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ABSTRACT
Podcasting has become a very popular and successful Internet ser-
vice in a short time. This success illustrates the interest for par-
ticipatory broadcasting, but podcasting is alas only available with
fixed infrastructure support to retrieve publicized episodes. We aim
at releasing this limitation and present herein a podcasting system
architecture based on opportunistic wireless networking that allows
us to extend podcasting to ad hoc domains. The design is explained
and presented together with a prototype implementation running on
hand-held devices. We analyze different fundamental design trade-
offs based on measurements.

Categories and Subject Descriptors:
C.2.1: Network Architecture and Design

General Terms: Design, Experimentation.

Keywords: ad hoc networking, delay tolerant broadcast, oppor-
tunistic communication, wireless podcasting.

1. INTRODUCTION
The rapid rise of podcasting rests on two strong trends in com-

munications: first, the interest in participatory media that allow
anybody with a computer and network access to produce and dis-
tribute contents, and, second, the rapid growth in use of the Internet
for distributing bulk data. These two trends are admittedly not new
and emanate from the introduction of the world-wide web and the
subsequent popularity for making personal and commercial web
pages publicly available. Content distribution has been driven also
by various file-sharing protocols. Podcasting is different in its form
since the contents are produced by a person or a collective of per-
sons and they are mostly streaming media.

A third trend in communications is the boom of wireless. For
cellular communication, the number of mobile phones in the world
exceeds a billion and the matching network infrastructure is now in
the third generation, with standardization working on its long-term
evolution. Cellular communication is also provided for local areas
by access points operating in the license-free spectral bands. Many
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electronic devices such as portable media players, digital cameras,
mobile gaming terminals, hand-held computing devices and posi-
tioning systems are also capable of communicating wirelessly by
means of Bluetooth and WLAN. An interesting observation is that
the first two trends regarding participation and bulk data are not
greatly reflected in the wireless domain: The main service category
in addition to telephony appears to be streaming of professionally
produced contents targeted for cellular phones. (This is of course
not true when WLAN is used as a cordless extension of the Inter-
net.)

The design presented in this paper is for a wireless podcasting
system that offers a means for bringing the participatory media and
bulk content distribution into the wireless domain. The basis for
the service is an opportunistic distribution of contents among mo-
bile users. Users in our system exchange podcasts when they cross
each other in urban areas, when they meet in public transportation
and at sport, art or music events. We would like the system to
be open to anybody who wants to provide and consume contents.
Hence, it is based on unlicensed short-range communication like
IEEE 802.11, Bluetooth, infrared and future ultra-wide band com-
munication. By relying on short-range communication, the net-
work will be highly disrupted most of time. The communication is
further challenged by relatively short transfer opportunities which
might be in the range of a few seconds when for example two nodes
cross each other.

Our opportunistic podcast service leverages the mobility of the
nodes. Nodes mix and associate randomly with one another as
they move, and two nodes that have been in contact may never
get in touch again. To cope with these challenging conditions,
the application data is structured in our design so that also short
contacts may be used to exchange meaningful units of application
data, and downloads may be resumed in case of disruptions. Fur-
ther, our wireless opportunistic podcasting distribution system is
entirely receiver-driven. That means that nodes solicit contents of
interest and there is hence no information that is pushed as in tradi-
tional data routing schemes. The contents are organized into pod-
cast channels (often referred to as feeds in the podcasting word-
ing) and may originate both from nodes in the ad hoc domain or
from servers in the infrastructure domain. The data is exchanged in
short units, which we refer to as chunks. Fragmenting contents into
chunks allows the application to resume incomplete downloads, ei-
ther from the same node or from an arbitrary node encountered in
the future (which has the same contents). The application must
be able to replay chunks delivered in a random order and it must
tolerate that not all units of chunks within a channel will be de-
livered. We believe that the service still has uses: a poetry channel



could distribute people’s own reading of poems, a snapshot channel
could provide tourists’ views of a city by means of pictures or small
videos taken with their mobile phone and communication-capable
cameras.

