many limitations in the context
of DTNs. The file API handles applications’ requests in a
generic and untyped way, which is mainly concerned with
storing application data as blocks of bytes and with man-
aging a reduced set of metadata [11,15]. Any degree of
structure, type, or semantic knowledge about applications’
persistent abstractions that is present at run time is lost
within the data stream representing the file data.

The file abstraction greatly assumes access to a file as a
whole, or in the best case to opaque regions of data within
the file. Since a file represents a monolithic object, data
transmission takes place in an all-or-nothing fashion. This
is an important disadvantage in the context of DTNs since
connections may die suddenly without completing the trans-
mission of the whole data stream. In the best scenario, it is
an application’s concern to identify which sections of the file
are present in the data stream, keep track of their location
in the file, manage sharing of file content, and provide the
semantic meaning of data.

This situation can be improved if the level of abstraction
used at the storage layer is augmented and made explicit to
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Figure 1: Example of the relationships and inter-
faces of persistent items in some of the abstractions
of the Datom data model.

the network. Or in other words, it is necessary to expose
structure, type, and persistent data access semantics, to the
network in a systematic way. With this purpose we have
decided to take concepts from Datom [18], since we consider
it offers unique advantages over other storage technologies.

2.1 TheDatom Storage L ayer

The Datom storage system follows two principles to im-
prove the interaction with persistent data: expose application-
specific data organisations and bring to light persistent
data types through components with well-defined inter-
faces. These principles are embodied in the two main types
of persistent items of its data model: Composite Entities
and Elements.

e Composite Entities are persistence-capable data struc-
tures which exhibit access semantics of a group of com-
monly used abstract data types. These data structures
correspond to the nodes in the graph of persistence of
the Datom data model. There are five types of Com-
posite Entities, each of them supports different data
access semantics. These are stack, queue, list, map,
and matrix.

e Elements are the fundamental unit of storage for ap-
plication data in the Datom storage model. Datom El-
ements can be regarded as docking points at which ap-
plication programs load or store typed data. They rep-
resent application-specific programming abstractions
with rich semantics and defined access routines. Ac-
cordingly, the definition and specification of Elements
is based on applications’ abstractions.

The Datom storage layer manages application data as a
rooted graph of persistence made of these two types of items;
it is correct to say that Composite Entities provide structure
and access intent while Elements contain actual application
data. Figure 1 shows a hypothetical piece of persistent data
holding addresses; in which data is organised using a Datom
map as an entry point. To get access to any of its members a
system should use the well-defined map interface. Actual ad-
dresses are contained in the application-defined User Address
Element. In addition, Composite Entities can be combined



to create more complex data representations. This is illus-
trated in the figure in the last member of the map which
contains a Datom list of addresses; probably a user with
more than one address. To access these addresses a pro-
gram will have to use list semantics. Once a UserAddress
is recovered, its data is accessed using application-defined
routines (e.g. getStreet()).

The decision to employ a set of abstract data types (i.e.
stack, queue, list, map, and matrix) as the primary inter-
face to a storage layer follows one empirical observation:
they are the most common data structures used by applica-
tions to manage persistent data objects at run time. There
is practical evidence that they are commonly employed at
runtime to organise persistent data layouts [18]. Because
these abstract data types are commonplace in programs,
implementations of them abound in modern programming
languages as native types or as additions into their stan-
dard libraries [1,16,25]. In the context of databases, they
have been used as fundamental storage elements [17], as a
support tool to manage databases’ query results [3], or as
an interface to the underlying database data model [26].

Building the Datom storage layer on top of these abstrac-
tions represents a minimalist approach to the issue of get-
ting access to the abstract composition of file data. They
afford the possibility of representing application data more
accurately and systematically expose persistent data seman-
tics and applications’ access intent. By exploiting this aug-
mented level of abstraction, the network is able to under-
stand persistent data layouts and manipulate a graph of
persistence made of basic building blocks that exhibit well-
known interfaces.

The main objective of Datom Elements is to use application-

specific data semantics to manipulate persistent data. Ele-
ments are type managers that aim to provide a light-weight
mechanism to store application data. As far as Datom is
concerned, the data items stored inside a given Element lack
identity and are managed through the interface of the hold-
ing Element. Elements’ data is thought to be transmitted
together (also clustered on disk) since they clearly reflect the
data access semantics of the application, and as a result, a
powerful hint to spatial locality of reference.

