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ABSTRACT
While mobility in the sense of node movement has been an inten-
sively studied aspect of mobile ad-hoc networks (MANETs), an-
other aspect of mobility has not yet been subjected to systematic
research: nodes may not only move around but also enter and leave
the network. In fact, many proposed protocols for MANETs ex-
hibit worst-case behavior when an intended communication partner
is currently not present. Therefore, knowing whether a given node
is currently present in the network can often help to avoid unneces-
sary overhead. In this paper, we present a solution to the presence
detection problem. Our method uses a Bloom filter-based beacon-
ing mechanism to aggregate and distribute information about the
presence of network nodes. Analytical and simulation results show
interesting properties of presence detection in wireless multihop
environments and underline the effectiveness and practical applica-
bility of our approach.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design—Wireless communication

General Terms
Algorithms, Design, Performance

Keywords
Presence Detection, Mobile Ad-Hoc Networks, MANETs, Soft
State Bloom Filter

1. INTRODUCTION
Node mobility is a key challenge in mobile ad-hoc networks.

As a consequence, the impact of a dynamic network topology on
medium access, network and transport functionality has been stud-
ied extensively. However, there is another aspect of mobility be-
sides having to deal with a dynamic network topology. Mobility
also implies that nodes may enter and leave the network at any
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time. This can happen either physically by entering or leaving the
network area, or logically by switching the networked device on
or off. In contrast to supporting dynamic topologies, the impact
of varying node presence has not yet been systematically studied,
although it can affect the performance of a network significantly.

For example, let us consider reactive routing with protocols like
DSR [12] or AODV [18]. These have been designed and evalu-
ated under the premise that all communication partners to which
a route is to be established are actually present in the network.
Routes are found by flooding route requests. The flooding is re-
peated if no answer arrives within some time interval. Thus, if
the intended communication partner is not present, route discov-
ery causes a maximum amount of unnecessary network traffic. The
problem could be avoided if there was a way to tell whether some
potential communication partner is currently present or not. While
proactive routing protocols would certainly be able to provide this
service, they additionally spend resources to track all other mobil-
ity induced topology changes. This overhead was the key reason
to develop reactive routing protocols in the first place. We there-
fore argue that a presence detection scheme should be lightweight:
it should track only the presence of nodes and not the state of all
links.

Many other protocols and applications for mobile ad-hoc net-
works could likewise profit from presence detection. Further exam-
ples are mechanisms for service discovery, where one wants to find
a provider of a certain service, or location services used for geo-
graphic routing. Both could benefit from a way to check whether
the subject of the query is present at all, before actually attempting
to locate it.

Furthermore, as shown by Gupta and Kumar [8], the per-node
capacity of an ad-hoc network decreases dramatically with the av-
erage distance between communication partners. Therefore, it is
desirable that applications and algorithms for mobile ad-hoc net-
works are able to determine the distance between communication
partners before attempting to exchange data.

In this paper we propose a lightweight presence detection ser-
vice for mobile ad-hoc networks. It enables nodes to check whether
other nodes are present within a given hop-count radius. Our ap-
proach is based on a space-efficient approximate set membership
data structure called Bloom filter [1]. Essentially, this provides a
lossy compression of presence information in order to minimize
communication overhead. In our approach, the nodes periodically
announce the compressed presence information that they have gath-
ered so far in beacon messages. They integrate the information re-
ceived from neighbors into their own knowledge base and include
it in their next announcement. Stale presence information about
nodes that have left will automatically vanish.



The cost of aggregating presence information is a small number
of so-called false positives, where nodes are wrongly considered to
be present. This is not critical for typical applications of a presence
detection service. When such a service is used, for instance, to
avoid unnecessary route discoveries with reactive routing, the cost
of a false positive is an unnecessary discovery attempt. This is
exactly what happens without presence detection. Thus, in the rare
error case, the system behaves like one without presence detection.

This paper has two major contributions. First, it points out the
problem of lightweight presence detection as an important open
research problem in the context of MANETs. Furthermore, it de-
scribes a solution to the problem and analyzes its performance.