In this paper, we present a full implementation of the podcasting
for hand-held devices and provide results from associated perfor-
mance measures.

2. RELATED WORK
This paper complements our work on ad hoc podcasting we pre-

sented in [8]. In the previous work, we evaluated the impact of
different content solicitation strategies to improve the podcast dis-
tribution speed in mobile scenarios. This paper focuses on the sys-
tem architecture design and the implementation of the system on
mobile devices.

There has been substantial work on peer-to-peer content distri-
bution for the Internet. BitTorrent is a successful instance of such
systems where users who retrieve contents act simultaneously as
clients and servers. It has post-facto gained interest in the research
community; see for instance [5]. Our podcasting system has simi-
larities to BitTorrent, but the mobility assisted delivery means that
data are provided in a random order from a random mix of peers
whereas peer-to-peer content distribution systems like BitTorrent
selects peers based on specific rules.

The closest research field is the delay tolerant networking. The
Delay Tolerant Network Research Group (DTNRG) [1] has pro-
posed an architecture [3] to support communication that may be
used by delay tolerant applications. The architecture consists mainly
of the addition of an overlay, called the bundle layer, above a net-
work transport layer. Messages of any size are transferred in bun-
dles in an atomic fashion that ensures node-to-node reliability. Mul-
ticast for delay-tolerant networks has been proposed in [12]. In
contrast to multicast, our work assumes open user groups. The in-
fostation concept is akin to our proposal and the paper in Ref. [10]
studies means for avoiding exploitation of other nodes. We differ in
that we make the nodal exchanges governed by a protocol instead
of a social contract between users.

We show in [7] that delay-tolerant broadcasting between mobile
nodes results in sufficiently high application level throughput even
for streaming. This is the case in urban pedestrian areas with rea-
sonably high densities of users, as well as in public transporta-
tion and in places where people gather occasionally (e.g., sport
fields, shopping malls, recreational areas). Contact patterns of hu-
man mobility have been analyzed in the Haggle project [4]. This
project aims at developing an application-independent networking
architecture for delay-tolerant networks. In contrast, we implement
the podcasting service directly on top of the link layer to exploit
application-specific policies (like channel interests) in the way in-
formation spreads across the mobile users.

BlueTorrent [6] is a cooperative content sharing system for Blue-
tooth. It differs from our approach in the search mechanisms and
the content structuring. We rely on a channel-based content struc-
ture with a subscription model whereas BlueTorrent employes flat
structuring with traditional query string search. TACO-DTN [11] is
a content-based dissemination system for delay tolerant networks.
It is implemented as a publish/subscribe system and was mainly
designed to distribute temporal events whereas our approach is im-
plemented as a pure receiver-driven system and optimized for dis-
semination of streaming media.

We use bloom filters in the searching for contents; a survey of
the use of bloom filters in networking is given in [2].
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Figure 1: Service architecture for opportunistic podcasting.

3. DESIGN AND IMPLEMENTATION
This section describes the design and implementation of our op-

portunistic podcasting system. We first give a brief overview, then
describe the system architecture, and finally disccuss the protocols
involved in a pair-wise association when two devices meet.

3.1 Overview
In our architecture, we organize the content into channels to fa-

cilitate the search and the download of podcasts. Therefore, ev-
ery user subscribes to the channels that he or she is interested in,
and his or her device will try to retrieve any contents belonging to
those channels. Following the approach used in the Internet-based
podcasting protocols (RSS and the Atom syndication protocol), we
structure channels into episodes and enclosures. To make efficient
use of contacts with a small duration, we further divide enclosures
into chunks, transport-level data units of a size that can typically
be downloaded in an individual node encounter. Each chunk is fur-
ther divided into pieces, the atomic transport unit of the network.
The resulting system architecture is illustrated in Figure 1. Note
that the architecture in the figure does not have any routing layer.
The transport layer acts directly on top of the link-layer. To dis-
tribute contents among the podcasting nodes, we do not rely on
any explicit multi-hop routing scheme. Instead of explicitly rout-
ing the data through specific nodes, we rely on a receiver-driven
application-level dissemination model, where contents are routed
implicitly as nodes retrieve contents that they request from neigh-
boring nodes.