Some features in the implementation of Datom were es-
pecially important for us. The design and implementation
of Datom weighs the trade-offs between functionality, over-
heads, and generality. Datom is enabled with incremental
data loading based on the navigation that applications per-
form on the graph of persistence, which represents a mindful
use of resources based on the application’s access patterns.
Furthermore, it provides automatic data movement between
the volatile and persistent data spaces, automatic memory
management, full control of update granularity, and atomic
updates. Describing in detail these features is out of the
scope of this document. In section 4 we will, however, elab-
orate on the aspects that are relevant to our purposes.

The Datom storage layer opens the possibility of perform-
ing application-wise data transmission strategies, and thus,
improving the network interaction with persistent data. We
consider the Datom storage layer to be a good solution for
three main reasons:

e It enables the network to systematically disclose struc-
ture and exploit the advantages of fine-grained data
access in an application-meaningful way.

e With Datom, application data is able to describe itself
at a fine-grained level. Then, the network is able to
identify application data, and also to associate meta-
data such as security, and delivery information to pieces
of information.

e [t substantially improves the cooperation and commu-
nication between applications, the network, and the
storage system by sharing a common understanding
based on high-level abstractions.

Certainly, other storage technologies could also have been
used in place of Datom to provide augmented levels of ab-
straction and fine-grained access to persistent data. How-
ever, we considered important the following issues in our de-
cision. Although a considerable amount of persistent data
of applications running on top of file systems is amenable to
structural decomposition, its access pattern [19,29] does not
map properly to database functionality [27]. Furthermore,
applications that use databases accept as necessary the over-
heads introduced by a high-level query language (e.g. SQL,
OQL, XQuery) such as parsing, query optimisations, access
path and plan selection, and query execution in exchange of
the ability to dynamically query the content of the database.
Efficient use of resources such as energy, bandwidth, mem-
ory, storage, and CPU cycles are important constraints in
challenged environments. Datom has been, from its onset,
conceived as a light-weight alternative; it disregards the type
of data access facilities that may represent unnecessary over-
heads [18]. This, in our case, is especially convenient since
we deal with resource-constrained devices on DTNs.

The manipulation of XML file formats has limitations in
the context of DTNs as well. The programmatic APIs used
to process XML data depend heavily on stream-based data
manipulation to disclose file structure and data types; this
reproduces many of the limitations observed in traditional
file processing. In pull based APIs, such as SAX [21], data
is processed sequentially, backward data navigation is not
possible. This is a major shortcoming in challenged net-
works, an environment in which data exchanges are inter-
mittent and retransmissions are commonplace. Tree-based
APIs, such as DOM [10], create whole-file in-memory repre-
sentations and thus are able to provide tree-like navigation.
However, this model puts great strains on system resources,
especially if the XML document is large. When compared
with XML APIs, Datom aims to systematically expose data
type and structure without relying on internal file formats by
employing a rich set of programming abstractions equipped
with fully navigational and incremental loading capabilities.

3. HAGGLE NETWORKING

Within the framework of the EU-project Haggle, a layer-
less architecture for mobile devices has been developed [22].
Haggle is a clean slate approach that solves many of the
disadvantages of using the original fixed networking model
in highly dynamic mobile environments. The key idea be-
hind Haggle is to release applications from the concern of
transporting applications’ data according to the underlying
network. Haggle architecture enables applications to work
independently of the transmission method employed, e.g. ad
hoc neighbouring communication, fixed network, or cellular
network.

The four core concepts that allow this independence from
the network layer are: data persistence support, flexible use
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of different networking protocols, name graphs supporting
late binding, and centralised resource management. In Hag-
gle, user’s data is made visible and searchable to other nodes.
Haggle includes support for multiple networking protocols
which are employed dynamically. Name graphs, which re-
late user-level names to low-level addressable names, are in-
dependent from networking protocols to avoid making as-
sumptions about the underlying infrastructure. Late bind-
ing is supported to avoid defining the data path a priori.
Finally, resource management is integrated to have a sin-
gle entity controlling the resources and not multiple appli-
cations making decisions based on individual views of the
system resources.

The four aforementioned concepts are used to design a
layerless networking architecture that comprises six mod-
ules known as Managers, which are illustrated in Figure 2.
Haggle does not pass signals up and down between layers as
the current OSI networking stack. Instead, managers have
well-defined interfaces to communicate with each other, in-
creasing the flexibility of the framework. In terms of the
current networking model, Haggle removes the concept of
layer completely, as opposed to breaking it as in the case
of “cross-layer” solutions. In practice, applications request
data transfers by creating a Data Object (DO) and a set
of Name Objects (NOs), including the name graphs. The
Forwarding Manager adds metadata about the forwarding
operation using a Forwarding Object (FO), and all this in-
formation is communicated to the Resource Manager to be
used in cost/benefit decisions.