The remainder of the paper is structured as follows. In Section 2,
we summarize related work. Section 3 presents the algorithm we
propose for lightweight presence detection. Section 4 evaluates our
approach both analytically and by means of ns-2 simulations. In
Section 5, we discuss an application of our approach for avoiding
unnecessary overhead in reactive MANET routing and present cor-
responding simulation results. Finally, the paper is concluded by a
summary and an outlook on future work in Section 6.

2. RELATED WORK
Although detecting the presence of nodes is a largely unexplored

field, not only in the context of MANETs, there are a number of
research directions that deal more or less directly with the presence
of nodes in wireless networks.

Routing protocols for mobile ad-hoc networks are able to de-
termine the presence status of a node. However, reactive proto-
cols like AODV [18] or DSR [12] induce very high, unnecessary
network traffic in the case of a route discovery to a non-present
destination. Thus, they might actually benefit from an additional
presence detection service. In contrast, proactive routing protocols
like OLSR [11] can determine the presence of a node. However,
as stated in the introduction this comes at the cost of tracking the
complete network topology, too. This is ony viable if a proactive
routing protocol can be efficiently employed in a given environ-
ment.

Close relatives to presence detection are location services for
geographic routing. Examples are homezone-based systems [7,20],
the grid location service (GLS) [16], and the hierarchical location
service (HLS) [13]. However, a location service provides signifi-
cantly more information about a node than just telling whether it is
present or not, namely its current position. Therefore, the cost to
keep it up-to-date and to lookup in such a service is much higher.
Like reactive routing, most location services exhibit their worst-
case behavior in terms of effort in the case of a request for infor-
mation about a non-present node.

Some systems for presence detection in wireless systems have
been successful applications on their own, for example the Love-
gety [10]. A number research projects deal with the exchange of
presence information via single-hop wireless communication, with
or without infrastructure. Examples are [4,9,21]. But none of these
systems considers presence detection over multiple wireless hops.

Finally, [15] presents a design for an instant messaging system
for sparse mobile ad-hoc networks called SPEED. Instead of the
presence of nodes, the authors consider the dissemination of pres-
ence states of users, such as “available”, “busy”, or “do not dis-
turb”, with the assumption that users’ devices stay in the network
even if a user is “non-present”. SPEED distributes user presence
information via periodical announcements and requests, both of
which are flooded in the network. This design is well-suited for
an instant messaging service. However, for our purposes a much
more lightweight solution is necessary. Interestingly, like many

of the previously discussed protocols, SPEED generates significant
overhead in the case of users whose devices are not present in the
network. Therefore, it might in fact profit from additional node
presence detection in such cases.

3. SCALABLE PRESENCE DETECTION
We assume that each node has some static, unique ID. This could,

for example, be a MAC- or statically assigned IP address.
The most naive approach for a presence detection mechanism

would be simply distributing a list of all available node IDs through-
out the network. This could be done, e. g., by transmitting the IDs
of the nodes via beacon messages. The obvious problem of this
approach is that the amount of information distributed to each node
would increase linearly with the number of nodes in the network.
This is not appropriate for a lightweight service.

In order to avoid this problem, we propose to aggregate pres-
ence information. Generally, aggregation can be lossy or lossless.
Lossless aggregation is efficient if there is some structure in the
entries to be aggregated. For instance, IP routing table entries can
be efficiently aggregated without losses, because the addresses are
organized hierarchically. For nodes present in a MANET, such a
structure is typically not given. Thus, we propose to use a lossy
aggregation scheme.

When performing lossy aggregation of presence information,
two types of errors may occur. Either a node may be reported as
being present while it is not, or it may be reported as being absent
while it is in fact present. The former situation is called a false
positive, the latter a false negative. Given the application of pres-
ence detection in mobile ad-hoc networks, a false negative would
“hide” an actually present target node, which is generally not ac-
ceptable. A low rate of false positives, on the other hand, is often
quite tolerable: in the rare case of a false positive, the applications
would simply behave as if there was no presence detection service
active, e. g., a routing protocol would attempt to set up a route to a
node not present in the network. The actual absence of the node,
and thus the occurence of a false positive will become clear if com-
municating with the node fails. Therefore, for presence detection a
scalable data structure that supports lossy aggregation of presence
information without introducing false negatives is needed. Bloom
filters are such a data structure.

