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ABSTRACT
The Opportunistic Networking Environment (ONE) Simulator is
an extensible tool for evaluating protocols and mobility models for
delay-tolerant networking. ONE allows easily plugging in mobility
models, contact traces, routing modules, applications, and report
modules. In this paper, we describe how to instrument the ONE
simulator for two content sharing applications: spreading content in
waves across mostly stationary nodes and geo-based content shar-
ing between mobile nodes using Floating Content. Both are in-
cluded in the ONE simulator version 1.5.1.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols; I.6.7 [Simulations and Modeling]: Simulation Support Sys-
tems

General Terms
Design, Experimentation

Keywords
Delay-tolerant networking, simulation

1. INTRODUCTION
Mobile opportunistic networking may serve as important build-

ing block for exchanging information between users within the vicin-
ity of each other. While such networks do not replace the Inter-
net and mobile Internet access—which offer global communication
and access to information and services irrespective of the locations
of users and service providers—they are able to fill an important
gap in enabling local communication. They come into play when
using network infrastructure is not an option: because there is none,
it is overloaded, too expensive, too restricted, or too slow.

Traditional Internet communication has focused on interactions
between hosts. Quite a bit of the work on mobile opportunistic and
delay-tolerant networking research has followed this idea, too, al-
beit opportunistic caching [12] and content replication [6] ideas ap-
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peared early, somewhat similar to the trends towards information-
centric networking for infrastructure networks. However, delay-
tolerant networking systems cannot compete with Internet-based
services when user expectations demand instant responses, so that
alternative ways for service interactions are required: as one exam-
ple, DTN applications should operate in the background to collect
information and execute services and present whatever “results” are
available whenever user interacts with the application [8].

This approach works, for example, for content sharing applica-
tions such as PodNet, in which mobile nodes synchronize (parts of)
their databases when in contact and the amount of content avail-
able to each user grows in the background. In other examples
nodes “subscribe” to (web page) contents in the background (some-
what similar to RSS feeds) [1, 13, 14]. Yet another class of content
sharing applications provide location-tagged content sharing as the
server-less counterpart of digital graffiti [2]. Content items are as-
sociated with a location or an area for which they are valid and are
replicated within this area whenever nodes meet, and deleted when
nodes leave the validity area. Numerous systems were designed ex-
hibiting different flavors of geo-content replication and access, in-
cluding our work on Floating Content [9,10], but also Hovering In-
formation [16], Locus [15], and variants targeted at VANETs [5,7].
All these sharing applications have in common that messages, i.e.,
content items, are not addressed to a particular node, but are “pub-
lished” in the system together with descriptive metadata, such as a
channel in PodNet or an anchor zone for Floating content.

This paper introduces the content sharing mechanisms in the
1.5.1 release of the ONE simulator supporting circulating content
among fixed nodes (section 2) as well as geo-based content sharing
among mobile nodes using Floating Content (section 3) along with
a local open mobility model for local content sharing. We present
the implementation and then discuss metrics for evaluating content
sharing systems and visualizing content distribution using the ONE
reporting functions in section 4, and conclude in section 5.

2. SHARING IN STATIC ENVIRONMENTS
Delay-tolerant content sharing may not just happen in sparse,

dynamic environments but also in rather static setups such as in a
stadium, in a park, or along a beach. Such environments are char-
acterized by a) fairly static nodes that may come and go over time,
b) potential disruptions due to gaps that nodes leaving or sleeping
create, and c) large dimensions that prevents direct communication
between all nodes. Assuming that more content exists than a single
node would store, one option is to make the content circulate peri-
odically in waves (like la ola in a stadium) through all the nodes.
Any newcomer would then get access to all contents over time.

The metrics of interest for this system include the basic availabil-
ity of a piece of content (#copies), which also indicates resource



Figure 1: GridLocation “Mobility” Model

consumption; the time to obtain a copy of the content for a node;
and the distribution of the messages. We report on the metrics fur-
ther in section 4. We evaluated such content sharing models in [11],
for which we designed a static grid mobility model and two routing
algorithms that are now included in the ONE simulator.

2.1 Mobility
The GridLocation class offers a simple way of specifying nodes

on a grid. As shown in figure 1, the grid is defined by the (location)
of the upper left node in the grid so that it can be placed anywhere
in the ONE world, the number of rows, and the (mean) spacing
between nodes. The number of columns is calculated from the node
count. A randomization factor (randomOffset) may be specified
for the node positions to make the grid less regular: node loca-
tions are then spread around the grid coordinates uniformly within
±randomOffset.