An exhaustive description of the Haggle architecture is
out of the scope of this document. However, the functions
of each of the six managers in the Haggle architecture are
introduced in the following paragraphs for readability pur-
poses.

Resource Manager: It coordinates the activities of each
Haggle manager. All outgoing or incoming network opera-
tions in Haggle are controlled by the Resource Manager.
Decisions are taken on the basis of costs and benefits anal-

ysis. The Resource Manager is an example of the layerless
nature of Haggle, as it receives tasks from many other man-
agers such as neighbour discovery (Connectivity Manager)
or e-mail checking (Protocol Manager).

Name Manager: To allow late binding without query-
ing infrastructure services (e.g. DNS), name graphs are pro-
posed [28]. Thus, endpoint description in Haggle is not done
in the usual way of nested headers (e.g. MAC address, Eth-
ernet address, IP address, TCP port, etc.).

Connectivity Manager: It maintains awareness of local
connectivity on all interfaces. This manager encapsulates a
number of Connectivity Objects (COs) that interact with
the underlying hardware to provide communications func-
tionality. COs include information about estimated cost (in
terms of money, time, etc.) that is communicated to the
Resource Manager.

Protocol Manager: It is responsible for encapsulating
a set of protocols (e.g. HTTP, FTP, and SMTP) by which
data can be forwarded. Haggle allows communication be-
tween the Protocol and the Forwarding Manager to send
data (see Figure 2). In contrast, in the traditional network-
ing stack application-layer protocols do not have direct im-
pact on the forwarding decisions (i.e. network layer).

Forwarding Manager: It provides an API to applica-
tions to cause data to be sent remotely, it encapsulates for-
warding algorithms (e.g. n-epidemic), and sends information
about forwarding tasks to the Resource Manager.

Data Manager: It provides access to the local file sys-
tem to the network and controls applications’ data persis-
tence. Haggle’s data format is designed around the need to
be structured and searchable. Relations between data units
should be representable. The Data Manager presents an
API to applications that allows them to easily search data
according to user-level specifications.

The API that Haggle presents to the application is com-
posed of a subset of the APIs that each Haggle manager
provides to each other. The modular architecture of Hag-
gle makes possible to contribute to the overall framework
by replacing or extending the managers, an strategy that
we have used to include the Datom storage layer into the
Haggle framework, as depicted in Figure 2.

4. DATA MANAGEMENT IN HUMAN NET-
WORKS

The rationale of Bedouin, our proposal for improving data
management in human networks, is the result of a process
that can be summarised as follows. First, we studied a suit-
able architecture for human networks. We chose the Haggle
framework due to its unique characteristics, clean slate de-
sign around mobile users, and modular architecture. Then,
we identified the shortcomings of the current interaction be-
tween the network and the storage layer; supporting the
opinion that if applications’ data is to be visible and search-
able by other nodes in the network then the use of high-level
abstractions is compelling. Hence, we borrowed concepts
from Datom.

The original Haggle Data Manager and its data model also
include features such as data persistence management and
metadata; it currently uses Java’s standard interface to SQL
and MySQL as its back-end storage for its Data Manager.
This means that the current prototype is limited to run on
laptops. Nevertheless, a SQLite version was mentioned in



the latest Haggle reports [28] for a future light-weight ver-
sion of the architecture. However, our goal in employing
a different data model is to improve the Haggle Data Man-
agement for situations in which discerning applications’ data
semantics and access patterns directly from their persistent
data layout represents a key advantage; human networks
built from resource-constrained mobile devices is one of such
situations. Our work goes along with the Haggle principle
of extending and providing novel managers to the original
framework.