3.1 The Bloom Filter
A Bloom filter [1] is a data structure that represents a set S =

{s1,s2, . . . ,sn} of n elements to support membership queries. It is
described by an array a of m bits, which are initially set to 0. k
independent hash functions h1, . . . ,hk are used, each maps every
possible item in the set to a uniformly distributed value in the range
{1, . . . ,m}. There are two basic operations that can be performed
on a Bloom filter. New elements can be added, and the presence of
an element can be queried.

To add a new element s, which is a node ID in our specific case,
the bits at positions h1(s),h2(s), . . . ,hk(s) in a are set to 1. In order
to determine the presence of some node x, the bits at these positions
are checked. If any of these is 0, then it is certain that x is not in
S. Otherwise, it can be assumed that x is in S with some remaining
probability of a false positive that occurs when an element is actu-
ally not in the set, but all respective bit positions have been set to 1
by adding other elements.

The union of two Bloom filters is calculated by a bit-wise OR op-
eration. Hence, to dissemminate presence information, nodes may
periodically send beacons containing a Bloom filter of the node
IDs they know are present. Upon receiving such a beacon, they can
merge the received information with what they already know.



However, in a presence detection system the removal of no longer
present nodes is also necessary. The standard Bloom filter has the
central drawback that there is no method to delete a value once it
has been added. Since it is entirely possible that a given bit posi-
tion has been set to 1 during the addition of more than one element,
simply deleting all bit positions that refer to the element that should
be removed is not an option.

3.2 Presence Detection
If we ignore the specifics of Bloom filters for a moment, there are

two alternative approaches to remove the presence of a node from
an aggregate. The first is to remove it explicitly when the node
leaves the network. This is called a hard state approach. Alterna-
tively, the presence information for each node can decay over time
and has to be refreshed periodically in order to remain in the aggre-
gate. Using this technique yields a so-called soft state approach.

There are extensions of Bloom filters (e. g., the counting Bloom
filter in [5]) that enable explicit removal of items. Those could be
used as a basis of a hard state approach. However, a hard state
approach faces two major challenges when used for presence de-
tection in MANETs. First, it must be guaranteed that the event of
a node leaving the network actually triggers the removal. Second,
the information on this event needs to be distributed in the network.
Both problems are very hard to solve in the given decentralized en-
vironment. We therefore use a soft state approach. This requires
an extension of Bloom filters that enables decay and refresh opera-
tions.

Soft state Bloom filters
In order to support these, we modify the Bloom filter used in the
aggregates. Each entry now consists of l bits instead of one, where
l is typically small, e. g., l = 3 or l = 4. Each of these l-bit words
stores a counter. These counter values can be interpreted as the
“age” of the respective Bloom filter entry. A node initializes all
counters with the maximum value 2l −1. This maximum value in-
dicates that the position of the Bloom filter is not set, it is equivalent
to setting a bit position to 0 in the standard Bloom filter. Periodi-
cally, just before a beacon is sent, a node applies the hash functions
to its own ID. It sets all counters at the resulting positions to 0. All
other counters that are not already at the maximum value are incre-
mented by one. Thus, each node continuously announces its own
presence with the age of 0 and ages all other presence information
by 1 each interval.

The aging of the information means that entries of leaving nodes
will eventually die out. Hence, it provides the removal of nodes
from the Bloom filter if they are no longer present. As already dis-
cussed, it is also desirable to be able to put a limit on the distance
to a target node for it to be considered present. Applications can
thereby take the expected communication effort into account, re-
specting the inherent capacity limits of wireless multihop network-
ing. More formally, this can be stated as: node x is regarded as
present by some other node u if and only if the length of the short-
est hop-count path from u to x does not exceed some threshold Tu.
Thus, x should be regarded as non-present by u if either x is not
at all in the network or it is too far away. Since the entries in our
scheme age with every hop over which the information is propa-
gated, their value—as a side effect—also provides an indication of
the distance to sought-after nodes.