2.2 Routing
Two routing modules make content circulate across the nodes:

2.2.1 Game of Life Router
Since the nodes in our setup are mostly static, we view them as

cells the Game of Life automaton [4]. Game of Life simulates cells
by a set of simple rules that infer the fate of a cell in a given position
X from the number of live adjacent cells: if there are too few (m) or
too many neighbors (n), the cell dies; for some range of neighbors
a new cell is born; and for another range, a cell survives.

The LifeRouter implements a simplified model of the custom
Game of Life simulator used for part of the evaluation in [11].
The LifeRouter determines neighboring cells via the radio range,
to which it is thus connected. The router has one parameter that
governs its behavior, nmcount, that defines the pair n, m. During
the operation, if a node does not have a copy of the message and it
is connected to k nodes, m ≤ k ≤ n, the node will obtain a copy
of the message; if the node already has a copy of the message, it
will keep it. If k > n ∨ k < m, the message will not be replicated
to a new node. Instead, it will be deleted on a node that has a copy.

With the right parameter choices, messages are spread in cycles
in parts or throughout all of the network.

2.2.2 Wave Router
The WaveRouter is a routing scheme to make messages circu-

late. To achieve this, each node receiving a message, forward and
then stores it for a while before deleting it. After the deletion, the
node does not accept the same message for a while. When all nodes
act this way, the messages move through the grid in waves.

The operation is controlled by one internal data structure and two
parameters. Each node keeps track of the messages it has recently
received in a tracking list. The messages are kept in the list for a
certain fixed time period—the immunity time (immunityTime)—

during which the node is “immune” to them and will not accept
those messages again. This basically ensures that messages do not
bounce back to the same direction they came from so that waves can
form. A second parameter (custodyFraction), which is measured
relative to the immunity time, defines how long a node keeps a copy
of the message after receiving it. During this time, the content is
available for local application and for replication to newcomers as
well as neighbors losing their immunity.

The message deletion is executed independently of the tracking
list, i.e., the node may be immune to a message even though the
message is no longer in its possession. Moreover, upon accepting
a message, the node agrees to take over the custody of the mes-
sage, which means that it will not delete the message until it has
been passed further (along with the custody) at least once or the
message’s time-to-live expires.

3. FLOATING CONTENT
Floating Content is a content sharing scheme for mobile users.

It uses a simple system model for its operation, assuming that the
mobile nodes are aware of their locations [9]: Node S creates a
data item I at a given location L = (x, y). I is associated with two
radii, r and a, that define the distances from L within which I will
be replicated to other nodes encountered (r), and within which I
remains valid (a), i.e., a node will keep its copy; and with a lifetime
T after which I will be deleted. Items will also be deleted outside
this anchor zone delineated by a.

The system offers one communication primitive: posting content
into an area from which it may be picked up by other nodes. The
operation is inherently best-effort and asynchronous: if all nodes
carrying a copy of an item leave the anchor zone, the data item
disappears; and there is no upper bound (besides T ) within which
a data item might reach other nodes. Content is picked up in the
background and inserted into a local database, from where it can
be retrieved via application queries [10]. Content cannot be deleted
(except by expiration).

The Floating Content implementation in the ONE simulator com-
prises three modules: the routing module, the application module,
and the reporting module for floating content. They can be used
with arbitrary mobility models, but we developed a specific open
mobility model for urban squares, which we describe first before
turning our attention to the floating content implementation.

3.1 Square Mobility Model
Areas where geo-based opportunistic content sharing can be en-

visioned, such as city squares, show high dynamic properties es-
pecially in terms of node density. This property is mainly due to
the “openness” of the area, which allows nodes to freely enter and
depart the system rather than having a fixed set of nodes confined
in a closed system. A mobility model that captures this property of
openness, the Square Mobility Model, is introduced in [3].

The Square Mobility Model is defined as follows:

• Nodes move in a × b rectangle area A.

• New nodes enter the area through one of the sources located
at each corner of the rectangle and move freely in A.

• Upon reaching a waypoint in A:

– With probability of p(exit)
i = P (exit)/4, i = 1, . . . , 4, the

node moves next to a exit point (sink) i, where it then
departs the system (sinks and sources are co-located).

– Otherwise, it chooses a new waypoint uniformly in ran-
dom from A and starts moving directly towards it.

• Velocity v for each transition is chosen independently from
an arbitrary velocity distribution with E[1/v] < ∞.



In short, nodes enter the square through one of the four corners
of the square, then move according to RWP for a random number
of transitions, and then depart the system.