The unique features and benefits of combining Datom
with Haggle can be summarised as follows:

e Structured data and metadata: Haggle defines
data objects to organise data in trees, relate attributes
to branches, and run queries on the data using DO
filters. Datom facilitates all these features while pro-
viding a diverse set of semantically rich programming
structures. This, in turn, enables applications to cre-
ate persistent data layouts that match in a better way
their own data access semantics.

e Explicit persistent data layout: The network is of-
fered with a data model which is explicit about appli-
cations’ data organisation. Used in a clever way, appli-
cations can organise their persistent data layouts such
that features like priority, access pattern, data gran-
ularity, and locality of reference, are communicated
to the network layer directly from the persistent data
layouts. This means that the network no longer needs
application-specific libraries to understand, and take
decision according to, the data transmission require-
ments of applications; which motivates the following
point.

e Ease-of-cooperation: The disclosure of the seman-
tics of application data through the Datom Data Man-
ager interfaces facilitates the cooperation between ap-
plications and the network since data exchanges can
take place without the involvement of applications.
As a consequence, asynchronous networking actions
are enabled as data semantics are available across the
whole system, and non-synchronous activity between
endpoints becomes possible. This empowers Bedouin
nodes to access cached information at intermediate
nodes in an improved manner.

o A light-weight storage layer: The incremental data
loading capabilities of the Datom storage layer enables
the network to work exactly with necessary amount of
information at any given time. When an application
opens a Datom Composite Entity only the skeleton of
this object is loaded into memory since all its mem-
bers will have surrogates in place of concrete data ele-
ments. Surrogates are replaced only when an explicit
access occurs. This enables the network to load the
full skeleton of a graph of persistence and then solve
persistent data requests using a high-level view of the
composition of persistent data.

The rest of this section describes the porting and exten-
sions of Datom and Haggle. Then, we analyse the extension
to the Haggle Data Manager with a Datom-based Data Man-
ager that exposes the new data abstractions and interfaces
to the rest of the Haggle components.

4.1 Bedouin on Resource-Constrained Devices

Nowadays, the most popular mobile computing device
among humans is, with no doubt, the mobile phone. For this
reason, we decided to implement Bedouin to run on a collec-
tion of mobile phones, a realistic setting for our purpose. In
practice, to deploy a human network based on Haggle and
Datom on mobile phones, we needed to port and adapt both
systems to use J2ME CLDC; a specialised Java interpreter
for mobile devices with limited resources.

The porting of Haggle began with the publicly available
source code from [9] in July 2006. The functionality of this
version is far and above what is necessary, or even possi-
ble, for the mobile devices in the testbed. For instance, the
original source allows access to connectivity options such
as GPRS, WiFi, and TCP/IP, has hooks for applications
such as mail, news, and web proxies, and supports multiple
message delivery algorithms. Furthermore, it is written us-
ing Java Standard Edition (J2SE). This version of Java is
incompatible with the Java Micro Edition (J2ME CLDC),
which is supported by the mobile telephones in the testbed.
Although, the two languages are largely syntax compatible,
some changes are indeed necessary.

In order to speed development and minimise the size of the
program, all superfluous functionality was removed, leaving
basic manager functionality intact, along with a file trans-
fer application interface, and only Bluetooth connectivity.
Many data structures were changed, as J2ME CLDC only
supports basic types such as Vectors and Hashtables. In-
stances of sleeping threads were replaced with the logic of
waiting and notifying threads. Although this technique im-
plies a more complicated program structure, it allows the
program to only act when events happen, rather than contin-
uously checking for them, which consumes more resources.

Similar steps were taken in order to port Datom to the
J2ME platform. Of course, many data structures were changed
to the simpler ones that are supported, but the primary
change was the replacement of interfaces to external databases
for management of the data elements with the use of the
J2ME-included Record Management Store (RMS). RMS is,
for many mobile phone models, the only way to access per-
sistent storage using J2ME CLDC due to security issues.
Unfortunately, RMS is also slow (also device dependent).
Additional data storage interfaces were created, such as by
using volatile memory (e.g. RAM). Though this is not a
permanent solution, it is much faster than using persistent
storage for the duration of any tests.

4.2 Extending the Haggle Data M anager

This section describes the integration of Datom into the
Haggle porting by replacing the Haggle Data Manager with
a Datom-based Data Manager that exposes the new data
abstractions and interfaces to the rest of the Haggle com-
ponents. From a high-level view, to integrate the portings
of Datom and Haggle, we wrapped the Datom Manager im-
plementation and included it as a modular component that
extends the Haggle porting. The Datom Manager and the
Haggle porting were not further modified, as the integration
was designed as an extension.

Figure 3 shows in detail the integration of Datom into
Haggle. Two interfaces were added: one to allow commu-
nication between Datom and the Haggle managers and an-
other to enable applications to use Datom data abstractions.
The former extends the Haggle Data Manager enabling com-
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Figure 3: Datom improves Haggle by enhancing the
data manager.

munication with Datom. Hence, the Data Manager can re-
quest Datom objects in order to send them across the human
network. The latter allows applications to manipulate per-
sistent data, in the form of complete graphs of persistence,
a subgraph, or individual persistent items.