3.2 Architecture
We distinguish between an application layer, a transport layer,

and the data link layer. In a first level of aggregation, the applica-
tion organizes the contents in channels. Typical channels are for
example sports channels, news channels, or music channels (of dif-
ferent types), but also more local or private channels like photo
albums or audio recordings that user are willing to share with their
surrounding.

Each channel is itself subdivided into episodes; each episode
consists of one or more enclosures. Episodes are specific news
programs, sports matches, or contents from specific artists. The en-
closures are then smaller parts of the program, or the attachments
in podcasting wording (e.g., individual files like videos of soccer
matches, or music files).



Channel Episode Enclosure Chunk Piece
256 KBytes MTU size

Fox Today Video 1 Chunk 1 Piece 1
News at Piece 2

noon Pieces 3-x
Chunk 2-x Pieces x-y

Video 2 Chunk 1 Pieces 1-x
Classic Bach MP3 1 Chunk 1 Pieces 1-x
Music Chunk 2-z Pieces x-y

Mozart MP3 1 Chunk 1 Pieces 1-x
Chunk 2 Pieces x-y

MP3 2 Chunk 1 Pieces 1-x
Chunk 2 Pieces x-y

Rock Queen 1st song Chunk 1 Pieces 1-x
Music 2nd song Chunk 1 Pieces 1-x

Application Layer Transport Layer

Table 1: Data structure for example contents.

Below the application layer, the transport layer organizes the data
into chunks. Chunks are smaller data units that should be able to
download over short contacts. The use of smaller file blocks is
also supported by the idea of integrating forward error correction,
for instance the use of fountain codes, to speed up and secure the
data transfer, specifically when chunks are received unordered. The
chunks themselves are then again cut into smaller parts to optimize
the interaction with the data link layer; i.e., the size is set to the
MTU size of the datalink layer. Table 1 illustrates an example mix
of contents organized and structured as proposed in our architec-
ture.

Our proposed system is designed to work on any MAC architec-
ture, however, to be effective even in the presence of short contact
durations, short setup times and high data rates are important for
achieving high application throughput.

Our design is further characterized by two fundamental choices.
First, we allow only pairwise associations even when the MAC
layer supports multi-point communication. Second, we never push
contents in the network and rely instead on receiver-driven dissem-
ination. The arguments for these two choices are simplicity and
optimal usage of short contact durations. Problems and limitations
of broadcast or multicast distribution have been heavily discussed
in reliable multicast research for many years. But, besides being
much simpler to implement, the pairwise connection also optimizes
the resources available for maximal throughput over short contacts,
allowing a node to complete one download instead of ending up
with several downloads interrupted by mobility. Furthermore, the
transport layer is able to optimize the flow control between the two
nodes and is not constrained by the slowest receiver in range.

Since we do not perform multi-hop routing explicitly, the system
performance is mainly determined by the selection of nodes we are
synchronizing with and the order by which we download contents
from the peers. This task is performed by the synchronization man-
ager, depicted in Figure 1. The synchronization manager is respon-
sible for orchestrating and maintaining state about past encounters
and current neighboring devices.

At the beginning, the devices have to determine the channels for
which they wish to receive contents. This might impose a boot-
strap problem for new devices that do not know of any channels.
In the Internet, users typically lookup podcasts of interest with the
help of search engines. However, in the ad hoc domain such search
engines will not be accessible. We solve this problem by introduc-

ing a discovery channel that is known to all devices participating in
the service. This channel includes IDs and meta-information of all
channels. Contents from this channel are propagated in the same
manner as other channels and as a result, new channels are discov-
ered as peers associate and exchange contents.

3.3 Association phases
We next describe the process when two nodes associate. We

differentiate two phases: a discovery phase in which both nodes
detect that they are in range and a download phase in which the
nodes negotiate and perform episode downloads.