Our Bloom filter modification bears certain similarities to some
of the many Bloom filter variants that have been discussed in the lit-
erature. For example in the routing context, in [19] and [6] schemes
are discussed which use a set of Bloom filters: there is one Bloom
filter for each hop distance, containing the information on all nodes

at that distance. In [14], a scheme for service discovery is proposed
that stores the minimum distance to a service using Bloom filters.
The Time-Decaying Bloom Filter (TDBF) as introduced in [2,3] is
used to continuously analyze a data stream like, e. g., web page hits.
Like in counting Bloom filters [5], but unlike in our approach, the
number of occurrences of an item is stored in counters at each bit
position. TDBF then reduces the contribution of less recent occur-
rences by periodically decaying all counters. However, to the very
best of our knowledge no previously existing Bloom filter variant
provides a solution for the the central problem tackled by our soft
state Bloom filters: the removal of elements in a Bloom filter if they
are no longer refreshed.

Aggregate structure
We define the structure of an aggregate as follows. It consists of m
l-bit entries a1,a2, . . . ,am, each of which is interpreted as an integer
in the range 0, . . . ,2l −1. ai represents the age of the Bloom filter’s
“bit” i. Initially, all the ai are set to 2l −1.

l needs to be chosen large enough to account for the maximum
of all nodes’ distance thresholds. Thus, if N is the set of nodes,

l > max
u∈N

dlog2 Tue. (1)

Each node u can select and change its Tu at will, but l is fixed
and constant for the whole network.

Timeout and refresh
To accommodate the new aggregate structure, the operations on the
Bloom filter are modified accordingly. The most central one is the
timeout and refresh operation. Each node performs it periodically.
It consists of three steps:

1. Increment each ai by one, if it is not already at the limit of
2l −1.

2. Refresh the information about the node’s own presence, by
setting ah j(ID) = 0 for all j = 1, . . . ,k, where ID is the ID of
the local node.

3. Broadcast the updated aggregate to the neighbors.

This algorithm results in each position eventually reaching the
maximal value when it is no longer refreshed by some node. There-
fore, a no longer present node will vanish from the aggregate.

Merge operation
When a node receives a beacon message, the information is merged
into the local aggregate. Instead of the bit-wise OR for standard
Bloom filters, we use a position-wise minimum operation, i. e., we
set each Bloom filter position to the minimum of local and received
ages.

Query operation
In order to determine whether some other node x is present, a node
u checks its local aggregate at positions h1(x),h2(x), . . . ,hk(x). Let

t := 1+ max
1≤i≤k

ahi(x). (2)

If t = 2l , we conclude that x is not present. Otherwise, we say that
it is seen at a distance of t hops from u, with some probability of
a false positive. Depending on the choice of the threshold Tu, u
considers x as present or not accordingly. We will soon see that
this “seen distance” is in fact very close to the real minimum hop
distance.
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Figure 1: A soft-state Bloom filter.

Figure 1 shows the entries corresponding to some sought-after
node x. The age of the information about x is four, which means
that x is seen at a distance of five hops. For instance, if Tu = 10 then
x is said to be present. If Tu = 3 the node is said to be not present,
as the distance at which x is seen exceeds the value of Tu.

4. EVALUATION
In the previous section, we introduced an algorithm to dissemi-

nate presence information and to reliably remove no longer present
nodes with a soft state approach. In this section, we assess the per-
formance and suitability of the proposed scheme. In particular, we
concentrate on three aspects: the reliability of the scheme in terms
of the false positive rate, oscillations of the seen distance, and the
effect of node mobility.

4.1 False Positive Rate
For a practical application of presence detection, it is desirable to

know the false positive rate: what is the probability of considering
a non-present node to be present?