As shown in Figure 4, whenever a graph of persistence
is saved, references to persistent items are replaced with
surrogates, so that the graph can be split into individual
components. Claims between these data objects are cre-
ated accordingly, e.g. a DO referencing a Datom List would
claim every DO that refers to the persistent objects in this
list when its elements are traversed. The serialised form of
persistent items is included as an additional attribute of the
DO, when it is sent across the network. These properties
enable incremental loading and facilitates networking with
Datom graphs as it empowers Haggle nodes to reconstruct
them as individual elements arrive.

Persistent items are uniquely identified by its Persistent
ID (PID). As Datom was not designed for the purpose of net-
working, PIDs lack a user- or device-specific part (e.g. Hag-
gle node name or a unique device ID derived from the Blue-
tooth address). In order to enable persistent items for net-
working, the identifier for persistent items was augmented
to a globally unique identifier by including a device-specific
part. Accordingly, as soon as an item is moved to persis-
tence, Datom triggers the Haggle Data Manager to create
a Data Object with an attribute (datom-pid) that contains
the element’s PID.

The Datom Data Manager closely interacts with the rest
of the managers allowing efficient resource management in
constrained mobile devices. Networking tasks take place ac-
cording to user preferences, and data transfers observe as-
pects such as power, storage, and networking capacity usage.
Fine-grained access to user data and data persistence con-
trol are key elements for this kind of well-informed resource
management.

5. CARAVAN: A P2P APPLICATION FOR

HUMAN NETWORKS

To illustrate the benefits of integrating Datom and Haggle,
we implemented Caravan, a proof-of-concept peer to peer
(P2P) file sharing application that distributes meaningful
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data persistence.

pieces of data across human networks. Caravan was imple-
mented using J2ME CLDC and it runs on top of Bedouin.
Figure 5 shows Caravan user interfaces.

Caravan performs incremental loading and exchanges mean-
ingful data elements. In the prototype, people exchange
photos (PNG format) using the Datom-enabled P2P appli-
cation. The PNG files are decomposed into Composite Enti-
ties and saved using graphs of persistence. When two people
are in contact, they exchange as many meaningful Datom
objects as possible. Composite Entities are by default man-
aged as of higher priority so that the destination can quickly
reconstruct the skeleton of the Datom graph. The actual file
data is transmitted using Datom Elements. We have decided
to exchange photos mainly due to the visual effect of gradual
image reconstruction, as shown in Figure 5. However, Car-
avan can be employed to transmit any kind of application
data. In general, the definition of a particular persistent
data layout is in charge of applications themselves, since
it is their responsibility to hint, through the most suitable
organisation of Datom items, their data semantics, access
patterns, or transmission priorities.

Haggle nodes build the graph as Datom objects are re-
ceived and mobile users can look at incremental versions of
the photo as soon as they receive them. Composite Entities
include multiple listeners for surrogates comprised in them,
enabling applications to be notified upon reception of new
persistent items. To enable Datom items for networking, the
PID was extended to include a globally unique user/device
identifier (e.g. unique device ID derived from a Bluetooth
address).

Data exchanges happen based on Caravan Interest Pro-
files (CIPs), which contain Haggle node identifier, Datom
root names, keywords, and PIDs of received and missing
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Figure 5: Caravan main user interfaces.

Datom objects. When two Haggle nodes in the human net-
work have contact, they exchange profiles. This generates
Caravan messages between sender and receiver. The sender
is the node responsible to disseminate its Caravan Interest
Profile. The receiver evaluates the message and forwards it
to the Profile Handler that is part of Caravan. The Pro-
file Handler compares keywords contained in the exchanged
CIP with the Datom root names. Then, it checks for missing
elements in the requesting node (i.e. sender).

There are two cases that originate from the exchange of
CIPs. First, when a CIP-keyword matches a Datom root
name, a message that contains the metadata of the Datom
graph (Composite Entity) is sent to the requesting peer,
together with one or more of Persistent Items. Second, in
case the receiver has missing Datom objects, it sends them
one by one to its peer node. Peers always store the most
recent CPIs (using timestamps) to avoid handling the same
data request more than once.