Parameter P (exit) ∈ [0, 1] controls the sojourn behavior of the
nodes. Areas where people tend to spend more time moving around,
e.g. flee markets, can be characterized with a lower exit probability,
P (exit), whereas busy intersections in cities have a much higher exit
probability. Setting P (exit)=0 gives us the RWP movement.

We have implemented the Square Mobility model by adding a
new movement class, the SquareMobility. Since one of the main
properties of open city squares is that nodes can enter an area of
interest according to some arrival rate, e.g. Poisson, move freely
inside the area, and depart when they choose so. The SquareMo-
bility module introduces a feature to add nodes to and remove them
dynamically from the simulation. Dynamic addition and removal
of nodes can be configured by setting the static variable dynamic
from the node creation event of a host group as true, whereas the
default value or the setting HostGroup_NS.dynamic=false dis-
ables this feature. A user can also configure the inter-arrival time
distribution of nodes by setting up the static variable distribution
for the event NodeCreationEventGenerator to the desired value,
where poisson and uniform are currently available. Hence, for
dynamic host groups, the user needs to configure the arrival rate of
nodes, e.g. the intensity for Poisson arrival rate using another static
variable lambda with a desired integer value.

3.2 Floating Content Routing
The FloatingContentRouter implements the replication and dele-

tion operation as described in [9]. Besides the buffer size (inher-
ited like other parameters from the ActiveRouter class, four pa-
rameters govern its operation: the 1) replicationAlgorithm and
2) deletionAlgorithm govern the behavior when nodes encounter
each other outside the replication area but within the availability
area of a content item. Simulations suggest making this part of
the anchor passive, i.e., neither replicating nor deleting content [9],
which is achieved by setting both to none.

3) The replicationPolicy determines the order in which floating
messages are replicated when two nodes come into contact. While
FIFO and random ordering policies could be used, we found STF2
(see [9]) to be very useful, as it prioritizes messages inversely pro-
portional to their resource consumption, defined by the product of
anchor zone area, message size, and lifetime. Of course, there is
room for inventing and experimenting with more subtle policies.

4) The deletionPolicy defines when a message is purged from
a nodes outside the anchor zone. We find that rather than continu-
ously checking the location against stored messages to enable im-
mediate deletion, waiting until the encounter with another node
is more practical, has no practical drawbacks, and is closer to real
implementations. Note that the above policies are not applied when
choosing which messages to purge to make room for new incoming
messages. Instead, we rely on the functions of the ActiveRouter.

All parameters specific to floating content are attached to the
ONE messages as properties, the name space shared between the
router, the applications, and the reporting modules.

3.3 Applications and Reporting
The FloatingApplication defines when and how floating con-

tent items are generated. At present, the application for evaluating
Floating Content itself is included in the distribution; the generic
application framework and API [10] is still under development to
make it more generic.

The implementation uses the application framework of the sim-
ulator: nodes are associated with the application as potentially one

out of several, and different (groups of) nodes can have different
application instances assigned. The parameters are then defined
per application instance.

Four parameters determine message generation: startTime indi-
cates when message generation starts, interval specifies the mini-
mum time between two consecutive messages generated per node,
and ttl and messageSize define the lifetime and the size of the mes-
sages. For both, the values are passed as triples: min, max, gran,
which define the minimum and maximum value and the granularity
in which values are chosen uniformly in random. For example, set-
ting 1800, 7200, 900 for ttl would choose random message TTLs
between 30min and 2h in 15min steps. For historic reasons, the
anchor zone size parameters r and a are specified separately.

By default, the entire simulation world would be chosen as an-
chor points for floating content items. A rectangular area can be
specified via minimum, maximum, and step size as in above via the
parameters anchor, anchorMax, and anchorGran. Each takes a
quadruple as input, defining first the X- and Y -coordinates, and
then r and a. Indicating an anchor granularity greater than one
for the X- and Y -coordinates creates a grid, the points of which
become legitimate anchor points. Nodes will only generate float-
ing content item when with the specified coordinates, the messages
may “snap to the grid point”, and will choose anchor zone sizes uni-
formly distributed between the respective minimum and maximum
values for r and a at the given step size.

The FloatingApplication also supports a mode of operation
with a single anchor zone, specified in the configuration file using
the above parameters and setting mode=fixed (the default is vari-
able). In this case, mobile nodes entering the anchor zone and get-
ting sufficiently close to the anchor point (inAnchorZoneFactor)
may post messages with the indicated anchor point. This mode can
be used to systematically assess the floating probability at individ-
ual locations on a map [9]. For such a single anchor zone, also the
entering and leaving nodes can be counted by setting the parameter
flux=true and using the FloatingAppReporter for reporting.