3.3.1 Discovery phase
We assume that every device that participates in the opportunistic

podcasting belong to the same network, e.g., with IEEE 802.11
every device is configured in ad hoc mode and uses the same SSID.

While the detection of new devices in the network is handled by
the MAC layer, the application in the nodes has to take care of the
discovery of devices that participate in the wireless podcasting ser-
vice. Therefore, each device sends out periodic hello messages to
the broadcast address of the wireless network. Note that if broad-
cast is not available at the MAC layer as in Bluetooth networks, the
same idea could be implemented by letting the nodes periodically
scan for devices in the neighborhood (e.g., using inquiry scans in
Bluetooth). Hello messages contain the following information:

• Device ID: a globally unique twenty-byte ID.

• Status (ready or choked): A device advertises itself as chocked
when it is already associated with another peer. Otherwise,
the status is ready and it accepts new associations.

• Service port: the transport port on which the synchronization
manager listens for incoming associations.

• New content date: includes the date at which a device last
downloaded new contents. This field helps reducing the re-
synchronization attempts in case two devices are within range
for longer periods.

• Sequence number: a number incremented by the sender for
each hello message. This number is used by the receiving
nodes to determine if intermediate hello packets were lost.

The synchronization manager keeps track of the discovery mes-
sages received from each peer and maintains a history list.

An important aspect of the discovery process is to identify peers
with a good connection. Since we designed our system for ad hoc
scenarios, we have to consider the specifics of wireless communi-
cation. If a peer is far away or if the connection between the peers
is hindered by walls or obstacles, we might be able to receive in-
dividual hello packets but most of the packets between those two
peers will get lost. In order to discriminate such associations, we
differentiate the peers based on a stability measure that accounts
for the number of hello messages received in the past.

The stability measure works as follows. We count the number
of hello packets that arrive at each node. The first packet received
marks the peer as fading in. If we have received a certain number of
consecutive hello packets (currently 3 in our implementation), the
peer is marked as stable and we might associate with this node. If
we do not receive hello packets for more than a timeout value (six
seconds in our implementation), the peer times out and its entry
is deleted (i.e., it moves to the state away). A peer which is not
yet registered in the peer table always starts in the away state as
indicated in Figure 2.
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Figure 2: State diagram of discovery phase.

Another issue arises in scenarios when nodes are in range for
longer durations and new contents become available. The surround-
ing nodes might not be aware of newly available contents, unless
they constantly synchronize with all neighbors and check for up-
dates. In our implementation we hence decided to add information
about new content availability in each discovery packet (the new
content field as mentioned previously). This new content field helps
peers to determine if a re-synchronization might be beneficial. Af-
ter an association gets terminated, the device checks if it has re-
ceived new contents. If this is the case, the application updates its
internal new content date. As this date is advertised with every dis-
covery packet, other devices automatically know when they should
trigger a re-synchronization with this device in order to download
the new data. One might also think of including channel infor-
mation in this field to inform which channels have been updated.
However, since these hello messages are sent on a periodic basis,
we decided to only include the date to keep the hello messages as
small as possible.

3.3.2 Download phase
Once a podcasting device has been detected, the synchroniza-

tion manager switches to the transfer mode which handles the syn-
chronization. The transfer mode is based on a client-server model.
The communication protocol is a request-response system. It is not
a strict system though; some requests do not generate a response
whereas other requests can generate several responses. The goal
is to send as few packets as possible to reduce the communica-
tion overhead. Figure 3 illustrates the state diagram of the transfer
mode. Due to space limitations, we do not discuss all states in de-
tails but focus on the three most important stages of a synchroniza-
tion between two devices: the negotiation, query, and download
stage.