A false positive occurs when the bit positions corresponding to
the sought-after node are all set by other added elements. In stan-
dard Bloom filters, the probability that a false positive occurs de-
pends on three factors: the number of bit positions in the filter m,
the number of hash functions k, and the number of elements n that
are present in the set. The probability that a bit position is still
zero after n elements with k bit positions each have been added is
(1−1/m)kn. Thus, the probability that all k bit positions of the
sought-after node are one can be calculated as(

1−
(

1− 1
m

)kn
)k

≈
(

1− e−kn/m
)k

. (3)

So, if standard Bloom filters were used, the false positive rate
would depend on the total number of nodes in the network. For
our modified Bloom filter with decaying of information and coun-
ters at each filter position, however, the situation is slightly more
complicated—and significantly better.

Consider a node x that is regarded as present by u based on the
local aggregate. As stated earlier, the maximum age at x’s entries
in the Bloom filter plus one is the distance in hops at which x is
seen. Let this number like before be denoted by t. If x is actually
not present at this distance, all of x’s entries must have been set by
other nodes. All these nodes must be at distance t hops or less. Let
n(t) denote the number of nodes within this maximum distance.
Then, the probability that a non-present node is considered present
at a distance of less than or equal to t is

Pfp(m,k, t,ρ) =

(
1−
(

1− 1
m

)kn(t)
)k

≈
(

1− e−
kn(t)

m

)k
. (4)

Consequently, the probability of a false positive at distance t ≥ 1 is

Pfp(m,k, t,ρ)−Pfp(m,k, t−1,ρ). (5)

Being seen wrongly at distance t can either mean not being in
the network at all, or being in the network but at a larger distance.
These cases are hard to distinguish, since the Bloom filter positions
that should contain information on x are all overridden by informa-
tion on other nodes.

An important point is that the probability of a false positive at
distance t does not depend on the total number of nodes in the net-
work, but only on the number of nodes within the t-hop neighbor-
hood, and therefore on the local network density. This also implies
that the confidence in the presence of a node increases rapidly when
it comes closer: the closer a node is seen, the higher is the chance
that it is in fact there. This can be exploited by an application, by
being more aggressive or spending more resources on contacting
a node which is detected nearby and is therefore very likely to be
actually present.

4.2 Oscillations
In the proposed presence detection algorithm, each node period-

ically increments the age of the Bloom filter positions in its aggre-
gate before sending a beacon. While waiting for the next beaconing
interval to expire, updates are received from the neighboring nodes,
potentially resetting the incremented positions to their previous val-
ues. Therefore, the Bloom filter entries go up and down periodi-
cally. Furthermore, if beacons are lost—either due to transmission
errors or because of congestion or packet collisions—, this will lead
to temporarily further increased counters: information gets through
only from time to time. This influences the distance at which other
nodes are seen; the seen distance is not always exactly the min-
imum hop count distance, but it will oscillate between the exact
distance and slightly higher values.

The oscillations due to the alternating decay and refresh opera-
tions always occur, even in the case of an ideal medium without
losses. Higher oscillation amplitudes are caused by packet losses.

Simulations using the ns-2 network simulator [17] were carried
out to see to which extent the error rates effect on the fluctuation
of reported pair distances. We placed 200 nodes randomly on a
square area of 1500 meters side length, and used our presence de-
tection algorithm with m = 1024 filter positions, l = 4 bits counter
length, and a beaconing interval of three seconds. A randomized
error model was used to make a varying fraction of beacon re-
ceptions, 0 %, 25 %, and 50 %, fail, in addition to medium-related
losses like those caused by packet collisions. Figure 2 shows the
influence of the true distance between two nodes and the beacon
packet error rates on the oscillations. Each vertical bar stands for a
shortest hop distance; it is an average over all node pairs with the
respective distance. It shows for which fraction of time the distance
has been reported correctly, as well as how long and how far it has
been overestimated.