5.1 Experimental Results

The Caravan application exists only as a proof-of-concept
demonstration. Measurement of the performance of the sys-
tem as a whole is planned for the future. Caravan currently
runs on a testbed consisting of Nokia 6630 mobile phones
with 1 MB internal memory and J2ME CLDC, Symbian op-
erating system, and Bluetooth stack implementation. How-
ever, the performance of sending Datom-ised files over a sin-
gle link has been evaluated.

As shown in Figure 6, a 1 MB file is transmitted between
two nodes, taking more than 20 seconds to be delivered in
full. Then, we tested the positive effect of Data Element
granularity. Each level of granularity is tested 30 times in
order to ensure data consistency. As expected, meaning-
ful portions of data are delivered much sooner, and ready
to be used by the receiving node, than with the whole file
approach. As the level of granularity is increased, a trans-
mission overhead is incurred, as in this test each data ele-
ment is sent by opening and closing a Bluetooth connection.
The transmission time overhead is between 5% and 25%.
This could be reduced by grouping many Data Elements to-
gether into single transmissions. Ultimately, after a short

Transfer time vs Graph granularity

granularity

time [s]

Figure 6: File Transfer Time vs. Graph Granularity

setup time, meaningful data can be delivered far before a
monolithic file could otherwise be delivered. Short contact
times can be easily taken advantage of, and data elements
can be managed more flexibly.

Evidence that short contact times are a challenge in reality
can be obtained from the analysis of contact times between
WiFi users. Data available from the Crawdad Project [12],
one of the most comprehensive studies of its kind, shows
that in the Dartmouth College campus over the course of
three years' roughly 55% of all intra-contact times lasted
less than 20 seconds. Other networking interfaces such Blue-
tooth would presumably exhibit shorter contact times due
to coverage and the nature of opportunistic human commu-
nications.

6. RELATED WORK

Most work in the area of DTNs and challenged networks
focuses on proposing new architectures, as well as routing
and delivery protocols [6]. However, less attention has been
given to data persistence management for DTNs. Some of
the concepts of data delivery in DTNs are taken from sensor
networks, as these experience similar networking challenges.
For example, DataMules [24] proposes an architecture to
collect data in a scattered sensor network. The main con-
cept is the use of mobile agents called MULEs that collect
and transport information around the sensor network (e.g.
vehicles, animals or humans). In a similar way, Message
Ferries [30] are special mobile nodes that provide transport
services to the rest of the deployed nodes in the sensor net-
work. A delivery method is defined by the Bundle Proto-
col [23] that describes the format of the messages (called
bundles) passed between DTN bundle agents that partici-
pate in a store-and-forward overlay network. Recent work
has been published related to opportunistic content distribu-
tion in human networks [13]. Mobility traces were collected
from a target group of mobile users to develop a content
distribution model.

Previous research has examined the role of networked file
systems in a mobile context [5,20]. These works assume, to a
great extent, that there is a supporting infrastructure and a

'Dataset dartmouth/campus/movement/01 04 (v.2005-03-08).



stable link between a node and a particular server. However,
we consider that the classical view of file data does not help
to overcome the challenges of long delays and disruptions,
or to fully exploit the opportunistic networking model.
Attempts to move away from the traditional file API to
higher levels of abstraction have been investigated in differ-
ent works, to a certain extent Datom shares the ideology be-
hind them. Compound files in the OLE Structured Storage
Model [2] represent a solution to the problem of internal file
structure. Gribble et al. [8] explore distributed data struc-
tures and higher-level abstractions (e.g. hash tables, b-trees)
as a storage infrastructure replacing the traditional flat view
of data as a persistent data management layer. Under the
same line, the Boxwood project [14] argues that higher-level
abstractions can enable the system to perform better load-
balancing, data prefetching, or informed caching.

7. CONCLUSION AND FUTURE WORK

Bedouin, i.e. the integration of Haggle and Datom, has
been proposed in order to improve data management in
DTNs. To practically asses the benefits of our approach
and test our assumptions, we implemented Caravan as an
example application. Caravan runs on Bedouin nodes trav-
elling in a human network with short contact times and
resource-constrained devices. Bedouin improves the net-
working model by making use of rich data semantics; dur-
ing short contact times between nodes, Caravan is able to
perform incremental data loading strategies and exchange
meaningful portions of data. For future research, we plan
to run tests in a realistic setting by installing Bedouin and
running Caravan on a large number of mobile phones. We
plan to deploy these devices in an office and report our re-
sults extensively. We consider that this paper can generate
an interesting discussion on the open issues of data manage-
ment in challenged networks during the workshop, a topic
that has not been studied in detail in the past.
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