In the NEGOTIATION stage, both devices determine if some of
the subscribed channels are available on the other device. Instead
of querying every single channel, the devices exchange a bloom fil-
ter that contains all channel IDs a device offers. The bloom filter
on every device is initialized with the channel IDs of every chan-
nel on the device. Both devices then start to test their subscribed
channels against the bloom filter of the other device and create a list
of matching channels. This is a local process and does not involve
the exchange of messages. False negatives are not possible, which
means that a channel not found in the bloom filter is certain not to
exist on the other device. False positives however are possible. A
channel found in the bloom filter might still not exist on the other
device. Although we still might query channels that do not exist on
the other device, the number of queries is reduced and thus the fil-
ter speeds up the synchronization as we will see in the next section.
Ideally, we would like to have a constant false positive probability

Download

Negotiate

Query

Serving

Finished

ClosingError

Hello

ChannelHash received

Hello received

All channels queried

Nothing left to download

Remote side is done

or other unexpected error
download ratio hit,
Connection lost,

Figure 3: Transfer mode state diagram.

regardless of the number of channel IDs in the filter. Because we
always know how many channel IDs have to be maintained in our
bloom filter, we automatically adjust the filter size according to the
number of channels. Every time the number of channels changes,
we re-calculate the optimal size and re-create the bloom filter. As
this happens relatively rarely, the overhead associated with this pro-
cess is not critical. The mechanism described here is applied to the
lists of channel contents only, but it could easily be applied to the
synchronization of episodes and enclosures within a channel.

In the QUERY stage, a device confirms the channels selected in
the previous stage and then retrieves a list of episodes offered by the
remote device within those channels. Our implementation supports
three different types of episode retrievals:

1. The peer requests any random episodes within a channel that
the remote peer offers. This is particularly useful if the episodes
are independent of one another (like a selection of poems).

2. A peer requests any episodes which are newer than a given
date starting with the newest episode. This is particularly
useful for news feeds in which the latest news feed has the
most value.

3. The peer requests any episodes that are newer than a given
date starting with the oldest episode. This type of retrieval is
useful for episodes which depend on each other like a series.

The actual download of enclosures is handled in the DOWN-
LOAD stage which usually takes up most of the connection time.
The device starts to process the list of enclosures that was created
in the previous stage. The download itself works analogous to the
download process of BitTorrent. Missing chunks which are avail-
able at the remote peer are randomly selected and downloaded. Re-
mark that a chunk is divided into several pieces which are requested



one-by-one in data-link frames. The concept of chunks allows us
to start downloading an enclosure even if the enclosure is only par-
tially available at the remote peer. It does not matter if the remote
peer only has part of an enclosure or if the connection gets ter-
minated. It is always possible to resume an interrupted download
from any other peer in a later synchronization attempt which helps
to minimize the data to be retransmitted. Note that we share the
wireless link capacity in a fair manner between the two associated
nodes. That is, both nodes get half of the download throughput.
However, we do not enforce any strict guarantees at the application
level but rely on the MAC layer multiplexing for this.

If a device cannot find any more data to download it waits for the
remote peer and terminates the connection as soon as the remote
peer is done as well. Additionally, we impose an artificial limit on
the associate duration. This allows a more fair content distribution
in scenarios where multiple nodes are co-located, and one node has
contents that the remaining nodes would like to have.

When two devices associate but have no channels or episodes
to exchange, the devices could stop the synchronization without
going into the download stage. A better alternative is to download
contents that are not of direct interest to the user of the device, but
which might be of interest to other users in future encounters. We
have investigated different caching strategies for this cooperative
approach in [8]; such an implementation is however not included
in this paper.

4. EVALUATION
This section evaluates important design choices of the proposed

architecture as well as the performance we might expect from a
wireless opportunistic podcasting service. Our evaluation relies on
our prototype implementation and focuses on typical deployment
scenarios in which (i) a bunch of nodes are co-located (e.g., people
in a bus) or (ii) when users are mobile and cross each other (e.g.,
two persons crossing each other in a street).