The results show that even high packet loss rates have surpris-
ingly little effect on the oscillation of reported distances. For most
of the time, either the reported distances between node pairs are
correct, or they are overestimated by one, i. e., the decay operation
has occurred and the Bloom filter positions have not yet been re-
freshed by a newly received aggregate. Distance estimates that are
wrong by more than two hops are extremely rare: overestimates
by three or more are barely visible in Figure 2 (c). The reason for
this trait is that there often exist many alternative paths between a
pair of nodes. They increase the chances for the information to get
through and provide significant redundancy for the best path to be
a fast one.
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(b) Beacon error rate 0.25.
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(c) Beacon error rate 0.5.

Figure 2: Oscillations of distance estimates for varying beacon
packet error rates.

4.3 Node Movement
The movement of the nodes in a mobile ad-hoc network can in-

fluence the presence detection in two ways. First, the distances
between nodes change over time, and there is some delay until
these changes are correctly reflected in the presence detection ag-
gregates. Furthermore, a node that moves to a different network
area might essentially “carry” presence information with it, mak-
ing nodes from the area where it is coming from appear closer to
the nodes in the new vicinity than they actually are.

In order to assess the impact of these effects, we carried out
another set of experiments with key parameters chosen as above,
except that the nodes move according to the Random Waypoint
mobility model without pause times and with different maximum
speeds. The results given in Figure 3 show that at all considered
movement speeds, the shortest hop-distances are reported quite ac-
curately. For this figure, we took 100 snapshots at random points
in simulation time, calculated the true hop-distances for each node
pair based on the current node positions, and compared them to
the distances reported in the respective presence detection aggre-
gates. With increasing mobility, there is an increase in underes-
timated distances, due to the reasons discussed above. However,
even when the node mobility is high, overestimated distances due
to beacon losses and oscillations are much more common than un-
derestimated ones. In the case of zero maximum speed, i. e., no
mobility at all, there is a tiny number of cases in which the distance
is underestimated; these are false positives that make a node appear
closer than it is.
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Figure 3: Deviations between seen distances and true shortest
hop distances for different maximum node speeds.

4.4 Choosing the Parameters
In the discussed algorithm, there are quite a number of param-

eters: the Bloom filter length m, the number of hash functions k,
the distance thresholds Tu to be used, the number of bits per Bloom
filter position l, and the beaconing interval B. The best-suited val-
ues for these parameters depend on the application’s requirements.
Typically, one will find a tradeoff between bandwidth usage for
beaconing, the delay of presence and disappearance detection, the
false positive rate, and the achievable hop distance thresholds Tu.
We consider it a very valuable property of our approach that it is
possible to adjust this tradeoff in a very wide range, and thereby to
tailor it for many specific application scenarios.

While it is relatively straightforward how one can find appropri-
ate values for Tu, l, and B, the parameters that are directly related
to the Bloom filter, m and k, deserve a little more attention. Actu-
ally, the optimal combination of m and k depends on the distance
that is of main interest to the application: for given m, the optimal
k for a minimum false positive rate is not the same for each dis-
tance. The analytical results regarding the false positives provide
some hints. For given Bloom filter length m and node count n(t)
within the considered t-hop radius, the false positive rate according
to (4) is minimized for

k =
m · ln2

n(t)
. (6)

In practice, k must of course be chosen to be an integer.
Before we focus on a specific application for presence detection