To evaluate a specific application, a custom application class im-
plementing the respective functionality (such as the auction in [10])
needs to be developed.

Besides the above FloatingAppReporter, which is used only
for a very specific purpose, the FloatingMessageReport provides
specific details on floating content items: it reports their create and
delete events, whenever a replication from one node to another is
started and then either aborted or the message is successfully repli-
cated. Along with each event, time stamp, node, message id, posi-
tion, and all floating and message parameters are logged.

In conjunction with the Square Mobility model, we have added
two more reporting classes; the FloatingDurationReport class
and the NodeSojournReport class, which are used to collect data
about content floating duration and the mean sojourn time of a
node, respectively. The FloatingDurationReport reporting class
works by keeping track of the latest time a given piece of con-
tent was relayed before it “sinks” or the simulation ends and re-
port back the value. In the NodeSojournReport class, the spe-
cific time a node is removed from the simulation is recorded by
the nodeEnd() method which is called when a node destruction
event is executed. This time is then used by another method, get-
NodeLifeTime(), to calculate the node’s sojourn time. In situa-
tions where the nodeEnd() method is not called, e.g. when the
simulation time ends, then the getNodeLifeTime() returns the dif-
ference in the simulated seconds elapsed from the creation of a
node until the end of the simulation. In other cases, e.g., when
the simulation is interrupted by a user, the current simulation time
will be used.
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Figure 2: Floating Content visualization in 60s intervals with different colors for the content items: the large circles show the anchor
zones, the nodes and their radio ranges are shown as dots with small circle. The X and Y axes show location offsets in meters.

4. METRICS AND VISUALIZATION
As mentioned above, important metrics for content sharing in-

clude 1) if and how long a content item remains available; 2) how
the content is (geographically) spread; 3) how effectively the con-
tent is distributed to the (interested) nodes, i.e., how many nodes
that should obtain the content actually receive it; 4) how long it
takes for an eligible node to receive a copy; and 5) how many copies
of a content exist in the system.

The ONE simulator offers a number of generic and custom report
modules whose output either answers the above questions or can be
combined by scripting to obtain the desired results. There is, how-
ever, one caveat for content sharing. Messages in ONE required
a destination host they are addressed to. But the content sharing
systems presented in this paper don’t have explicit receivers of the
message. To avoid that messages stop circulating when they reach
the “destination”, we choose a node that is inactive and hence un-
reachable for as the target. Replication and delivery to the local
application is dealt with by the respective routing module using
other parameters (e.g., by matching subscriptions against message
metadata) than the destination address. This implies that ONE re-
ports on message delivery cannot be used and separate reporting
mechanisms are necessary.

The MessageCopyCountReport allows tracking the total num-
ber of copies of each message within the system and thus can an-
swer (1) and (5), where the MessageLocationReport records the
locations of all those copies and thus answers (2). Both report in
regular intervals. In contrast, the FloatingMessageReport pro-
vides event-driven tracking of all generated messages and yields
precise time and location information and allows inferring how
long messages stayed available and when they were replicated to
which entity. With appropriate scripting, this allows answering (1)
and (5) at a finer granularity. For Floating Content, using the Float-
ingAppReporter allows determining the time it takes a mobile
node to obtain a copy of a message since entering the anchor zone
(and which of those nodes do not get a copy at all). This provides
answers to (3) and (4).

Combining the new FloatingMessageReport class together with
the MessageLocationReport class aids visualizing the spread (and
demise) of pieces of content. An example is shown in figure 2 (see
http://floating-content.net/anim.html for an animated version). The
message creation history was obtained from the former report and
the locations were recorded every ten seconds using the latter. The
reports were filtered for a subset of messages, in this case the gener-
ated messages #10–#19. Then the messages and their anchor zones
were plotted using gnuplot in different colors, message copy shown
with its radio range. The figure shows a time series with five snap-
shots. We can see how content items are created. Some of them are
replicated frequently across a number of nodes and will stay avail-
able, while others disappear again quickly (as the one around coor-
dinate (0, 2800) intersecting with the Y axis in t ∈ {6430, 6490}s
and likely then one at (3000, 1800) at t = 6610s.) Using GIF

as an output format allows creating animations from the individual
messages with tools such as gifsicle and ImageMagick.

5. CONCLUSION
In this paper, we have described support for simulating and eval-

uating different content distribution schemes in the ONE simulator.
The new release including these (and other new) features, ONE
v1.5.1, will be available for download at the ONE simulator home-
page: http://www.netlab.tkk.fi/tutkimus/dtn/theone/
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