4.1 Measurement setup
The devices we performed our measurements on are 19 HP Iraq

hx2400 devices (Marvell PXA270 processor - 520 MHz) with 128
MB RAM and running Windows Mobile 2003 Second Edition as
well as five IBM ThinkPad T60 laptops (Intel Centrino Core Duo
T5600 - 1,83 GHz) with 1GB of RAM and running Windows XP.
We were mostly interested in the performance on limited devices
like the iPAQs, since we foresee that our application will run on
portable devices such as mobile media players. We measured the
performance on laptops in order to better understand where the bot-
tleneck of the system lies. All devices communicated over their
integrated WLAN interface (802.11b) turned into ad hoc mode.
Our podcasting application is written in C++. Since we were un-
able to access RAW sockets in Windows Mobile Edition, we im-
plemented our application using traditional UDP broadcast sockets
(for the discovery phase) and TCP sockets (for the synchronization
and download phase). Note however that our podcasting architec-
ture does not rely on the TCP/UDP/IP protocol suite and the per-
formance of our system is expected to be the best when directly
implemented on top of the MAC layer.

The devices that participate in the podcasting system are config-
ured in ad hoc mode using the same SSID. We were not interested
in any IP-related performance issues like auto-address configura-
tion, indeed we intend to implement our service directly on top of
the MAC layer, we configure the IP addresses of all devices manu-
ally in a private IP range. To facilitate the offline log file analysis,
we synchronized the local clock of the devices before every mea-
surement, because the mobile devices had a considerable drift.

4.2 Discovery phase
An important aspect of opportunistic wireless podcasting is the

discovery time. The discovery time is the time between the moment
two nodes move into transmission range until they discover each
other at the application layer and start the synchronization phase.
This time is directly impacted by the interval at which the hello
messages are sent. The more frequent these messages are sent,
the quicker they will discover each other and be able to transfer
episodes. However, these hello messages should not be sent too fre-
quently mainly because of two reasons. First, too many such mes-
sages will cause the battery of the devices to deplete faster. Second,
we observed that the processing of incoming hello messages has
a significant impact on the application performance. When many
devices are in direct transmission range, the multitude of incom-
ing hello messages limits the download throughput of the actual
episode downloads. For example with 19 iPAQs in range, the aver-
age download time of episodes was around 15 percent lower with
a hello interval of 1 second compared to 2 seconds. This perfor-
mance degradation is not because the hello messages are consum-
ing much bandwidth, but because the processing of those messages
at the receiver is consuming CPU resources. The measurements
that follow in this paper all have a hello sending interval of 2 sec-
onds, which we view as a reasonable tradeoff between discovery
time and download performance.

Another important aspect regarding discovery is related to the
time it takes to discover nodes having new contents of interest, af-
ter being previously associated to them. We are interested in the
time it takes at the application layer to detect this new piece of con-
tents. For this purpose, we evaluate the benefits of having the new
content date information in the hello packets by comparing the per-
formance we would obtain through periodic checking (involving
re-associating and re-synchronizing) for new contents at the neigh-
boring devices. We study these two strategies in a scenario com-
prising of iPAQs that are placed close together on a table and have
been mutually synchronized (this would for example correspond in
a scenario where people are in the same bus, thus within transmis-
sion range). Then, we introduce a new node having an episode of
5MB that is of interest to all other nodes (for example, a person
entering the bus with new content). We measure the time it takes
until the other nodes have this new episode assuming all of them
are subscribed to the channel of the newly arrived episode. This
time for various number of devices averaged over three different
measurement runs is plotted in Figure 4. For these sets of measure-
ments, we set the maximum association time to 10 seconds, i.e., an
association will stop after 10 seconds of download time, irrespec-
tively of the completeness of the total download (recall that this
mechanism is in place to allow a fairer content distribution among
the nodes). In Figure 4(a), we see the performance having the new
content field in the hello messages. Figure 4(b) shows the result
when the devices re-associate every 30 seconds to check whether a
neighboring device has new contents and Figure 4(c) illustrates the
performance when devices re-associate every 60 minutes. We dif-
ferentiate three time metrics: (i) the time until the first device has
finished the complete download of the new episode, (ii) an average
over all devices, (iii) and the time until the last device has finished
the download.