in the next section, let us now consider a concrete example network
to illustrate what our results presented above actually mean in prac-
tice. Consider a mobile ad-hoc network using a 1 MBit/s channel
(which is actually quite limited, considering today’s wireless hard-
ware). We allow each node to spend 0.2 % of this bandwidth for
presence detection beacons. Say that there is a total of 200 nodes
in the network, which has a diameter of approximately ten hops.
Let us furthermore assume that, for the considered application and
network, a beaconing frequency of one beacon every three seconds
suffices. So, the presence detection beacons may have a size of up
to 3 s· 2 KBit/s = 768 bytes. We want to cover the whole network
with the presence detection, so we may set l = 4. Therefore, we can
use m = 1400 and still have plenty of space left for headers. If we
decide to optimize the false positive rate for longer distances, i. e.,
for the whole network, (6) suggests we use k = 5 hash functions.
In this configuration, the expected false positive rate for a node at
maximum search radius is 3.47 %. This will be fine for many ap-
plications. By spending slightly more bandwidth, 0.25 % instead of
0.2 %, and using m = 1800 and k = 6, the expected false positive
rate is reduced to 1.33 %. Within a smaller search radius, the false
positive rate also quickly decreases: if, for example, within some
smaller radius there are only 100 nodes, there will only be 0.24 %
false positives in the 0.2 % bandwith usage case, and 0.05 % when
allowing to use 0.25 % of the bandwidth.
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5. AN EXAMPLE APPLICATION
After having discussed the general features and applicability of

presence detection in mobile ad-hoc networks, we now focus on
one possible application. Finding a route to some destination node
when a reactive routing protocol is used can be an expensive pro-
cess, as it typically requires flooding a route request in the network.
If the destination device is not present or too far away from the
source device to be reached within the TTL limitation of the route
request packet, much bandwidth is wasted. Furthermore, a route
request is typically repeated if no answer arrives before some time-
out expires, thus reactive routing exhibits worst-case behavior in
the case of a non-present node.

In this section, we will analyze the presence detection service
when it is used in conjunction with AODV routing [18]. We query
the presence detection service at the source node before starting a
route request for a new connection. If the destination node is con-
sidered present, the connection will be initiated as usual. Other-
wise, the route request will be delayed until the presence detection
service indicates that the destination node is present.

The simulation study was conducted using ns-2 [17], with setups
similar to those used before. There are 200 nodes at random posi-
tions in an area of 1500 by 1500 meters. IEEE 802.11 at 1 MBit/s
network bandwidth is used; note that a low communication band-
width is the worst case for a protocol that causes a constant beacon-
ing load. The communication radius is 250 meters, with a 550 me-
ter carrier sense range. The nodes move according to the Random
Waypoint mobility model at a maximum speed of 10 meters per
second and with a pause time of 20 seconds. All connections last
100 seconds and start at some random time between 10 and 190
simulation seconds. During a connection, the source node sends
CBR traffic with four data packets per second, each with a payload
size of 512 bytes. The results are averages over 25 scenarios, each
with different traffic and movement patterns. Here, compared to the
example given in the previous section, we can tolerate even some
more false positives, because the negative impact is at most an un-
necessary route discovery—ten percent seems tolerable. We trade
the additional false positives off for a reduced beacon size and use
m = 1024, k = 4, and a beaconing interval of three seconds.

5.1 Worst Case Performance
The worst case for the presence detection service is a situation

where all network nodes are permanently present. In that case, the
network will not profit from presence detection services, while they
still consume bandwidth. Figure 4 shows the network performance,
in terms of the packet delivery ratio, for an increasing number of
connections. For a lower network load, the negative impact of the
presence detection is quite low. More interestingly, when the net-
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Figure 5: Relative performance in the worst case.

work load increases, there is actually a slightly better performance
with presence detection.

Not only for the worst case evaluations, but also in our subse-
quent simulations, the results come from many different, randomly
generated topologies. Their characteristics and thus the measured
values vary in a very broad range. However, not only their variance,
but also the covariance is high. For the same number of connec-
tions, in “good” topologies, the delivery ratio both with and with-
out presence detection can be in the order of 90 %, while in a “bad”
topology both are only around 50 %. To provide a more robust
measure, we also look at the relative performance: for each sin-
gle topology, we divide the delivery ratio with presence detection
by the delivery ration without presence detection. The value will
be one if both perform equally well, above one if there is a perfor-
mance benefit with presence detection, and below one in case of
a performance degradation. In Figure 5, we give the (geometric)
mean of those values. The error bars show the standard deviation.
A logarithmic y-axis avoids a distorted representation: a value of
0.5 is the loss of performance corresponding to the performance
gain indicated by a value of 2. The results confirm that there is
a small degradation in case of a lower network load, and a small
improvement in higher load situations.

The reason for these unexpected performance benefits with pres-
ence detection is a little subtle. When the network is so congested
around some node that it cannot send its data packets, the node will
not send any presence announcement until the situation improves.
This is an acceptable behavior since there is no use for a node in
a congested area to announce its presence: the node is not able to
receive any more data packets anyway. When congested nodes are
temporarily considered non-present, connections attempts to those
nodes will be delayed until they are again able to send beacons,
i. e., they are effectively back in the network. Thus, employing
presence detection has accidentally introduced some form of con-
gestion control. We do not consider this to be a true advantage
of presence detection, but it is certainly an interesting observation
which may be exploited in future work.

5.2 Introducing Absent Nodes
Now we keep the number of “working” connections to present,

available nodes fixed at 25. Figure 6 shows the effects on the net-
work performance when the number of additional connection at-
tempts to non-present nodes increases. The corresponding rela-
tive evaluation is shown in Figure 7. It can be seen that, without
presence detection, more connection attempts to non-present nodes
severely deteriorate the network performance. The performance
with presence detection, on the other hand, does not show signif-
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Figure 6: Packet delivery ratio as the number of connection
attempts to non-present nodes increases.
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Figure 7: Relative performance with connection attempts to
absent nodes.

icant negative effects, no matter how many connections to non-
present nodes are attempted.

Figure 8 compares the average bandwidth spent by a node in
the network with and without presence detection, broken down to
bandwidth used for routing packets, data packets, and presence de-
tection beacons. Here, for AODV and data packets, the error bars
show the minimum and maximum over all our simulations. The
beaconing load is constant. It is obvious that, without presence de-
tection, the bandwidth used for routing packets quickly increases,
while the available bandwidth for application data decreases. Only
a small portion of the bandwidth is actually effectively used.

The situation with presence detection services running is much
better. Since the presence detection service blocks the vast majority
of connection attempts to non-present nodes, the bandwidth usage
does not significantly change. There is only a minor increase in
bandwidth used by AODV, which is due to false positives, causing
some non-present nodes to appear as present.

Note that in a real network, the amount of connection attempts
to non-present nodes heavily depends on the nature of the network
and the application. Our results here show that it is possible to gain
a benefit from exploiting presence information.

5.3 Arriving and Leaving Nodes
In our last set of simulations, nodes actually enter and leave

the network. One third of the nodes to which connections are at-
tempted is permanently present, another third are switched on at
some random time during the simulation, and the remaining nodes
are initially present, but are switched off at some random time. This
means that some connections run smoothly, some others can possi-
bly be delayed until the destination is up, or they might be abruptly
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Figure 8: Bandwidth use per node as the number of connection
attempts to non-present nodes increases.

terminated because the destination is switched off while the con-
nection is running. In Figure 9 and the corresponding relative val-
ues in Figure 10, it can once again be seen that the presence detec-
tion service helps to achieve a substantially better network perfor-
mance.

6. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the problem of detecting whether

specific nodes are present in a mobile ad-hoc network. We de-
veloped a scalable solution to this problem, which is also able to
estimate the number of hops required to reach a given node. It
aggregates presence information using Bloom filters, which we ex-
tended to a soft state variant. The aggregation comes at the cost
of an adjustable amount of false positives, while it guarantees the
absence of false negatives.

We believe that presence detection is a vital building block for
wireless multihop networks. Service discovery, routing, and loca-
tion services are just three examples where presence detection is
vital to ensure an acceptable system performance if the presence
of nodes changes over time. There are significant opportunities for
further research in this area. On the one hand, many algorithms and
protocols in the area of mobile ad-hoc networks have completely
ignored the problem of dynamic node presence. It would be inter-
esting to investigate the impact that a truly dynamic network would
have on those approaches and how a presence detection system can
improve the situation. On the other hand, for some applications
it may be possible to compress presence information even further
using a more aggressive aggregation strategy.
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Figure 9: Delivery ratio with arriving and leaving nodes.
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nodes.
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