The download times for a re-synchronization timeout of 60 min-
utes are considerably larger. This is because all nodes try to down-
load the episode from the device that originally brought it. How-
ever, after some time, some nodes have already successfully down-
loaded some chunks from this episode and could potentially share
them. When the re-synchronization timeout is large, the nodes do
not make optimal usage of the ability to download chunks from
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(a) Hellos messages with new content field.
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(b) Periodic re-association (every 30 seconds).
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(c) Periodic re-association (every 60 minutes).

Figure 4: Time for a new episode of 5MB to be downloaded.
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Figure 5: Synchronization time with and without bloom filter
for different number of channels in a node’s cache.

these other nodes. For a re-synchronization timeout of 30 seconds,
the download times improve dramatically which means that nodes
now start to better spread the chunks among themselves. The best
performance is when having the new content field in the hello mes-
sages. Then, the neighboring nodes learn almost instantaneously
when new chunks are available at the neighboring devices.

The difference between the new content hello messages and re-
synchronizing every 30 seconds is not large in this setting. How-
ever, the measurements where completed with one individual chan-
nel which makes the synchronization time rather small. When the
number of channel becomes large, the difference between these
two strategies is more pronounced as the synchronization time in-
creases. Furthermore, as continuously re-synchronizing requires
more communication and thus more battery power at the mobile
devices.

4.3 Synchronization
We next look at the synchronization time. The synchronization

time is the time between the moment two devices have discovered
each other and associate until they start downloading episodes of
interest. Figure 5 shows the performance of our implementation
for different number of channels using bloom filters compared to
the time it would take without bloom filters (by sending the raw
meta information of all channels). The shown results are from mea-
surements with two iPAQs lying next to each other on a table (less
than one meter). The channel meta information for those measure-
ments is on average 500 bytes, corresponding to the average size
we found in Internet podcast feeds. We vary the size of the bloom
filter in order to keep the rate of false positives below one percent.
As a result, the bloom-filter size of for example 1000 channels is
approximately 1200 bytes.

Our measurements show that the use of a bloom filter dramati-
cally reduces the synchronization time for a large number of chan-
nels. For example, the synchronization time for 2000 channels is
around one second, ten times smaller than without the bloom filter.
In the worst case, the synchronization time with lots of channels
and without the bloom filter would be so large that many device
encounters of a small duration could not be used to transfer any
episode or even any chunk.
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Figure 6: Download time of a 5MB episode without limiting the
maximal association time.
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Figure 7: Download time of 100 episodes of size 50 kB versus
one episode of size 5MB.

4.4 Download
We artificially limit the association time to ensure that the sys-

tem remains fair when multiple nodes are interested in the contents
provided by just a few nodes. Without this artificial limit, the first
node that associates with the node having new contents would be
able to download for an indefinite amount of time, letting the other
nodes starve for contents. To observe the behavior of the system
without this artificial limit, we look in Figure 6 at the download
time that we would get without limiting the association time when
a new episode of 5MB gets available within a channel to which
all surrounding iPAQs are subscribed. As we can see, the time for
the first node to finish its download is almost independent of the
number of neighboring devices subscribed to the channel. How-
ever, the time until the last node gets the new episode is almost
400 seconds larger for 19 devices. This is because some nodes
have to wait for the complete download of other nodes before they
can start downloading themselves. Comparing with a limit of 10
seconds association time in Figure 4(a), we see that all nodes get
the episode at almost the same time. Regarding the average down-
load time though, this limit adds a small penalty compared to the
unlimited download approach. This increase in the average value
mainly comes from the additional synchronization overhead caused
by more synchronization attempts in total.

We also studied how the performance with a large number of
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Figure 8: Average download time of a 5MB episode with the
PDAs compared to laptops.

small episodes would be different from having fewer large episodes.
Figure 7 compares the average download time varying the number
of neighboring iPAQs for one episode of 5MB versus 100 episodes
of 50 kB. Each of the 100 small episodes belongs to a different
channel. The curves show that it is slightly more expensive to re-
trieve small episodes from different channels than one large episode
from an individual channel. This comes from the higher synchro-
nization overhead.

4.5 Hardware limitations
The maximal download throughput we measured at the applica-

tion layer between two iPAQs was around 100-120 kB/s even under
ideal conditions (when two devices were very close to each other,
not moving, without interference from other transmissions). This is
far below what one would expect from an 802.11b connection. We
asked ourselves about this surprisingly low value and performed
additional measurements to understand the bottleneck. First, we
measured the maximum throughput when sending data over TCP
between two iPAQs but without processing the data at the receiver
(which we have to do in our application to interpret and store the
data). We measured then a maximum throughput of around 350
KB/s. Therefore, the throughput degradation in our application
must come from the processing and storing of the incoming data
to the storage Flash cards. An additional measurement revealed
that we can write to the storage card at a rate of around 2.5 MB/s;
hence, the storage media itself is not the bottleneck. We profiled
the application and realized that the slowdown comes mainly from
the memcpy call to write data packets that we receive from the net-
work to the card. Unfortunately, it is not possible to get rid of this
memcpy call which would be necessary to transmit at the maximal
rate of the wireless interface.

To show how our implementation performs on more capable de-
vices like laptops, Figure 8 shows a comparison of the download
time with the iPAQs and the laptops. The results are from average
download measurements of 5 MB episodes showing the download
time when two or five devices are placed close to each other on a ta-
ble. The download time with two laptops is around 3.5 times faster
than with two iPAQs. This shows that the laptops are able to trans-
mit at the maximum transfer rate of the wireless interface (approx.
350 KB/s). For the measurements with 5 laptops and 5 iPAQs, we
observe an average download time with the laptops which is 2.5
times faster than with iPAQs. This relative improvement is smaller
than with two devices because two associated laptops cannot trans-



Scenario Download Time[s]
mobile 39.8
0.1 m 38.4
20 m 39.0
60 m 45.4

Table 2: Download time of a 3.5MB episode between two nodes.

mit at the maximum transmission rate when two other laptops are
associated and transmitting simultaneously as they must share the
wireless channel capacity. .

4.6 The effect of mobility
To see how the download time is affected by node mobility, we

have performed an additional set of experiments that indicates the
performance we might obtain when two people cross-by on a street
or in a building’s hallway. For this purpose, we placed in the hall-
way of our laboratory a fixed iPAQ. Another iPAQ carried by a
test user is subscribed to a channel for which the fixed iPAQ has
episodes stored. The mobile test user walks from the very end of
the hallway (the length of the hallway is 60m) towards the fixed
iPAQ (at approximately 1 m/s), crosses it and continues in the same
direction until it comes out of range. We measure the time it takes
for the mobile node to download an episode of 3.5MB from the
moment on when it moves inside communication range of the fixed
device. This is the time between the moment the two devices see
each other’s MAC-layer beacons until the complete episode has
been downloaded. The average of this time over 6 runs is given
in Table 2 (mobile). For comparison, we also give the measured
download time when the two iPAQs are fixed with a relative dis-
tance of 0.1m, 20m, and 60m. As we can see, the average download
time with the mobile node is larger than when the two nodes are at
a distance of 20 m but smaller than when the nodes are 60 m apart.
This shows that the mobility of the node has not a significant im-
pact on the discovery, synchronization, or download phase but the
distance between the two nodes is determining the download time.
Also, it shows that an episode of the size of a typical audio file can
be transmitted over a single contact in an indoor environment when
nodes move at pedestrian speeds.

5. CONCLUSION
We present in this paper an implementation study of wireless

opportunistic podcasting for mobile devices. Our prototype imple-
mentation is targeted at hand-held devices that communicate over
IEEE 802.11 (or other types of short-range radios). We evaluate
different tradeoffs in the discovery, synchronization, and down-
load phases. Based on measurements, we provide a comprehensive
comparison of the tradeoffs and bottlenecks with real hardware de-
vices. Overall, the resulting performance is promising and shows
the feasibility of wireless opportunistic podcasting. With the pro-
posed opportunistic podcasting system, we further hope to broaden
the concept of traditional Internet podcasting and that new partici-
patory wireless broadcasting applications using the proposed con-
cepts will emerge in the near future.
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